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1. Abstract

A three-dimensional (3D) stochastic simulation model is presented, 
which is a direct extension of the 1D simple scaling process (fractional 
Gaussian noise). The 3D process can generate time-varying 2D rainfall 
fields through a rather simple procedure, as well as other time-
varying 2D spatial geophysical fields, consistent with the observed 2D 
long-term spatial persistence over time (3D slowly decaying 
autocorrelation over scale). Moreover, the differences between 1D 
(generating rainfall time series at a point), 2D (generating rainfall 
fields for specific time steps) and 3D (generating spatio-temporal 
rainfall fields) scaling processes are also being investigated through 
some applications based on observed rainfall fields.



2. Hurst phenomenon and the HK process
“High tendency of high/low values to occur in natural events”: Hurst (1951) �
Slowly decaying autocorrelation over scale� Power-law behavior 
(Kolmogorov, 1940).
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•Z: random field of interest  (assumed stationary and isotropic)

•Zv: mean aggregated  field (at a spatio-temporal scale)

• v: vector index of random field indicating location in the field

• k,l: any aggregated scales of the process

• μ: mean of the process 

• =d: equal in distribution function

• A: power law exponent of autocorrelation over scale

• D: dimension of vector index space of random field (v)



3. Hurst coefficient (H) of the HK process
HK process depends on the characteristic parameter 0<H<1. Here, the 
estimation of the H coefficient is done via the minimization of the square error 
(SEH) of the empirical (S(k)) and true (γ(k)) variance over scale k of the process.
A method of Koutsoyiannis (2003) for the estimation of H was extended to the 
D-dimensional process.
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4. Field Normalization
HK process generates random fields that follow the N(0,1). Here the 
following transformation (Papalexiou et al., 2007) is used, where its 
coefficients pi are estimated through the minimization of the square error 
of the model and N(0,1) distribution function.
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5. Autocorrelation function of the HK process
The autocorrelation function ρ (acf) of HK process is independent of the 
aggregated scale k. For any displacement vector r (lag) is expressed by a 
power-law function. The latter can be integrated over a discrete space of points 
Pv and Pv’, so that the discrete spatio-temporal acf can be estimated. This 
integration has an analytical solution for D=1. Koutsoyiannis et al. (2010) 
proposed an approximated solution for D=2. Here, this solution is extended for 
D=3 (referred as KAS).
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6. Simulation scheme for generating HK process
SMA stands for Symmetric Moving Average and it can be used to generate a 
stochastic process with any structure of autocorrelation or power spectrum 
(Koutsoyiannis, 2000). Here, the SMA scheme has been extended to three spatio-
temporal dimensions (direct extension from 1D and 2D schemes).
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•W: discrete white noise (random field) with zero mean (μw = 0) and unit 
standard deviation (σw = 1) (since Z has been normalized).

•αy: field of coefficients that can be determined through the Fourier transform 
Fγ of the autocovariance field γZ (Koutsoyiannis, 2000, Koutsoyiannis et al. 
2010).

• q: finite limit for the range of coefficients αy (for m, the desired number of 
autocorrelation coefficients that are to be preserved, and for βα0, the 
acceptance tolerance). 



7. Spectral density and αy coefficients of SMA

The spectral density Fγ of the stochastic field can be determined via the Fourier 
transform of the discrete form of autocovariance γr . It can be shown that the 
Fourier transform Fα, of the field αy, is related to Fγ (for q=∞), thus the αy field 
can then be estimated.
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8. Case study on observed rainfall fields
The application presented is based on an observed rainfall field in the India 
Ocean SE of India (coordinates: 30N-0N, 70E-100E). The data were acquired 
from TRMM NASA satellite system (available on-line): 
http://disc2.nascom.nasa.gov/Giovanni/tovas/TRMM_V6.3B42.shtml

The sample consists of a spatial 
grid 121x121 points (of a 0.25o x 
0.25o spatial resolution, approx. 
25 km x 25 km) and a temporal 
30-days grid. The latter grid was 
created with a 10-years daily 
average of the month with the 
highest spatial averaged 
accumulated rainfall over the 
area between 2000 and 2009 
(September).



9. Spatial - temporal resolution correspondence
The spatial and temporal displacements are physically different. For the 
assumption of isotropy to be valid spatial and temporal acf should match at 
least for the first lags. Thus, by constructing the diagrams of spatial and 
temporal acfs, the resolution correspondence can be evaluated.
At the left figure it can be seen that the space is isotropic. The spatial resolution 
is estimated to 25% of the initial unit (25km), so that the two acfs decay at the 
same rate (right figure). Thus the spatial grid is changed to 31x31 points (more 
coarse).



10. Normalization of rainfall field 
As described in section 4, the transformation by Papalexiou et al. (2007) is 
used to normalize the observed rainfall field. The zero values of the natural 
field are replaced with the small value of 1e-5.

The simulated field should be converted to natural units by solving 
arithmetically the inverted transformation.

p1 = 9.0, p2 = -0.6, p3 = -1.8, p4 

= 2.8, p5 = 7.0, SE = 14.0

The table below shows several 
statistical parameters of the case 
study for a random chosen 
simulation run.



11. Stochastic simulation model (figures)
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12. Stochastic simulation model (figures)
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13. Conclusions
• A three-dimensional (3D) stochastic simulation model is proposed, which is a 

direct extension of the 1D simple scaling process (HK or FGN), that can 
generate time-varying 2D spatial geophysical fields consistent with 2D long-
term spatial persistence over time (3D slowly decaying autocorrelation over 
scale).

• All of the framework used at the HK and SMA process is extended for any 
other dimension D of the field. The autocorrelation function over spatio-
temporal displacement can be adequately approximated with the extended 
Koutsoyiannis et al. (2010) solution for D≤3.

• The 3D model is verified through an application based on an observed 
rainfall field.
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