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Abstract. According to the traditional notion of randomness
and uncertainty, natural phenomena are separated into two
mutually exclusive components, random (or stochastic) and
deterministic. Within this dichotomous logic, the determin-
istic part supposedly represents cause-effect relationships
and, thus, is physics and science (the “good”), whereas
randomness has little relationship with science and no
relationship with understanding (the “evil”). Here I argue
that such views should be reconsidered by admitting that
uncertainty is an intrinsic property of nature, that causality
implies dependence of natural processes in time, thus
suggesting predictability, but even the tiniest uncertainty
(e.g. in initial conditions) may result in unpredictability
after a certain time horizon. On these premises it is possible
to shape a consistent stochastic representation of natural
processes, in which predictability (suggested by determin-
istic laws) and unpredictability (randomness) coexist and
are not separable or additive components. Deciding which
of the two dominates is simply a matter of specifying the
time horizon and scale of the prediction. Long horizons of
prediction are inevitably associated with high uncertainty,
whose quantification relies on the long-term stochastic
properties of the processes.
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Αἰών παῖς ἐστι παίζων πεσσεύων. Παιδός ἡ βασιληίη. (Time is a child playing, throwing dice. 

The ruling power is a child's; Heraclitus; ca. 540-480 BC; Fragment 52) 

I am convinced that He does not throw dice. (Albert Einstein, in a letter to Max Born in 1926) 

1 What is randomness? 

In his foundation of the modern axiomatic theory of probability, A. N. Kolmogorov (1933) 

avoided defining randomness. He used the notions of random events and random variables in 

a mathematical sense but without explaining what randomness is. Later, in about 1965, A. N. 

Kolmogorov and G. J. Chaitin independently proposed a definition of randomness based on 

complexity or absence of regularities or patterns (which could be reproduced by an 

algorithm). Specifically, a series of numbers is random if the smallest algorithm capable of 

specifying it to a computer has about the same number of bits of information as the series 

itself (Chaitin, 1975; Kolmogorov, 1963, 1965, Kolmogorov and Uspenskii, 1987, from 

Shiryaev, 1989). Interestingly, Chaitin proved that, although randomness can be precisely 

defined in this manner and can even be measured, there cannot be a proof that a given real 

number (regarded as a series of its digits) is random.  

 The move from this mathematical abstraction of a real number to the realm of real 

physical phenomena is not straightforward. Here, commonly, randomness is contrasted to 

determinism. The movement of planets is a typical example of a deterministic phenomenon, 

whereas that of dice is thought to be random. This reflects a dichotomous logic, according to 

which there exist two mutually exclusive types of events or processes—deterministic and 

random (or stochastic). Such dichotomy is perceived either on ontological or on 

epistemological grounds. In the former perception the natural events are thought to belong, in 

their essence, to these two different types, whereas in the latter it is regarded convenient to 

separate them into these types, where processes that we do not understand or explain are 

considered random. When a classification of a specific process into one of these two types 

fails—and it usually does, except in a few cases such as the above examples of planets and 

dice—then a separation of the process into two different, usually additive, parts is typically 

devised. This perception has been dominant in geosciences, including hydrology. This 

thinking proceeds so as to form a reductionist hierarchy. Thus, each of the parts may be 

further subdivided into subparts (e.g., deterministic subparts such as periodic and aperiodic or 

trends). This dichotomous logic is typically combined with a manichean perception, in which 

the deterministic part supposedly represents cause-effect relationships and reason and thus is 

(Time is a child playing, throwing dice. The ruling power is
a child’s; Heraclitus; ca. 540–480 BC; Fragment 52)

I am convinced that He does not throw dice.(Albert
Einstein, in a letter to Max Born in 1926)
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1 What is randomness?

In his foundation of the modern axiomatic theory of proba-
bility, A. N. Kolmogorov (1933) avoided defining random-
ness. He used the notions of random events and random vari-
ables in a mathematical sense but without explaining what
randomness is. Later, in about 1965, A. N. Kolmogorov and
G. J. Chaitin independently proposed a definition of random-
ness based on complexity or absence of regularities or pat-
terns (which could be reproduced by an algorithm). Specifi-
cally, a series of numbers is random if the smallest algorithm
capable of specifying it to a computer has about the same
number of bits of information as the series itself (Chaitin,
1975; Kolmogorov, 1963, 1965; Kolmogorov and Uspenskii,
1987; from Shiryaev, 1989). Interestingly, Chaitin proved
that, although randomness can be precisely defined in this
manner and can even be measured, there cannot be a proof
that a given real number (regarded as a series of its digits) is
random.

The move from this mathematical abstraction of a real
number to the realm of real physical phenomena is not
straightforward. Here, commonly, randomness is contrasted
to determinism. The movement of planets is a typical exam-
ple of a deterministic phenomenon, whereas that of dice is
thought to be random. This reflects a dichotomous logic, ac-
cording to which there exist two mutually exclusive types of
events or processes – deterministic and random (or stochas-
tic). Such dichotomy is perceived either on ontological or on
epistemological grounds. In the former perception the natu-
ral events are thought to belong, in their essence, to these two
different types, whereas in the latter it is regarded convenient
to separate them into these types, where processes that we
do not understand or explain are considered random. When a
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classification of a specific process into one of these two types
fails – and it usually does, except in a few cases such as the
above examples of planets and dice – then a separation of the
process into two different, usually additive, parts is typically
devised. This perception has been dominant in geosciences,
including hydrology. This thinking proceeds so as to form a
reductionist hierarchy. Thus, each of the parts may be further
subdivided into subparts (e.g. deterministic subparts such as
periodic and aperiodic or trends). This dichotomous logic is
typically combined with a manichean perception, in which
the deterministic part supposedly represents cause-effect re-
lationships and reason and thus is physics and science (the
“good”), whereas randomness has little relationship with sci-
ence and no relationship with understanding (the “evil”). The
random part is also characterized as “noise”, in contrast to the
deterministic “signal”. “Noise” is a contaminant that causes
uncertainty, a kind of illness that should be remedied or elim-
inated.

Probability theory and statistics, which traditionally pro-
vided the tools for dealing with randomness and uncertainty,
have been regarded by some as the “necessary evil”, but not
as an essential part of physical sciences. This view has also
affected hydrology and geophysics, particularly in the last
couple of decades. Some tried to banish probability from hy-
drology, replacing it with deterministic sensitivity analysis
and fuzzy-logic representations. Others attempted to demon-
strate that irregular fluctuations observed in natural processes
are au fond manifestations of underlying deterministic dy-
namics with low dimensionality, thus rendering probabilistic
descriptions unnecessary. Some of the above views and re-
cent developments are simply flawed because they make er-
roneous use of probability and statistics, which, remarkably,
provide the tools for such analyses (Koutsoyiannis, 2006).

The entire logic of contrasting determinism with random-
ness is just a false dichotomy. To see this, it suffices to re-
call that P.-S. Laplace, perhaps the most famous proponent
of determinism in the history of philosophy of science (cf.
Laplace’s demon), is, at the same time, one of the founders of
probability theory. According to Laplace (1812), “probabil-
ity theory is, au fond, nothing but common sense reduced to
calculus1”. This harmonizes with J. C. Maxwell’s view that
“the true logic for this world is the calculus of Probabilities”
(Maxwell, 1850). Recently, the same view was epigrammat-
ically formulated in the title of E. T. Jaynes’s (2003) book
“Probability Theory: The Logic of Science”.

Here I argue that the dominant dichotomous logic reflects
a näıve and inconsistent view of randomness. It cannot help
us see the unity of Nature. Are the movement of planets
and that of dice qualitatively different natural phenomena?
Do they not obey the same physical laws? Abandoning this
logic and seeking a more consistent view, I propose to iden-
tify randomness with unpredictability. Randomness exists in

1Original in French: “la th́eorie des probabilités n’est, au fond,
que le bon sens réduit au calcul”.

processes that we may understand, we may explain, but we
cannot predict2. In other words, randomness and determin-
ism (which, in turn, could be identified with predictability)
coexist in the same process, but are not separable or addi-
tive components. It is a matter of specifying the time horizon
and scale of prediction to decide which of the two dominates.
This view, which will be illustrated in the sequel, is consis-
tent with Kolmogorov’s and Chaitin’s views of mathematical
randomness, as well as with K. Popper’s (1992) indetermin-
istic world view.

In identifying randomness with unpredictability, the latter
is meant in deterministic terms: any specific prediction algo-
rithm is not able to accurately calculate the future state of a
system and thus there is uncertainty. If, in our attempt to pre-
dict the future, we are not able to know the precise state, we
could lower our target and try to know how high or low the
uncertainty is. Quantification of uncertainty is a useful target
and a feasible one. Naturally, it is achieved by means of prob-
ability. The classical definition of probability, i.e. the ratio
of the favourable outcomes of a specified event to the num-
ber of possible outcomes, has several logical problems and
does not help to study natural processes. Rather, we should
follow the Kolmogorov (1933) system, in which probability
is a normalized measure, i.e. a function that maps sets (ar-
eas where the unknown quantities lie) to real numbers. An
eventA is just a set (of elements called elementary events)
to which a probability, i.e. a numberP(A) in the interval
[0, 1], is assigned. The notion of arandom variable, i.e. a
single-valued functionx of the set of all elementary events
(so that to each elementary eventξ it maps a real number
x(ξ )), is central in this system, and is associated with aprob-
ability distribution function(F(x):=P {x≤ x})3 and aprob-
ability density function(f (x):=dF(x)/dx). The notion of a
random variable allowsprobabilization of uncertainty, typi-
cal in Bayesian statistics (not to be confused with the lately
abused term of “Bayesian beliefs”).

2 Emergence of randomness from determinism

To illustrate that randomness coexists with determinism and
that the two do not imply different types of mechanisms,
or different parts or components in the time evolution, we
will study a toy model of a caricature hydrological system.
The system, shown in Fig. 1, and its toy model are designed

2According to Niels Bohr, “Prediction is difficult, especially of
the future”.

3Some texts distinguish random variables, which are functions,
from their values, which are numbers, by denoting them with upper
case and lower case letters, respectively. Since this convention has
several problems (e.g. the Latinx and the Greekχ , if put in upper
case, are the same symbolX), other texts do not distinguish the
two at all, thus creating other type of ambiguity. Here we follow
another convention, in which random variables are underscored and
their values are not.
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Figure 1: A caricature hydrological system for which the toy model is constructed. 
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Figure 2: Conceptual dynamics of vegetation for the caricature hydrological system. 

Fig. 1. A caricature hydrological system for which the toy model is
constructed.

intentionally to be simple. A large piece of land is con-
sidered, on which water infiltrates and is stored in the soil
(without distinction from groundwater), from where it can
transpire though vegetation. Except infiltration, transpiration
and water storage in the soil, no other hydrological processes
are considered. To simplify the system, no change is im-
posed to its external “forcings”. That is, the rates of infiltra-
tion φ′ and potential transpirationτ ′

p are assumed constant in
time. The toy model is constructed assuming discrete time,
denoted asi = 1, 2, ..., and that in each time unit1t (say,
“year”), the input isφ:=φ′1t=250 mm and the potential out-
put τp:=τ ′

p1t=1000 mm. The internal state variables, which
are allowed to vary in time, are two, thus shaping a two-
dimensional (2-D) dynamical system: the fraction of the land
that is covered by vegetation,vi (0≤ vi ≤1) and the soil wa-
ter storagexi . The latter is measured above a certain datum,
so that it can take positive values up to some upper bound
α (assuming that water aboveα spills as runoff) or negative
values without a bound (i.e.−∞ ≤ xi ≤ α). The constantα
is assumed to be 750 mm. If the vegetation at timei is vi , the
actual output through transpiration will beτi = vi τp. Thus,
the water balance equation is

xi = min(xi−1+φ−viτp,α) (1)

We can observe that, if at some timei,
vi=φ/τp=250/1000=0.25, then the water balance re-
sults inxi = xi−1+φ−viτp=xi−1. Assuming that the system
dynamics is fully deterministic, continuity demands that
there should be some specific value ofxi−1 for which
vi = vi−1. Without loss of generality, we set this valuex=0;
that is, we define the datum in such a way that the vegetation
remains unchanged if water is stored up to the datum. Thus,
the state (v=0.25, x=0) represents an equilibrium state: if
at some time the system happens to be at this state, it will
remain there for ever. In other words, once the system
reaches its equilibrium state, it becomes a “dead” system,
exhibiting no change.

Evidently, it is more interesting to study our system when
it is “alive”, that is, out of the equilibrium. To this aim, as the
system is 2-D, we need one equation additional to Eq. (1) to
model it, which we seek in conceptualizing the dynamics of
vegetation. Asx=0 represents the state where the vegetation
does not change, we may assume that soil water in excess,
x >0, will result in increase of vegetation and soil water in
deficit, x <0, will result in decrease of the vegetation cover.
The graph in Fig. 2 was constructed heuristically, according
to this logic, and is described by the following equation:

vi =
max(1+(xi−1/β)3,1)vi−1

max(1−(xi−1/β)3,1)+(xi−1/β)3vi−1
(2)

whereβ=100 mm is a standardizing constant to make the
equation dimensionally consistent.

Summarizing, we have a 2-D toy model in discrete timei

whose state is described by the state variables (xi , vi) =:xi

(with xi in bold denoting a vector) and whose dynamics
is represented by Eqs. (1) (water balance) and (2) (vegeta-
tion cover dynamics). To avoid approximation errors, the
dynamics is expressed in discrete time by construction of
the model (rather than derived as an approximation of con-
tinuous time differential equations) and thus is fully accu-
rate as far as the toy model is concerned. The system pa-
rameters are four and are assumed to be known precisely:
φ=250 mm,τp=1000 mm,α=750 mm andβ=100 mm. The
model is easy to program on a hand calculator or a spread-
sheet4. The system dynamics is graphically demonstrated in
Fig. 3, where interesting geometrical surfaces appear, show-
ing that the transformationxi = f (xi−1) is not invertible. It
should be stressed that no explicit “agent” of randomness
(e.g. perturbation by a random number generator) has been
introduced into the system.

Moreover, there is no external forcing imposing change
onto the system. If any change occurs, it is caused by inter-
nal reasons, that is, by an “imbalance” of the vegetation cover
and water stored. To see this, let us assume that at timei=0
the system state is somewhat different from the equilibrium
state, setting initial conditionsx0=100 mm (6=0) andv0=0.30
(6=0.25). Using Eqs. (1) and (2) we can calculate the system
state (xi , vi) at timesi >0. The trajectories ofx andv for
time i=1 to 100 are shown in Fig. 4. Apparently, the system
remains “alive”, i.e. it exhibits change all the time, and its
state does not converge to the equilibrium. The trajectories,
albeit produced by simple deterministic dynamics, are inter-
esting and seem periodic; we will discuss their properties in
Sect. 5.

As the dynamics is fully deterministic, one may be
tempted to cast predictions for arbitrarily long time hori-
zons. For example, for time 100, iterative application
of the simple dynamics allows to calculate the prediction
x100=−244.55 mm,v100=0.7423 (as plotted in the right end

4The interested reader can find a spreadsheet with the toy model
in http://www.itia.ntua.gr/en/docinfo/923/.
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Figure 1: A caricature hydrological system for which the toy model is constructed. 
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Figure 2: Conceptual dynamics of vegetation for the caricature hydrological system. Fig. 2. Conceptual dynamics of vegetation for the caricature hydrological system.
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Figure 3: Graphical depiction of the toy model dynamics. 
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Figure 4: System trajectory for 100 time steps assuming initial conditions x0 = 100 mm and v0 

= 0.30. 

Fig. 3. Graphical depiction of the toy model dynamics.

of Fig. 4). Furthermore, one may be tempted to think that
the “primitive science” that this system represents, if any,
has come to an end with the above discourse. We have al-
ready achieved an understanding of the system, its driving
mechanisms and the causative relationships: (a) there is wa-
ter balance (conservation of mass); (b) excessive soil water
causes increase of vegetation; (c) deficient soil water causes
decrease of vegetation; (d) excessive vegetation causes de-
crease of soil water; and (e) deficient vegetation causes in-
crease of soil water. And we have completely and precisely
formulated the system dynamics, which is fully consistent
with this understanding, very simple, fully deterministic,
nonlinear and chaotic.

However, science is not identical to understanding. As
R. Feynman (1965) stated, “I think I can safely say that no-
body understands quantum mechanics” – and this does not
preclude quantum mechanics from being science. Literally,

the namesciencepoints tooverstanding5, and understand-
ing is not identical, nor a prerequisite, to overstanding. Per-
haps an imbalance of understanding, which pertains to ob-
serving the details of a system, and overstanding, which aims
at an overall image of the system, the “forest” rather than the
“tree”, keeps science alive.

We can thus hope that, despite achieving a good under-
standing of the system mechanisms and a precise formulation
of its dynamics, science may have not come to an end, as far
as our toy model is concerned. Let us now focus on pre-
dictions, especially of the future, which is a crucial target of
science – with even higher importance in engineering. Does,
really, deterministic dynamics allow a reliable prediction at

5Science< Latin Scientia< translation of Greek Episteme
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Figure 3: Graphical depiction of the toy model dynamics. 
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Figure 4: System trajectory for 100 time steps assuming initial conditions x0 = 100 mm and v0 

= 0.30. 

Fig. 4. System trajectory for 100 time steps assuming initial condi-
tionsx0=100 mm andv0=0.30.

an arbitrarily long time horizon, as in our above example?
In the previous section, in constructing our prediction for
time 100 (x100=−244.55 mm,v100=0.7423), we, explicitly or
implicitly, assumed that we know the parameters and initial
state with full precision. However, these are real numbers.
It is now well known that not only can real numbers not be
known with full precision, but (with probability 1), they are
not computable (Chaitin, 2004). Therefore, our further inves-
tigations will incorporate the premise that a continuous (real)
variable cannot ever be described with full (infinite) preci-
sion, particularly if it varies in time. This premise, which
will be called the premise of incomplete precision, is consis-
tent with mathematics (cf. Chatin’s results), as well as with
physics (cf. W. Heisenberg’s, 1927, uncertainty principle).

It is reasonable, then, to assume that there is some small
uncertainty, at least in the initial conditions (initial values of
state variables). Perhaps it would be reasonable to assume
that there is uncertainty also in the parameters and in model
Eq. (1) (but not in Eq. (1), which represents preservation of
mass). However, to keep our study simple, we will restrict
our investigation to the uncertainty of initial conditions. Fig-
ure 5 shows the trajectory of the soil waterx for the already
examined initial conditions (x0=100 mm,v0=0.30) and for
five more sets of initial conditions only slightly (<1%) dif-
ferent from the basic set. At short times, the differences in
the trajectories are not visible in Fig. 5. At about time 20,
the differences become visible and slightly later (time∼30)
they become large. Soon thereafter, the different trajectories
become unrelated to each other. This shows that a tiny un-
certainty in initial conditions gets amplified after some time,
a fact well known in chaotic systems since H. Poincaré’s dis-
covery of chaos (e.g. Poincaré, 1908). As a result, the de-
terministic dynamics can produce good predictions only for
short time horizons. For longer time horizons, the determin-
istic predictions become extremely inaccurate and useless.
In other words, at long times the system behaviour is unpre-
dictable, that is, random, whereas at short times it is very
well described by the deterministic dynamics. This could
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Figure 5: Evolution of soil water x as in Figure 4 but with uncertainty in initial conditions: 

Bold blue line corresponds to initial conditions s0 = 100 mm, v0 = 0.30 and the other five lines 

represent initial conditions slightly (< 1%) different. 

Fig. 5. Evolution of soil waterx as in Fig. 4 but with uncertainty
in initial conditions: bold blue line corresponds to initial conditions
s0=100 mm,v0=0.30 and the other five lines represent initial condi-
tions slightly (<1%) different.

be thought of as the emergence of randomness from deter-
minism. Later, in Sect. 5, we will study the inverse case,
i.e. whether randomness could give rise to determinism (at a
macroscopic level).

We can easily imagine that if the system dynamics were
different, so as to drive it to its “dead” equilibrium state, there
would not be uncertainty in the future. The nonlinear type of
dynamics we used is the agent that made the system “alive”,
i.e. changing and not dying. Apparently, what makes the sys-
tem alive is the same agent that creates the uncertainty. Only
dead systems are certain – and this might be useful to recall
when thinking about eliminating uncertainty.

The type of uncertainty we observe here could be hardly
classified in categories typically used in hydrology. It is not
model uncertainty, i.e. incomplete representation of reality,
because our system is artificial. It is not parameter uncer-
tainty, because we assumed that the parameters are com-
pletely known. It is not even data uncertainty, as our inputs
and outputs are assumed fully known and constant, and in
fact we have not assumed any measurement error. The un-
certainty in the initial conditions should be thought of as a
consequence of the premise of incomplete precision, rather
than as a measurement error. One may think that the assumed
uncertainty 1% is too high to represent this premise. But we
used this number just for better illustration. One may easily
experiment with lower uncertainties in initial conditions to
see that the behaviour does not change. Only the time span
of predictability changes. For example, reducing uncertainty
from 1% to 10−6 will extend the predictability time span, but
not more than double it.

All alive natural systems behave more or less this way, and
only the predictability time span changes. This view unifies
phenomena as diverse as the movement of dice and planets,
although in the former the time span of predictability is less
than a second, whereas in the latter it is several millions of
years. As strange as it seems, even the solar system is chaotic
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and unpredictable in such long horizons (Laskar, 1989). For
example, it has been shown that it may never be possible to
accurately calculate the location of the Earth in its orbit 100
million years in the past or into the future (Duncan, 1994;
Lissauer, 1999), whereas an accurate solution for the orbital
and precessional motion of the Earth is limited between 35
to 50 million years (Laskar, 1999).

3 From determinism to stochastics

As simple and obvious as the premise of incomplete preci-
sion may seem, it implies a radically different perception
and study of physical phenomena. First of all, the proper
visualization of the trajectory of a system’s evolution can no
longer be a line or a thread. Rather it should be a stream tube
(a notion familiar to hydrologists) of nonzero size (distance
between its imaginary walls). The path this tube follows is
important to know, but the size of the tube is equally impor-
tant. This size is not constant, but varies in time. When an
observation is made at a timeio, the size of the tube at this
time becomes tiny. In our hypothetical system this small size
represents an error related to the premise of incomplete pre-
cision but in real-world systems it represents a (usually much
higher) observation error. However, for future times of pre-
diction (i > io), as well as past times (i < io) at which no
observation had been made, the size becomes much larger.

Initially, we can try to define the imaginary walls of this
stream tube as the envelope curves of several model runs
with perturbed initial conditions within the assumed uncer-
tainty bounds. The tube visualization of this type forxi is
shown in Fig. 6 in two cases, when onlyx0 is observed and
whenx0 to x30 are observed, and with only 5 model runs (as
in Fig. 5) as well as with 1000 model runs. At small times
the tube has a size too tiny to be seen and a rough shape. The
latter is typical in systems with discrete-time dynamics (in
continuous time it would be smooth, but the dynamics and
the calculations of a continuous-time model would be too
complicated to serve our purpose). At long times, the size
gets much larger and increases with the number of model
runs that are used to construct the envelope curves. It can
be expected that, as this number tends to infinity, the stream
tube (the zone between the envelopes) will tend to cover all
available space; in the case ofx, this is the interval between
−∞ andα=750 mm. Apparently, the dependence of the size
on the number of model runs and the large or infinite size
of tube as this number increases are deficiencies of the enve-
lope method. Because of these deficiencies, a deterministic
approach of this type, i.e. based on lower and upper physical
bounds (cf. the probable maximum precipitation concept),
cannot help to effectively describe the stream tube size and
the uncertainty.
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Figure 6: Stream tube representation of the evolution of soil water x (with initial conditions as 

in Figure 4 and 1% uncertainty) in a deterministic setting using envelope curves constructed 

by 5 or 1000 simulation runs: (upper) when only x0 is observed; (lower) when x0 to x30 are 

observed.  

Fig. 6. Stream tube representation of the evolution of soil water
x (with initial conditions as in Fig. 4 and 1% uncertainty) in a de-
terministic setting using envelope curves constructed by 5 or 1000
simulation runs: (upper) when onlyx0 is observed; (lower) whenx0
to x30 are observed.

Here comes probability and stochastics, which will give us
a good description of the tube size (independent of the num-
ber of model runs) as well as a profile of the likelihood that
the system state is at any specified position, a profile remind-
ing of the profile of longitudinal velocity across a stream tube
in real flows. One may wonder: Is it permissible to use prob-
ability in a system that is purely deterministic, as the system
we investigate here is? The answer I propose is a categorical
“yes”. This answer is consistent with the unified notion of
randomness discussed above, as well as with the concept of
probabilization of uncertainty, that is, the axiomatic reduc-
tion from the notion of an uncertain quantity to the notion of
a random variable (Robert, 2007). To my perception, nothing
in the Kolmogorov (1933) axiomatic system prohibits this
reduction. In a probability-theoretic context, an unknown
valuexi is a realization of a random variablexi and is as-
sociated with a probability density functionf (xi). A family
of random variablesxi , (arbitrarily, usually infinitely, large)
is a stochastic process whereas a realization of the stochastic
process, i.e. a series of numbersxi is atime series6.

6In some texts the two terms are used as synonymous, but dis-
tinction helps avoid ambiguity and misunderstanding.
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Probability along with the related fields ofstatisticsand
stochastic processesare currently described by the collec-
tive termstochastics7. The current meaning of this scientific
term is no different from that first given by Jakob Bernoulli
(1713 – Ars Conjectandi, written 1684–1689). Specifically,
Bernoulli defined stochastics as thescience of prediction, or
the science of measuring as exactly as possible the proba-
bilities of events. (In this respect, stochastics should not be
identified with the very common ARMA or similar types of
models.)

To make up a stochastic formulation of the evolution of the
system, first, we fully utilize the known deterministic dynam-
ics xi=S(xi−1), whereS is the vector function representing
the deterministic dynamics. In our system, the statexi is
the vector (xi , vi) and the transformationS is described by
Eqs. (1) and (2) and is graphically depicted in Fig. 3. Second,
we assume that the probability density at time 0,f (x0), is
known. Third, we use the following concept from the theory
of dynamical systems: given the probability density function
at time i−1, f (xi−1), that of next timei, f (xi), is given
by theFrobenius-Perron operatorFP, i.e.f (xi)=FPf (xi−1),
uniquely defined by an integral equation (e.g. Lasota and
Mackey, 1991), which in our case takes the following sim-
plified form,

FPf (x) =
∂2

∂x∂v

∫
S−1(A)

f (u)du (3)

whereA :={x; x ≤ (x, v)} and S−1(A) is the counterim-
ageof A, i.e. the set containing all pointsx whose mappings
S(x) belong toA. Iterative application of the equation can
determine the densityf (xi) for any timei.

This shows that the stochastic representation has an an-
alytical expression, as has the deterministic. However, the
stochastic representation refers to the evolution in time of
admissible sets and densities (the stream tube visualization),
rather than to trajectories of points (the thread visualization).
From the deterministic, “exact” but inaccurate, thread-like
trajectoryxi=S(xi−1), we have moved to the tube-like tra-
jectory:

fi(x) =
∂2

∂x∂v

∫
S−1(A)

fi−1(u)du (4)

which has been written in a manner slightly different from
Eq. (3). Clearly, the stochastic formulation does not disre-
gard the deterministic dynamics: it is included in the coun-
terimageS−1(A). However, it can be easily extended to
describe non-deterministic dynamics by generalizing the FP
operator (Lasota and Mackey, 1991).

7 Stochastics< Greek Stochasticos
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Figure 7: Probability density functions fi(x) of the system state x (soil water) for times i = 0 

and 100. 
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Figure 8: Stream tube representation of the evolution of soil water x (with initial conditions as 

in Figure 4 and 1% uncertainty) in a stochastic setting using Monte Carlo prediction limits for 

95% probability of bracketing the true state between the stream tube “walls” (1000 simulation 

runs).  

Fig. 7. Probability density functionsfi (x) of the system statex (soil
water) for timesi=0 and 100.

In the iterative application of the stochastic description of
the system evolution we encounter two difficulties. First, de-
spite being simple, the functionS is not invertible and the
integral over the counterimageS−1(A) needs to be evalu-
ated numerically. Second, as the deterministic formulation is
quite satisfactory for short time horizons, the stochastic for-
mulation gets more meaningful for long ones. Iterative appli-
cation of Eq. (4) over time will result in multiple integrations,
so that eventually, for long time horizons, we need to perform
a high dimensional numerical integration. This is difficult,
unless a stochastic integration method is used. Specifically,
it is easily shown (e.g. Metropolis and Ulam, 1949; Niederre-
iter, 1992) that for a number of dimensionsd >4, astochas-
tic (Monte Carlo) integrationmethod (in which the function
evaluation points are taken at random) is more accurate (for
the same total number of evaluation points) than classical nu-
merical integration, based on a grid representation of the in-
tegration space.

In our example, the Monte Carlo method does not in-
volve other calculations than those we did to construct the
envelopes above. It is so very simple that it even bypasses
the calculation ofS−1(A). Results for the density function
fi(x) of the system statex (soil water) for timei=100, in
comparison to that for timei=0, are shown in Fig. 7. The
Monte Carlo integration was performed assumingf (x0) to
be uniformly extending 1% around the valuex0=(100 mm,
0.30) and using 1000 simulations. The Monte Carlo method
is very powerful, yet so easy that we may fail to notice that
we are doing numerical integration. Technically, its appli-
cation to construct Fig. 7 would be done even intuitively,
without knowing that there is some concrete mathematical
background (Eq. 3) behind our simulations. However, being
conscious of the theoretical background and the associated
strengths and limitations, results in most efficient use of the
method, in acceleration of scientific progress, and in avoid-
ance of confusions and potential errors.

It is observed in Fig. 7 that moving from timei=0 toi=100,
the density changes from concentrated to broad and from
uniform to Gaussian; the theoretical Gaussian curve is also
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plotted. Knowing a priori, for theoretical reasons, that the
probability distribution, after a long time, will be Gaussian
is very important and substantially simplifies the solution of
problem. But are there theoretical reasons implying Gaus-
sian distribution? Jaynes (2003) lists a number of them. The
most widely known is the Central Limit Theorem. In its most
common formulation, which involves sums of random vari-
ables, it seems inapplicable here as there are no such sums.
However, if interpreted as a statement about the properties of
density functions under convolution (multiple integrals of a
number of density functions tends to the Gaussian density) it
may give the required explanation. However, it is more con-
venient to express our reasoning in terms of theprinciple of
maximum entropy: for fixed mean and variance, the distribu-
tion that maximizes entropy is the normal distribution (or the
truncated normal, if the domain of the variable is an interval
in the real line; Papoulis, 1991). Entropy8 is a probabilistic
concept, which for a continuous random variablex is defined
as

φ[x] :=E[−lnf (x)] (5)

whereE[g(x)] denotes the expectation of any functiong(x),
i.e.

E[g(x)] :=

∞∫
−∞

g(x)f (x)dx (6)

Entropy is a typical measure of uncertainty, so its maximiza-
tion indicates that the uncertainty becomes as high as possi-
ble. Entropy could be used to quantify the notions of ran-
domness (high entropy) and determinism (lowest entropy).
Given that information and entropy are more or less the same
quantity, this quantification agrees with Kolmogorov’s and
Chaitin’s view of mathematical randomness.

The principle of maximum entropy was introduced by
Jaynes (1957) as a method to infer unknown probabilities
from known information. However, much earlier, in statis-
tical thermophysics, entropy maximization had constituted
the theoretical basis of theSecond Law of thermodynamics,
where the optimization constraints of fixed mean and vari-
ance correspond to the conservation of momentum and en-
ergy, respectively (assuming that the microscopic descrip-
tion is in terms of momenta). In this case, it is used to de-
termine macroscopic thermodynamic states of physical sys-
tems. Some regard the application of the principle of maxi-
mum entropy in statistical thermophysics fundamentally dif-
ferent from its application in inference, as used here. In
my opinion, though, the two must be the same. Observ-
ing that Nature spontaneously maximizes entropy, i.e. uncer-
tainty, why not use just the same principle in logic for infer-
ence about natural systems? (For a profound discussion of
the concept of entropy and its controversial views in thermo-
physics, the interested reader is referred to Robertson, 1993).

8 Entropy< Greek
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Figure 7: Probability density functions fi(x) of the system state x (soil water) for times i = 0 

and 100. 
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Figure 8: Stream tube representation of the evolution of soil water x (with initial conditions as 

in Figure 4 and 1% uncertainty) in a stochastic setting using Monte Carlo prediction limits for 

95% probability of bracketing the true state between the stream tube “walls” (1000 simulation 

runs).  

Fig. 8. Stream tube representation of the evolution of soil waterx

(with initial conditions as in Fig. 4 and 1% uncertainty) in a stochas-
tic setting using Monte Carlo prediction limits for 95% probability
of bracketing the true state between the stream tube “walls” (1000
simulation runs).

Coming back to our example, we can use the same simula-
tion method – in fact the same simulation runs – to trace the
probability densities for all times. The propagation of uncer-
tainty in time is typically visualized through prediction inter-
vals, whose limits define the stream tube “walls” according
to the probabilistic approach. An example is shown in Fig. 8,
for a certain probability, say 95%, of the true state being con-
tained in the stream tube. Now the stream tube size does not
depend on the number of simulations and does not diverge
to infinity (except if the probability chosen to visualize the
stream tube is 100%). Thus, the probabilistic stream tube vi-
sualization is more meaningful, convenient and informative
than the envelope representation of Fig. 6. It is observed that
for long time horizons the stream tube becomes less rough
and its size, i.e. the uncertainty, tends to stabilize to a maxi-
mum value. This defines another type of equilibrium, a sta-
tistical thermodynamic equilibrium of maximum entropy. To
distinguish it from the static or “dead” equilibrium of Sect. 2,
we can call it the “alive” equilibrium.

4 The power of data

As our prediction horizon increases and we approach the
“alive” equilibrium, we may find it natural to raise this ques-
tion: Do we really need the deterministic dynamics to make
a long-term prediction? Intuitively, from Fig. 8, the answer
seems to be negative. But, then, what can replace the dynam-
ics? Recalling that the form of the density function may be
known a priori, as discussed above, what we need to com-
pletely express the density function are the two parameters
of the Gaussian curve, namely its mean and standard devi-
ation. But these could be estimated from data. Hence, for
long horizons past data render knowledge of dynamics un-
necessary. For illustration, Fig. 9 shows a record of 100 past
values ofxi corresponding to timesi=−100 to−1. Here,
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because our caricature system is imaginary, the past data are
synthetic, generated by the same model, but in a real system
with really unknown dynamics these would be past obser-
vations of the system state. To generate the data here we as-
sume initial conditions:x−100=(73.99 mm, 0.904), for which
the resulting state at timei=0 is x0=(99.5034≈100 mm,
0.3019≈0.30). This state is compatible (within precision
1%) with the rounded off initial statex0=(100, 0.30) that
we used in earlier investigations. Interpreting past data as a
statistical sample, we estimate a sample meanµ=−2.52 mm
and a sample standard deviationσ=209.13 mm. With these
values we can obtain the complete density function for time
i=100, which is plotted in Fig. 7 along with the results ob-
tained by the Monte Carlo simulation, in which the deter-
ministic dynamics was explicitly taken into account. It can
be seen that the empirical result without considering the dy-
namics is a good approximation.

Despite being empirical, this result and, more generally,
the use of past data in prediction, can find a theoretical jus-
tification in the concept ofergodicity9, an important concept
in dynamical systems and stochastics. By definition (e.g. La-
sota and Mackey, 1994, p. 59), a transformation is ergodic
if all its invariant sets are trivial (have zero probability). In
other words, in an ergodic transformation starting from any
point, a trajectory will visit all other points, without being
trapped to a certain subset. (In contrast, in non-ergodic trans-
formations there are invariant subsets, such that a trajectory
starting from within a subset will never depart from it). An
important theorem by G. D. Birkhoff (1931) says that for an
ergodic transformationS and for any integrable functiong
the following property holds true:

lim
n→∞

1

n

n−1∑
i=0

g
(
Si(x)

)
=

∞∫
−∞

g(x)f (x)dx (7)

with the right-hand side representing the expectation
E[g(x)]. For example, forg(x)=x, settingx0 the initial
system state, observing that the sequencex0, x1=S(x0),
x2=S2(x0), ..., represents a trajectory of the system, and tak-
ing the equality in the limit as an approximation with finite
(n) terms, we obtain that the time average equals the true
(ensemble) averageE[x]:

1

n

n−1∑
i=0

xi ≈

∞∫
−∞

xf (x)dx (8)

Thus, ergodicity allows estimation of the system properties
using past data only. The question then arises: If the dynam-
ics is known, should a long-term prediction be better based
on the data or on the dynamics? To explore this question, let
us compare two different types of predictions: (a) a typical
deterministic prediction, based on applying the dynamics as

9 Ergodicity < Greek

14 

 

maximum entropy. To distinguish it from the static or “dead” equilibrium of Sect.  2, we can 

call it the “alive” equilibrium.  

4 The power of data 

As our prediction horizon increases and we approach the “alive” equilibrium, we may find it 

natural to raise this question: Do we really need the deterministic dynamics to make a long-

term prediction? Intuitively, from Figure 8, the answer seems to be negative. But, then, what 

can replace the dynamics? Recalling that the form of the density function may be known a 

priori, as discussed above, what we need to completely express the density function are the 

two parameters of the Gaussian curve, namely its mean and standard deviation. But these 

could be estimated from data. Hence, for long horizons past data render knowledge of 

dynamics unnecessary. For illustration, Figure 9 shows a record of 100 past values of xi 

corresponding to times i = –100 to –1. Here, because our caricature system is imaginary, the 

past data are synthetic, generated by the same model, but in a real system with really 

unknown dynamics these would be past observations of the system state. To generate the data 

here we assume initial conditions: x–100 = (73.99 mm, 0.904), for which the resulting state at 

time i = 0 is x0 = (99.5034 ≈ 100 mm, 0.3019 ≈ 0.30). This state is compatible (within 

precision 1%) with the rounded off initial state x0 = (100, 0.30) that we used in earlier 

investigations. Interpreting past data as a statistical sample, we estimate a sample mean µ = 

–2.52  mm and a sample standard deviation σ = 209.13 mm. With these values we can obtain 

the complete density function for time i = 100, which is plotted in Figure 7 along with the 

results obtained by the Monte Carlo simulation, in which the deterministic dynamics was 

explicitly taken into account. It can be seen that the empirical result without considering the 

dynamics is a good approximation. 

 Despite being empirical, this result and, more generally, the use of past data in 

prediction, can find a theoretical justification in the concept of ergodicity,* an important 

concept in dynamical systems and stochastics. By definition (e.g., Lasota and Mackey, 1994, 

p. 59), a transformation is ergodic if all its invariant sets are trivial (have zero probability). In 

other words, in an ergodic transformation starting from any point, a trajectory will visit all 

other points, without being trapped to a certain subset. (In contrast, in non-ergodic 

transformations there are invariant subsets, such that a trajectory starting from within a subset 

                                                

* Ergodicity < Greek εργοδικός < [ergon (έργον) = work] + [odos (οδός) = path]. < [ergon

14 

 

maximum entropy. To distinguish it from the static or “dead” equilibrium of Sect.  2, we can 

call it the “alive” equilibrium.  

4 The power of data 

As our prediction horizon increases and we approach the “alive” equilibrium, we may find it 

natural to raise this question: Do we really need the deterministic dynamics to make a long-

term prediction? Intuitively, from Figure 8, the answer seems to be negative. But, then, what 

can replace the dynamics? Recalling that the form of the density function may be known a 

priori, as discussed above, what we need to completely express the density function are the 

two parameters of the Gaussian curve, namely its mean and standard deviation. But these 

could be estimated from data. Hence, for long horizons past data render knowledge of 

dynamics unnecessary. For illustration, Figure 9 shows a record of 100 past values of xi 

corresponding to times i = –100 to –1. Here, because our caricature system is imaginary, the 

past data are synthetic, generated by the same model, but in a real system with really 

unknown dynamics these would be past observations of the system state. To generate the data 

here we assume initial conditions: x–100 = (73.99 mm, 0.904), for which the resulting state at 

time i = 0 is x0 = (99.5034 ≈ 100 mm, 0.3019 ≈ 0.30). This state is compatible (within 

precision 1%) with the rounded off initial state x0 = (100, 0.30) that we used in earlier 

investigations. Interpreting past data as a statistical sample, we estimate a sample mean µ = 

–2.52  mm and a sample standard deviation σ = 209.13 mm. With these values we can obtain 

the complete density function for time i = 100, which is plotted in Figure 7 along with the 

results obtained by the Monte Carlo simulation, in which the deterministic dynamics was 

explicitly taken into account. It can be seen that the empirical result without considering the 

dynamics is a good approximation. 

 Despite being empirical, this result and, more generally, the use of past data in 

prediction, can find a theoretical justification in the concept of ergodicity,* an important 

concept in dynamical systems and stochastics. By definition (e.g., Lasota and Mackey, 1994, 

p. 59), a transformation is ergodic if all its invariant sets are trivial (have zero probability). In 

other words, in an ergodic transformation starting from any point, a trajectory will visit all 

other points, without being trapped to a certain subset. (In contrast, in non-ergodic 

transformations there are invariant subsets, such that a trajectory starting from within a subset 

                                                

* Ergodicity < Greek εργοδικός < [ergon (έργον) = work] + [odos (οδός) = path]. = work] +
[odos

14 

 

maximum entropy. To distinguish it from the static or “dead” equilibrium of Sect.  2, we can 

call it the “alive” equilibrium.  

4 The power of data 

As our prediction horizon increases and we approach the “alive” equilibrium, we may find it 

natural to raise this question: Do we really need the deterministic dynamics to make a long-

term prediction? Intuitively, from Figure 8, the answer seems to be negative. But, then, what 

can replace the dynamics? Recalling that the form of the density function may be known a 

priori, as discussed above, what we need to completely express the density function are the 

two parameters of the Gaussian curve, namely its mean and standard deviation. But these 

could be estimated from data. Hence, for long horizons past data render knowledge of 

dynamics unnecessary. For illustration, Figure 9 shows a record of 100 past values of xi 

corresponding to times i = –100 to –1. Here, because our caricature system is imaginary, the 

past data are synthetic, generated by the same model, but in a real system with really 

unknown dynamics these would be past observations of the system state. To generate the data 

here we assume initial conditions: x–100 = (73.99 mm, 0.904), for which the resulting state at 

time i = 0 is x0 = (99.5034 ≈ 100 mm, 0.3019 ≈ 0.30). This state is compatible (within 

precision 1%) with the rounded off initial state x0 = (100, 0.30) that we used in earlier 

investigations. Interpreting past data as a statistical sample, we estimate a sample mean µ = 

–2.52  mm and a sample standard deviation σ = 209.13 mm. With these values we can obtain 

the complete density function for time i = 100, which is plotted in Figure 7 along with the 

results obtained by the Monte Carlo simulation, in which the deterministic dynamics was 

explicitly taken into account. It can be seen that the empirical result without considering the 

dynamics is a good approximation. 

 Despite being empirical, this result and, more generally, the use of past data in 

prediction, can find a theoretical justification in the concept of ergodicity,* an important 

concept in dynamical systems and stochastics. By definition (e.g., Lasota and Mackey, 1994, 

p. 59), a transformation is ergodic if all its invariant sets are trivial (have zero probability). In 

other words, in an ergodic transformation starting from any point, a trajectory will visit all 

other points, without being trapped to a certain subset. (In contrast, in non-ergodic 

transformations there are invariant subsets, such that a trajectory starting from within a subset 

                                                

* Ergodicity < Greek εργοδικός < [ergon (έργον) = work] + [odos (οδός) = path]. = path].

35 

 

-800

-600

-400

-200

0

200

400

600

800

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0

i

x i

 

Figure 9: A sample of past data of soil water xi for times i = –100 to –1.  
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Figure 10: Comparison of the RMS prediction error of soil water x for the deterministic 

prediction and the naïve statistical prediction. 

Fig. 9. A sample of past data of soil waterxi for timesi=−100 to
−1.

done initially in Fig. 4; (b) a näıve statistical prediction, ac-
cording to which the future equals the average of past data.
Stochastics provides the tool to compare the two predictions,
which is the standard (root mean square – RMS) error,

ei :=

√
E

[
(xi − x̂i)

2
]

(9)

wherexi denotes the random variable representing the state
andx̂i denotes the specific prediction for timei provided by
either method (a) or (b). It is easily seen that for method
(b), in which x̂i=µ (mean, estimated at−2.52 mm), the
standard error equals the standard deviationσ (estimated at
209.13 mm), and is constant for alli. In method (a),ei is
different for different timesi and can be evaluated again by
Monte Carlo integration, now of Eq. (9). The results are
shown in Fig. 10. Clearly, in short lead times (<∼30) the de-
terministic forecast is better, but in long lead times (>∼45)
the näıve statistical forecast is superior.

However, this is not a surprise. Actually, stochastics can
give us an a priori estimate of the deterministic model er-
ror, applicable near the “alive” equilibrium, where the uncer-
tainty has stabilized. Thus, from Eq. (9) we obtain

ei :=

√
E

[
(xi − x̂i)2

]
=

√
E

[{
(xi −µ)+(µ− x̂i)

}2
]

(10)

which after typical manipulations results in

ei =

√
σ 2+(µ− x̂i)2 (11)

When it happens that̂xi=µ, thenei=σ , as in the statistical
prediction; otherwise the error in the deterministic predic-
tion is obviously greater thanσ . The a priori error estimates
are also plotted in Fig. 10 and agree well with those obtained
by Monte Carlo simulation. By treatinĝxi also as a random
variable we easily obtain that the average error of the deter-
ministic forecast over all times (above∼45) will be ei=σ

√
2

(also plotted in Fig. 10), which shows that, on the average,
the näıve statistical prediction outperforms the deterministic
prediction by a factor of

√
2.
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Figure 9: A sample of past data of soil water xi for times i = –100 to –1.  
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Figure 10: Comparison of the RMS prediction error of soil water x for the deterministic 

prediction and the naïve statistical prediction. 
Fig. 10.Comparison of the RMS prediction error of soil waterx for
the deterministic prediction and the naı̈ve statistical prediction.

This example shows that for long horizons the use of de-
terministic dynamics gives misleading results and a danger-
ous illusion of exactness. Unless a stochastic framework is
used, neglecting deterministic dynamics in long-term predic-
tion is preferable. In very complex systems, the same be-
haviour could emerge also in the smallest prediction hori-
zons. This justifies, for example, the so-called ensemble
forecasting in precipitation and flood prediction. In essence,
it does not differ from this stochastic framework discussed,
and is much more effective and reliable than a single deter-
ministic forecast.

In seeking a more informative prediction than the naı̈ve
prediction, a natural question is: Is reduction of uncertainty
possible for long time horizons? In our simple example the
answer is categorical: No way! For there is no margin for
better knowledge of dynamics (we have assumed full knowl-
edge already). And there is indifference of potentially im-
proved knowledge of initial conditions. As mentioned above,
reduction of initial uncertainty from 1% to 10−6 results in no
reduction of final uncertainty ati=100. Therefore, a more
informative prediction cannot be a prediction with reduced
uncertainty. Rather, it must be a point prediction accompa-
nied by quantified uncertainty. This has already been done in
Fig. 7.

In summary, for long time horizons, the stochastic infer-
ence using (a) past data, (b) ergodicity, and (c) maximum en-
tropy, provides an informative prediction. Knowledge of dy-
namics does not improve this prediction. For short time hori-
zons, the stochastic framework also incorporates the deter-
ministic dynamics and uses it in a Monte Carlo framework.
Thus, the stochastic representation is an all-times solution,
good for both short and long horizons, and helps figure out
when the deterministic dynamics should be considered or ne-
glected. It also highlights the usefulness and importance of
data (which may have been missed today as indicated by the
ongoing dismantling of hydrological monitoring networks).

In theory, a good data set allows even the recovery of dy-
namics, if it is unknown, employing the Whitney (1936) and

Takens (1981) embedding theorems. The recovery is based
on time-delay vectorsxm

i := (xi , xi−1,. . . ,xi−m+1) of a single
observablexi , with the required vector sizem being no more
than 2d+1, whered is the system dimensionality, which can
also be estimated from the time series. Forming time-delay
vectorsxm

i with trial sizem, we are able to calculate the mul-
tidimensional entropyφm(ε)=E[−lnp], where ε is a scale
length (side length of hypercube) related to a grid covering
them-dimensional space, on which the empirical probability
p that a data pointxm

i belongs to each hypercube is calcu-
lated (notice the difference from definition Eq. (5), i.e. the
replacement of the probability densityf with the probability
massp). The entropyφm(ε) is a decreasing function ofε and
tends to infinity asε tends to zero. The limit ofφm(ε)/(−lnε)
asε tends to zero, which (according to de l’Hôpital’s rule) is
also equal to the limit of the slopedm(ε):=−1φm(ε)/1lnε,
gives the dimension of the subspace of them-dimensional
space where the set ofxm

i lies. For smallε, dm(ε) cannot ex-
ceedm nord. Application of a standard algorithm that imple-
ments this idea for increasing trial values ofm (Grassberger
and Procaccia, 1983; Koutsoyiannis, 2006) is demonstrated
in Fig. 11, where it can be seen thatdm does not exceedd=2,
thus capturing the system dimensionality, which is 2. Note,
however, that a large data set is required for the application
of this technique. Our toy model can easily give us arbitrarily
long time series (here we used a time series of 10 000 points
rather than 100 used before). But shortness of data or poor
attentiveness in the statistical properties of the data may re-
sult in erroneous conclusions (Koutsoyiannis, 2006). Other
stochastic tools that can recover deterministic controls from
data are discussed in the next section.

5 Exploration of the long term stochastic properties of
the system

Arguably, when we are interested in a prediction for a long
time horizon, we wish to know not the exact system state at a
specified time but an average behaviour around that time and
perhaps a measure of the dispersion of the extremes around it.
This implies a different perspective, macroscopic rather than
detailed, of long-term prediction and predictability. In this
we can disregard the “instantaneous” system state, which in
atmospheric sciences is referred to as theweather, and try to
predict the long-term average for a future period, commonly
referred to as theclimate. According to a common defini-
tion, climate is “the long-term average of conditions in the
atmosphere, ocean, and ice sheets and sea ice described by
statistics, such as means and extremes (US Global Change
Research Program, 2009). The usefulness of the notion of
climate as a long-term average extends also to hydrological
processes. Actually, in studies of “climate change” and its
impacts, including those in hydrology and water resources,
long-term predictions always refer to long-term average con-
ditions.
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Figure 11: Graphical depiction of the application of the algorithm to recover the system 

dynamics (with emphasis of its dimensionality) from a time series of 10 000 points.  

Fig. 11.Graphical depiction of the application of the algorithm to recover the system dynamics (with emphasis of its dimensionality) from a
time series of 10 000 points; numbers in the legend box are trial embedding dimensionsm.

To study this macroscopic notion of prediction and pre-
dictability, we need long simulations and data series that
enable observation of long-term behaviours. In all follow-
ing illustrations we use time series with lengths of 10 000.
The first thousand terms of the time series of the soil water
xi , generated with the same initial conditions as before, are
shown in Fig. 12 (upper panel). The plot shows high variabil-
ity at the shortest time scale (i.e. 1), with peculiar variation
patterns not visible in the plots of fewer data points presented
earlier. Yet it shows relatively flat time average at scale 30
(“climate”). Despite high variability at scale 1, the trajectory
of the system state does not resemble a purely irregular or
random pattern. Rather the trajectory seems cyclical, but a
more careful investigation reveals that the time series differs
from that of a typical periodic deterministic system. Specifi-
cally, as shown in Fig. 13 (upper panel) there is no constant
periodicity, but the timeδ between successive peaks of the
time seriesxi varies between 4 and 10 time steps, with a pe-
riod of 6 time steps being the most frequent.

The relatively flat average of the soil waterxi makes pre-
diction of the long-term average rather trivial in this carica-
ture system. However, other problems, in which variability
plays a role (e.g. long term behaviour of extremes), are less
trivial and more interesting, even in this very simple system.
To study the peculiar variability ofxi , we introduce the ran-
dom variableyi :=|xi−xi+6|, where the time lag 6 was chosen
to be equal to the most frequentδ. We callyi thevariability
indexand we study its long-term behaviour in comparison to
that ofxi . It can be easily verified thatyi represents the sam-
ple standard deviation of the size-two samplexi and xi+6.
Apparently, the standard deviation of a number of consecu-
tive xi (e.g. the seven termsxi to xi+6) would give a more
representative variability index, but we choose this simpler
definition to avoid artificial dependence between successive
time series terms or else to avoid the need to change scale.
Besides, the simple definition serves well our exploration

purpose. A plot of the first 1000 terms of the time series
of yi is shown in Fig. 12 (lower panel) and reveals a different
behaviour thanxi (upper panel). Here the variability is high,
not only at a short time scale but also at a long one. The long
“excursions” of the moving average of 30 values (“the cli-
mate”) from the global average (of 10 000 values) are quite
characteristic.

To explore the long-term stochastic properties of our sys-
tem, including periodicity and time dependence or persis-
tence, we use three stochastic tools. The first is the pe-
riodogram, i.e. the square absolute value of the Discrete
Fourier Transform of the time series. It is a real function
q(ω), whereω is frequency. The quantityq(ω)dω is propor-
tional to the fraction of variance explained byω and thus ex-
cessive values ofq(ω) indicate cyclicity with period 1/ω. The
periodogram of 10 000 termsxi is shown in Fig. 13 (lower
panel).

The second is the empirical autocorrelation function (au-
tocorrelogram), i.e. the Finite Fourier Transform of the pe-
riodogram (divided by variance). It is a sequence of values
ρj , wherej is a lag. It is alternatively defined and more
easily determined asρj =Cov[xi , xi−j ] / Var[xi ], where
Cov[xi , xi−j ]:=E[(xi−µ) (xi−j−µ)], Var[xi ]:=Cov[xi , xi ]=
E[(xi −µ)2], andµ=E[ x]. The autocorrelograms of bothxi

andyi are shown in Fig. 14.

The third tool aims at a multi-scale stochastic representa-
tion. Based on the processxi at scale 1, we define a process
x(k)
i at any scalek ≥1 as:

x
(k)
i :=

1

k

ik∑
l=(i−1)k+1

xl (12)

A key multi-scale characteristic is the standard deviationσ (k)

of x(k)
i . The quantityσ (k) is a function of the scalek ≥1, here
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Figure 12: Evolution of the soil water xi, the variability index yi, as well as their moving 

averages of length 30, for time i up to 1000.  Fig. 12. Evolution of the soil waterxi , the variability indexyi , as
well as their moving averages of length 30, for timei up to 1000.

referred to as theclimacogram10 and typically depicted on
a double logarithmic plot. While the periodogram and the
autocorrelogram are related to each other through a Fourier
transform, the climacogram is related to the autocorrelogram
by a simpler transformation, i.e.

σ (k)
=

σ
√

k

√
αk, αk = 1+2

k−1∑
j=1

(
1−

j

k

)
ρj↔

ρj=
j+1

2
αj+1−jαj +

j−1

2
αj−1 (13)

It is directly verified (actually this is the most classical sta-
tistical law) that in a purely random process

σ (k)
=

σ
√

k
(14)

However, this law may not be verified in natural systems.
The simplest alternative is

σ (k)
=

σ

k1−H
(15)

whereH is a constant (0< H <1) known as the Hurst co-
efficient, after Hurst (1951) who first analyzed statistically
the long-term behaviour of geophysical time series. Earlier,
Kolmogorov (1940), in studying turbulence, had proposed

10Climacogram< Greek
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Figure 13: Graphical depiction of periodic properties of the system based on (upper): a 

histogram of the time between successive peaks, δ, of the soil water xi, where ν is the fraction 

of occurrences of a certain δ over the total number of occurrences; (lower): the periodogram 

of the time series of xi, where ω is frequency and q is the spectral density; 10 000 terms of 

time series were used for the construction of the plots. 
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Fig. 13. Graphical depiction of periodic properties of the system
based on (upper): a histogram of the time between successive peaks,
δ, of the soil waterxi , whereν is the fraction of occurrences of a
certainδ over the total number of occurrences; (lower): the peri-
odogram of the time series ofxi , whereω is frequency andq is
the spectral density; 10 000 terms of time series were used for the
construction of the plots.

a mathematical model to describe this behaviour. This be-
haviour has been known with several names includingHurst
phenomenon, long-term persistence, long range dependence,
and Hurst-Kolmogorov (HK) behaviouror HK (stochastic)
dynamics. At the same time, Eq. (15) defines a simple
stochastic model that reproduces this behaviour, known as a
simple scaling stochastic modelor fractional Gaussian noise
(due to Mandelbrot and van Ness, 1968), or theHK model.
Climacograms for the time seriesxi and yi are shown in
Fig. 15, where the departure from the classical law (Eq. 14)
of a purely random process is evident.

A purely random process would have a flat periodogram,
but Fig. 13 (lower panel) indicates a different behaviour for
xi . Furthermore, fixed periodicities would be manifested in
the periodogram as high impulses in the specific periods, but
in the periodogram of Fig. 13 no impulses exist. Rather, the
figure indicates relatively higher densitiesq at a broad band
of periods 1/ω, between 5–12 time units (agreeing with the
simpler representation in the upper panel of Fig. 13). The
most noticeable characteristics in the periodogram are the

Hydrol. Earth Syst. Sci., 14, 585–601, 2010 www.hydrol-earth-syst-sci.net/14/585/2010/
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Figure 14: Empirical autocorrelation functions of 10 000 terms xi and yi. 
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Figure 15: Climacograms (plots of standard deviation σ(k) vs. averaging scale k) of the time 

series xi and yi (where standard deviations were estimated by the classical statistical estimator 

of time series averaged on each scale k).  

Fig. 14.Empirical autocorrelation functions of 10 000 termsxi and
yi .

increasing spectral densities for low frequencies (1/ω >8)
and the decreasing ones for high frequencies (1/ω <8). The
two different behaviours are indicators ofantipersistenceand
persistence, respectively.

The autocorrelogram in Fig. 14 depicts the same be-
haviours in a different manner. It is observed that the auto-
correlation for lag one is positive, which is expected because
of physical consistence (states in neighbouring times should
be positively correlated because the changes in small time
should be small) and indicates short-term persistence. For
higher lags the autocorrelation ofxi oscillates between neg-
ative and positive values. The existence of negative autocor-
relations is an indication of antipersistence. In the simplest
case, an antipersistent process should have all its autocorre-
lations negative: it can be verified that in an HK process de-
fined by Eq. (15) withH <0.5, the autocorrelation function
is negative everywhere. But this cannot be the case in na-
ture because short-term persistence demands that some auto-
correlations should be positive. Therefore, here we broaden
this more common but too simplistic and unrealistic notion of
antipersistence so as to include alternating negative and pos-
itive autocorrelations without a constant period. A strictly
periodic behaviour would also result in autocorrelation os-
cillating between positive and negative values, which creates
the risk of misinterpretation of antipersistence as periodicity.
However, the intervals between different peaks or troughs in
Fig. 14 have not constant length, so here we have antipersis-
tence (sometimes called “quasi-periodic” behaviour).

Figure 14 also shows the autocorrelation of the variability
index yi . In this case, the autocorrelation is always posi-
tive, indicating persistence both in short and long term. Pro-
cesses with consistently positive autocorrelation functions
lead to large and long “excursions” from the mean as shown
in Fig. 12 (lower panel), which often tends to be interpreted
as nonstationarity. The latter, however, would require that the
system’s dynamics changes in time in a deterministic man-
ner, which does not happen here (and in most of the cases).
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Figure 15: Climacograms (plots of standard deviation σ(k) vs. averaging scale k) of the time 

series xi and yi (where standard deviations were estimated by the classical statistical estimator 

of time series averaged on each scale k).  

Fig. 15.Climacograms (plots of standard deviationσ (k) vs. averag-
ing scalek) of the time seriesxi andyi (where standard deviations
were estimated by the classical statistical estimator of time series
averaged on each scalek).

The most characteristic and useful plot of all three is the
climacogram in Fig. 15. For the soil water seriesxi and
for scales 1–3, the slope formed by the empirical points is
very low, reflecting short-term persistence. For large scales
(k >10) the empirical points are arranged in a straight line
with steep slope,−0.98. From Eq. (15) we can see that this
slope equalsH−1, so that in this caseH=0.02 asymptoti-
cally (for large scales). Likewise, the plot for the variability
index yi indicates a slope of−0.34 for large scales, which
corresponds toH=0.66. The slope for a purely random pro-
cess, also shown in figure, is−0.5, which corresponds to
H=0.5. Generally, anH between 0.5 and 1 characterizes
long-term persistence, whereas anH between 0 and 0.5 indi-
cates antipersistence. Thus, this figure verifies the antipersis-
tent and persistent behaviour already detected forxi andyi ,
respectively.

Most importantly, this figure provides insights on the pre-
dictability issue. It is well known that for a one-step-ahead
prediction at scale 1, a purely random processxi is the most
unpredictable. Dependence enhances one-step-ahead pre-
dictability. For example, in a process withρ1=0.5 (compa-
rable to that of our seriesxi andyi) the standard deviation,
conditional on known present state, is a fraction

√
(1−ρ2

1)

of the unconditional one, i.e. 13% smaller. However, in the
climatic-type predictions, in which the average behaviour
rather than exact values is studied, the situation is differ-
ent. In our example, as clearly shown in Fig. 15, at the cli-
matic scale of 30 time steps, predictability is deteriorated by
a factor of 3 for the persistent processyi (thus eliminating
and largely exceeding the 13% reduction due to conditioning
on the present state). On the other hand, for the antipersis-
tence processxi , the long-term predictability is improved by
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Figure 16: Plot of 1000 terms of the time series yi (variability index) at scales 1 and 30 and for 

two sets of initial conditions deferring less than 1%.  

 

 

Fig. 16. Plot of 1000 terms of the time seriesyi (variability index)
at scales 1 and 30 and for two sets of initial conditions deferring less
than 1%.

a factor of about 3. In summary (and perhaps contrary to
what is believed), long-term persistence substantially deteri-
orates predictability over long time scales – but antipersis-
tence improves it.

Figure 16 provides further demonstration of the unpre-
dictability of persistent processes. The plot shows 1000 items
of the time seriesyi (variability index) at the annual and the
climatic scale and for the two sets of initial conditions dis-
cussed above, the exact and rounded off, which differ by
less than 1%. After about 30 time steps (one time unit of
“climate”), the departures in the two cases are pronounced.
Thus, even acompletely deterministic systemis completely
unpredictableat a large (climatic) time scale, when there is
persistence.

This may seem counterintuitive to many. The conven-
tional argument is that averaging at a large temporal or spa-
tial scale results in “elimination of local noise” or “cancel-
lation of positive and negative tendencies” and gives rise
to theemergence of determinism from randomness. While
the latter is an indisputable truth and is the basis of macro-
scopic determinism in thermodynamic systems, extreme cau-
tion is required not to generalize unjustifiably. Theoretical
justification of the emergence of determinism from random-
ness relies on probability theory and on application of its
laws, already mentioned above. Practically, we can speak
of emergence of determinism in a macroscopic quantity if
the uncertainty of an averaged quantity is so low that we
can neglect it. Two things are most important to derive the
uncertainty of the macroscopic quantity: the scale of aver-
aging k (number of microscopic elements) and the depen-
dence among the microscopic elements. An example from
thermodynamics of ideal gases is enlightening: in a mole
of a gas the macroscopic quantities are averages of a num-
ber ofk = NA=6.022×1023 molecules (NA is the Avogadro
number) and independence between different molecules can
be assumed (e.g. Stowe, 2007). Simple calculations us-
ing the classical statistical law (Eq. 14) yield that the un-
certainty associated to a single molecule, expressed by the

standard deviationσ , is multiplied by 1/
√

NA=1.3×10−12

when macroscopic properties are calculated. This tiny num-
ber explains why we do not need an accurate representation
at the molecular level to have the macroscopic quantity cor-
rect; in other words it justifies the emergence of determin-
ism. However, even with that high averaging scalek=NA, if
there is substantial positive dependence between the differ-
ent elements, the uncertainty may still be high. For exam-
ple, application of the HK law (Eq. 15) withH=0.99 yields
that the ratio of macroscopic to microscopic uncertainty is
1/N−0.01

A =0.58, i.e. more than 11 orders of magnitude higher
than in classical statistics. Evidently, then, we cannot speak
of determinism in the latter case. As an additional exam-
ple, whenk=30 andH=0.95 the ratio of macroscopic to mi-
croscopic uncertainty is 1/30−0.05=0.84. Again, we cannot
speak of emergence of determinism. In contrast, in processes
with antipersistence the emergence of determinism is much
more relevant (here, indeed, positive and negative tendencies
cancel each other).

6 From the toy model to the real world

In comparison to our toy model, a natural system, such as
the atmosphere, a river basin, etc.: (a) is much more com-
plex; (b) has time-varying inputs and outputs; (c) has spatial
extent, variability and dependence (in addition to temporal);
(d) has greater dimensionality (virtually infinite); (e) has dy-
namics that to a large extent is unknown and difficult or im-
possible to express deterministically; and (f) has parameters
that are unknown. Hence uncertainty and unpredictability
are naturally even more pronounced in a natural system. The
role of stochastics is then even more crucial: (a) to infer dy-
namics (laws) from past data; (b) to formulate the system
equations; (c) to estimate the involved parameters; and (d) to
test any hypothesis about the dynamics. Data offer the only
solid ground for all these tasks, and failure to rely upon, and
test against, evidence from data renders inferences about hy-
pothesized dynamics worthless.

Despite the huge difference of the toy model and natu-
ral reality, we may hope that the above discourse can help
address several questions, from philosophical to technical.
Given the current dominant trend in hydrological (and other
geophysical) sciences forphysically-basedmodelling, rele-
vant questions are: What is physically-based modelling? Is
physics a synonym for determinism? Is physically-based
synonymous to mechanistic? Are first principles mechanis-
tic principles? Is not statistical physics part of physics? Is
not entropy maximization a first principle? Is not stochas-
tic modelling part of physical modelling? Will it ever be
possible to achieve such a physically-based modelling of hy-
drological systems that will not depend on data or stochastic
representations? Can detailed representations and reduction
to first principles render hydrologic measurements unneces-
sary? What level of detail is needed in such reductionist
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modelling for a catchment of, say, 1000 km2? How far can
the current research trend toward detailed models advance
hydrology and water resources science and technology?

Hydrological uncertainty and its reduction is currently a
core research issue and also very important from a water re-
sources engineering and management perspective. Relevant
questions are: To what extent can hydrological uncertainty be
reduced? Can uncertainty be eliminated by uncovering the
system’s deterministic dynamics? Is uncertainty epistemic
or inherent in nature? When there is potential for reduction
of uncertainty, what is the most effective means for reduc-
tion? Is it better understanding, better deterministic mod-
elling, more detailed discretization, or better data? When the
limits of uncertainty reduction have been reached, what is the
appropriate scientific and engineering attitude? Is it confes-
sion of failure and no action, or quantification of uncertainty
and risk through stochastics? Are current stochastic meth-
ods consistent with observed natural behaviours? Is there po-
tential to improve current stochastic methods in hydrology?
Can deterministic methods provide solid scientific grounds
for water resources engineering and management? Are there
physical upper and lower limits (deterministic envelopes) in
extreme hydrological phenomena, such as precipitation and
flood, whose determination could constitute the basis of hy-
drological design? Can there be risk-free hydraulic engineer-
ing and water management?

In the last decades, financial support for research in hy-
drology and water resources engineering and management
has been strongly linked to research on climate, a practice
that does not favour hydrology as an autonomous scientific
discipline. Therefore, questions related to climate research
and the relationship between hydrology and climate are quite
important: Are deterministic climate models a proper means
to assessing future climate and are there alternatives to them?
Is the current interface of climate and hydrology satisfactory?
Should hydrology and water resources planning rely on cli-
mate model outputs? Are climate models properly validated
and is the meaning of model validation and prediction the
same in hydrology and in climate modelling? Is the evolu-
tion of climate and its impacts on water resources determin-
istically predictable? With respect to the last questions, we
can observe that climate modellers do not hesitate to offer ar-
bitrarily long predictions, with time horizons from 2100 AD
(Battisti and Naylor, 2009), to 3000 AD (Solomon et al.,
2009), to 100 000 AD (Shaffer et al., 2009) – to mention a
few of the most recent publications in the most reputable
journals. Given the definition of climate (detailed above) as
a long-term average state, the behaviours illustrated by the
toy model are quite relevant. The high Hurst exponents es-
timated in several instrumental and proxy climatic time se-
ries, especially for temperature (H >0.90; Cohn and Lins,
2005; Koutsoyiannis and Montanari, 2007; Koutsoyiannis
et al., 2009), support the view of most climate processes
as persistent ones and, hence, far more unpredictable than a
purely random process. This raises the question: Is there any

indication that climate is predictable in deterministic terms?
For the latter question, we can observe that the last numer-
ical example in Sect. 5 is relevant to climate (k=30 as typi-
cally assumed in climate studies andH=0.95, a value that is
not uncommon for annual temperature). The resulting very
little reduction of uncertainty as we move from the annual
to the 30-year scale indicates that the standard perception of
climate as less variable and less uncertain, in comparison to
the annual fluctuation, may be flatly wrong.

A number of philosophical questions related to the ex-
posed view of uncertainty and its implications on society,
economy and life could be relevant to this study, but I re-
frain from presenting here. However, as scientific texts often
emphasize the negative aspects of uncertainty or generally
imply a negative meaning of it, it may be useful to refer to
it as a positive quality. As demonstrated here, uncertainty
is tightly related to change and, hence, to creativity, evolu-
tion, and progress, in life and in science. As far as science
is concerned, recognizing and studying uncertainty, wherever
there is uncertainty, should be interpreted not as a pessimistic
conceding of defeat, but just as an important scientific task,
consistent with the aim of science for the pursuit of truth.

7 Conclusions

The following summarizing questions can represent the con-
clusions of this article:

– Can natural processes be divided in deterministic and
random components?

– Are probabilistic approaches unnecessary in systems
with known deterministic dynamics?

– Is stochastics a collection of mathematical tools, unable
to give physical explanations?

– Are deterministic systems deterministically predictable
in all time horizons?

– Do stochastic predictions disregard deterministic dy-
namics in all time horizons?

– Can uncertainty be eliminated (or radically reduced) by
discovering a system’s deterministic dynamics?

– Does positive autocorrelation (i.e. dependence) improve
long term predictions?

– Are deterministic predictions of climate possible?

– Are the popular climate “predictions” or “projections”
trustworthy and able to support decisions on water man-
agement, hydraulic engineering, or even “geoengineer-
ing” to control Earth’s climate?

The most common answer to all these questions is “yes”.
Hopefully, the above discourse explained why my answers
to all of them are “no”.
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Poincaŕe, H.: Science et Ḿethode, 1908; reproduced in Chance, The
World of Mathematics, Simon & Schuster, New York, p. 1382,
1956.

Popper, K.: Quantum Theory and the Schism in Physics, Routledge,
London, 230 pp., 1992.

Hydrol. Earth Syst. Sci., 14, 585–601, 2010 www.hydrol-earth-syst-sci.net/14/585/2010/

http://arxiv.org/abs/math.HO/0411418
http://arxiv.org/abs/math.HO/0411418


D. Koutsoyiannis: A random walk on water 601

Robert, C. P.: The Bayesian Choice, From Decision-Theoretic
Foundations to Computational Implementation, Springer, New
York, 2 edn., 602 pp., 2007.

Robertson, H. S.: Statistical Thermophysics, Prentice Hall, Engle-
wood Cliffs, NJ, USA, 1993.

Shaffer, G., Olsen, S. M., and Pedersen, J. O. P.: Long-term ocean
oxygen depletion in response to carbon dioxide emissions from
fossil fuels, Nat. Geosci., 2, 105–109 doi:10.1038/NGEO420,
2009.

Shiryaev, A. N.: Kolmogorov, Life and creative activities, The An-
nals of Probability, 17(3), 866–944, 1989.

Solomon, S., Plattner, G.-K., Knutti, R., and Friedlingstein, P.: Ir-
reversible climate change due to carbon dioxide emissions, Proc.
Natl. Acad. Sci., 106(6), 1704–1709, 2009.

Stowe, K.: Thermodynamics and Statistical Mechanics, 2nd ed.,
Cambridge Univ. Press, Cambridge, UK, 2007.

Takens, F.: Detecting strange attractors in turbulence, in: Dynami-
cal Systems and Turbulence, edited by: Rand, D. A. and Young,
L.-S., Lecture Notes in Mathematics no. 898, Springer-Verlag,
New York, USA, 336–381, 1981.

US Global Change Research Program: Climate Literacy: The
Essential Principles of Climate Sciences, Second Version,
March 2009,www.climatescience.gov/Library/Literacy/default.
php, last access: March 2010, 2009.

Whitney, H.: Differentiable manifolds, Ann. Math., 37, 645–680,
1936.

www.hydrol-earth-syst-sci.net/14/585/2010/ Hydrol. Earth Syst. Sci., 14, 585–601, 2010

www.climatescience.gov/Library/Literacy/default.php
www.climatescience.gov/Library/Literacy/default.php

