

Έκδοση 2.0

Οδηγίες χρήσης του λογισμικού

Οδηγίες Χρήσης

$Y \ \Delta \ P \ O \ \Sigma \ K \ O \ \Pi \ I \ O$

Υδρόγειος

Το προϊόν αυτό αποτελεί μέρος της δέσμης λογισμικών του ΥΔΡΟΣΚΟΠΙΟΥ που αναπτύχθηκαν στα πλαίσια του έργου: «Ανάπτυξη νέας βάσης δεδομένων για τη διαχείριση και λειτουργία της Εθνικής Τράπεζας Υδρολογικής και Μετεωρολογικής Πληροφορίας (ΕΤΥΜΠ) - Γ΄ Φάση σε περιβάλλον ΣΓΠ (GIS) και δημοσιοποίηση του έργου της ΕΤΥΜΠ».

Υδρόγειος

Αθήνα, Νοέμβριος 2009

Συγγραφέας Αντώνης Κουκουβίνος, Ανδρέας Ευστρατιάδης, Ευάγγελος Ρόζος

Εκδότης Εθνικό Μετσόβιο Πολυτεχνείο

I

Περιεχόμενα

Μέρος Ι	Εισαγωγή	2
1	Το μοντέλο Υδρόγειος	2
2	Υποσυστήματα εφαρμογής	3
3	Διαχείριση έργων και σεναρίων	4
Μέρος ΙΙ	Δημιουργία έργου σε περιβάλλον ΣΓΠ	8
1	Απαιτήσεις σε δεδομένα	8
2	Έναρξη εφαρμογής	
3	Προσθήκη απαραίτητων εργαλείων	
4	Δημιουργία έργου	10
5	Ορισμός ψηφιακού μοντέλου υψομέτρων	11
6	Έναρξη εργαλείου MW Hygrogeios	12
7	Χάραξη αρχικού υδρογραφικού δικτύου και λεκανών απορροής	13
8	Ορισμός σημείων εξόδου υπολεκανών απορροής	14
9	Χάραξη τελικού υδρογραφικού δικτύου και λεκανών απορροής	14
10	Δημιουργία αρχείων δεδομένων	15
11	Τροποποίηση αρχείων δεδομένων	16
12	Χαρακτηριστικά μεγέθη υπόγειων υδροφορέων	17
13	Δημιουργία μονάδων υδρολογικής απόκρισης	18
14	Δημιουργία παράγωγων δεδομένων	19
15	Ομαδοποίηση γεωτρήσεων	20
16	Ορισμός αρδευόμενων περιοχών	21
17	Δημιουργία κόμβων υδροσυστήματος	22
18	Ορισμός σημείων ελέγχου	23
19	Δημιουργία υδραγωγείων	24
20	Δημιουργία τοπολογίας δικτύου υδροσυστήματος	25
21	Μηνύματα σφάλματος	26
Μέρος III	Η κύρια εφαρμογή	30
1	Επιλογή έργου	30
2	Επιλογή σεναρίου	31
3	Δημιουργία νέου σεναρίου	32
4	Αντιγραφή σεναρίου	34
5	Διαγραφή σεναρίου	34
6	Αποθήκευση έργου/σεναρίου	35
7	Αποθήκευση χρονοσειρών σεναρίου	36
Μέρος IV	Διαχείριση γεω-δεδομένων	38
1	Κόμβοι υδρογραφικού δικτύου	38

2	Κλάδοι υδρογραφικού δικτύου	40
3	Υπολεκάνες	42
4	Κύτταρα υδροφορέα	43
5	Αγωγοί υπόγειου νερού	45
6	Πηγές	46
7	Γεωτρήσεις	48
8	Απλοί κόμβοι	49
9	Αρδευτικοί κόμβοι	50
10	Ομάδες γεωτρήσεων	52
11	Υδραγωγεία	53
12	Μονάδες υδρολογικής απόκρισης	54
13	Διαμερίσεις υπολεκανών	56
14	Συγκεντρωτικός πίνακας γεω-δεδομένων	57
Μέρος V	Διαχείριση δεδομένων σεναρίου	60
1	Επιλογές σεναρίου	60
2	Χρονοσειρές	65
3	Στόχοι	68
4	Αρχικές συνθήκες	70
₄ Μέρος VI	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης	70 74
4 Μέρος VI 1	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου	70 74 74
4 Μέρος VI 1 2	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου	70 74 74 76
4 Μέρος VI 1 2 3	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις	
4 Μέρος VI 1 2 3 Μέρος VII	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών	
4 Μέρος VI 1 2 3 Μέρος VII 1	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών Έλεγχος εγκυρότητας δικτύου	
4 Μέρος VI 1 2 3 Μέρος VII 1 2	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών Έλεγχος εγκυρότητας δικτύου Προσομοίωση	
4 Μέρος VI 1 2 3 Μέρος VII 1 2 3	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών Έλεγχος εγκυρότητας δικτύου Προσομοίωση	
4 Μέρος VI 3 Μέρος VII 1 2 3 Μέρος VIII	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών Έλεγχος εγκυρότητας δικτύου Προσομοίωση Βελτιστοποίηση Αποτελέσματα μοντέλου	
4 Μέρος VI 3 Μέρος VII 1 2 3 Μέρος VIII	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών Έλεγχος εγκυρότητας δικτύου Προσομοίωση Βελτιστοποίηση Αποτελέσματα μοντέλου Υδατικό ισοζύγιο λεκάνης	
4 Μέρος VI 3 Μέρος VII 1 2 3 Μέρος VIII 1 2	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών Έλεγχος εγκυρότητας δικτύου Προσομοίωση Βελτιστοποίηση Βελτιστοποίηση Τιμές κριτηρίων προσαρμογής	70 74 74 76 80 84 84 84 84 85 88 88 88 88
4 Μέρος VI 3 Μέρος VII 1 2 3 Μέρος VIII 1 2 3	Αρχικές συνθήκες	
4 Μέρος VI 3 Μέρος VII 1 2 3 Μέρος VIII 1 2 3 4	Αρχικές συνθήκες Διατύπωση προβλήματος βαθμονόμησης Μεταβλητές ελέγχου Αποκρίσεις ελέγχου Πολυκριτηριακές συναρτήσεις Εκτέλεση λειτουργιών Έλεγχος εγκυρότητας δικτύου Προσομοίωση Βελτιστοποίηση Βελτιστοποίηση Αποτελέσματα μοντέλου Υδατικό ισοζύγιο λεκάνης Τιμές κριτηρίων προσαρμογής Σύνολο λύσεων Pareto	70 74 74 76 80 84 84 84 85 88 88 88 89 90 90

1 Εισαγωγή

Στο παρόν εγχειρίδιο περιγράφονται οι αναλυτικές οδηγίες χρήσεις του υπολογιστικού συστήματος **Υδρόγειος** (έκδοση 2.0). Το μαθηματικό πλαίσιο και το λογισμικό έχουν αναπτυχθεί από ερευνητές του Τομέα Υδατικών Πόρων και Περιβάλλοντος του Εθνικού Μετσόβιου Πολυτεχνείου.

Η εφαρμογή είναι ελεύθερα διαθέσιμη στη διεύθυνση: <u>www.itia.ntua.gr/hydroscope</u>

1.1 Το μοντέλο Υδρόγειος

Η Υδρόγειος είναι ένα ολοκληρωμένο σχήμα προσομοίωσης, το οποίο υλοποιεί ένα συνδυαστικό (επιφανειακό και υπόγειο) υδρολογικό μοντέλο που αναπαριστά τις διεργασίες στο έδαφος και το υπέδαφος, σε συνδυασμό με ένα σχήμα διαχείρισης συστημικού προσανατολισμού, το οποίο εκτιμά τις ροές κατά μήκος του φυσικού (υδρογραφικού) και τεχνητού (έργα μεταφοράς) δικτύου και τις πραγματικές απολήψεις του υδροσυστήματος, λαμβάνοντας υπόψη τα χαρακτηριστικά και τους περιορισμούς των τεχνικών έργων αξιοποίησης των υδατικών πόρων.

Н χωρική κλίμακα αναπαράστασης των διεργασιών βασίζεται σε μια ημικατανεμημένη σχηματοποίηση, με την οποία εκτιμάται το ισοζύγιο των υδατικών πόρων σε χαρακτηριστικά σημεία (κόμβοι) της λεκάνης απορροής. Οι κόμβοι τοποθετούνται κατά μήκος του υδρογραφικού δικτύου (στις συμβολές των κλάδων ή σε άλλα σημεία ελέγχου) και σε θέσεις όπου πραγματοποιούνται επιφανειακές και υπόγειες απολήψεις. Η περιγραφή του πεδίου υπόγειας ροής βασίζεται σε μια πολυκυτταρική χάραξη, δημιουργώντας ένα εννοιολογικό δίκτυο διασυνδεδεμένων δεξαμενών, η στάθμη των οποίων αντιστοιχεί στη μέση στάθμη του αντίστοιχου τμήματος του υδροφορέα. Τέλος, το σύστημα διαχείρισης των υδατικών πόρων (υδροσύστημα), περιλαμβάνει μια εννοιολογική απεικόνιση των θέσεων προσφοράς και ζήτησης νερού, των κύριων έργων αξιοποίησης των υδατικών πόρων της λεκάνης (υδραγωγεία, έργα εκτροπής, γεωτρήσεις και ομάδες γεωτρήσεων) και των χρήσεων νερού. Για τη διαμόρφωση των χωρικών δεδομένων του μοντέλου χρησιμοποιείται το σύστημα γεωγραφικής πληροφορίας MapWindow.

Ως προς τη χρονική κλίμακα, το μοντέλο υποστηρίζει μηνιαίο ή ημερήσιο βήμα προσομοίωσης, το οποίο επιλέγεται με βάση το σκοπό της μελέτης καθώς και τη διαθεσιμότητα των υδρολογικών δεδομένων εισόδου. Το μηνιαίο βήμα ενδείκνυται για μελέτες διαχειριστικού ενδιαφέροντος, ενώ το ημερήσιο μπορεί να χρησιμοποιηθεί και για την περιγραφή πλημμυρικών φαινομένων σε μεγάλες λεκάνες, για τη συνήθη περίπτωση δεν διατίθενται επαρκή χωρικά δεδομένα βροχόπτωσης σε λεπτές χρονικές κλίμακες. Στη δεύτερη περίπτωση, για την πιστότερη αναπαράσταση των χρονισμών των πλημμυρικών παροχών, υλοποιείται ένα εμπειρικό σχήμα επιμερισμού των ημερήσιων απορροών κάθε υπολεκάνης σε υδρογραφήματα λεπτής χρονικής κλίμακας (ωριαίας), τα οποία στη συνέχεια διοδεύονται κατά μήκος του υδρογραφικού δικτύου, εφαρμόζοντας μοντέλα μίας (κινηματικό κύμα) ή δύο (μέθοδος Muskingum) παραμέτρων.

Ως προς τη μοντελοποίηση των υδρολογικών διεργασιών στην επιφάνεια, την ακόρεστη και την κορεσμένη ζώνη του εδάφους, υιοθετείται μια προσέγγιση φυσικής βάσης, η οποία είναι όσο το δυνατό φειδωλή ως προς τον αριθμό των παραμέτρων που χρησιμοποιούνται. Οι παράμετροι αντιστοιχούν σε χωρικές ενότητες της λεκάνης

(μονάδες υδρολογικής απόκρισης) και υδροφορέα (ζώνες) TOU зц κοινά γεωμορφολογικά και υδρολογικά χαρακτηριστικά, то οποίο επιτρέπει тην αποσύνδεση παραμετροποίησης χωρική λεπτομέρεια της από тη της σχηματοποίησης. Η εκτίμηση των παραμέτρων γίνεται μέσω βαθμονόμησης, δηλαδή με προσαρμογή του μοντέλου στις παρατηρημένες συνθήκες του παρελθόντος. Για το σκοπό αυτό, στο λογισμικό έχουν ενσωματωθεί αυτοματοποιημένες διαδικασίες, οι οποίες βασίζονται σε πολλαπλά μέτρα επίδοσης (στατιστικά και εμπειρικά) και εξελιγμένες τεχνικές βελτιστοποίησης, ολικής και πολυκριτηριακής.

1.2 Υποσυστήματα εφαρμογής

Για την παραγωγή των χωρικών δεδομένων χρησιμοποιείται το σύστημα γεωγραφικής πληροφορίας **MapWindow**, στο οποίο έχει ενσωματωθεί το άρθρωμα (plug-in) **MW Hydrogeios**.

Οι υπολογιστικές διαδικασίες (προσομοίωση, βαθμονόμηση) εκτελούνται μέσω της κύριας εφαρμογής (Hydrogeios engine). Εκτός από τα χωρικά δεδομένα, για την προσομοίωση απαιτούνται υδρολογικά (χρονοσειρές βροχόπτωσης και δυνητικής εξατμοδιαπνοής), διαχειριστικά (στόχοι, περιορισμοί) και άλλα δεδομένα (αρχικές συνθήκες, αριθμητικά κριτήρια, κτλ.), η διαχείριση των οποίων γίνεται μέσω της εν λόγω εφαρμογής. Επιπλέον, για την την εκτίμηση των παραμέτρων του μοντέλου, με προσαρμογή του στις παρατηρημένες συνθήκες του παρελθόντος, έχουν αναπτυχθεί αυτοματοποιημένες διαδικασίες, οι οποίες βασίζονται σε πολλαπλά κριτήρια επίδοσης και εξελιγμένες τεχνικές βελτιστοποίησης.

1.3 Διαχείριση έργων και σεναρίων

Η διαχείριση των δεδομένων του συνδυασμένου υδρολογικού, υδρογεωλογικού και διαχειριστικού μοντέλου μιας λεκάνης απορροής, η οποία οριοθετεί την περιοχή μελέτης, βασίζεται στην οργάνωσή τους σε δύο κατηγορίες πληροφοριών.

Η πρώτη κατηγορία αφορά στα δεδομένα του **έργου** (project), στα οποία περιλαμβάνονται όλα τα επίπεδα χωρικής πληροφορίας, πρωστογενή και δευτερογενή (τομές, ενώσεις), σε μορφή shapefile, δηλαδή το υδρογραφικό δίκτυο, οι υπολεκάνες, οι μονάδες υδρολογικής απόκρισης, τα υπόγεια κύταρα, οι γεωτρήσεις, τα υδραγωγεία, κτλ., η διαμόρφωση και επεξεργασία των οποίων γίνεται στο περιβάλλον του MapWindow. Η τοπολογία και τα γεωμετρικά μεγέθη των γεωγραφικών δεδομένων, καθώς και τα λοιπά χαρακτηριστικά τους μεγέθη, περιγραφικά (π.χ. ονομασία), υδραυλικά (π.χ. παροχετευτικότητες) και διαχειριστικά (π.χ. κόστη), διατηρούνται σταθερά στα πλαίσια του συγκεκριμένου έργου. Επισημαίνεται ότι η διαχείριση των μη γεωμετρικών μεγεθών μπορεί να γίνει τόσο μέσω του MapWindow όσο και μέσω της κύριας εφαρμογής.

Το δεύτερο επίπεδο πληροφορίας αφορά στα **σενάρια** (scenarios) που διαμορφώνονται στα πλαίσια ενός έργου. Στις πληροφορίες ενός σεναρίου περιλαμβάνονται:

- Οι γενικές ρυθμίσεις που αφορούν στο χρονικό βήμα, την περίοδο προσομοίωσης, τις αλγοριθμικές παραμέτρους, κτλ.
- Ο οι διαχειριστικοί στόχοι και περιορισμοί
- οι χρονοσειρές εισόδου και ελέγχου
- οι αρχικές συνθήκες της προσομοίωσης
- Ο παράμετροι του μοντέλου

Ο χρήστης μπορεί να διαμορφώνει απεριόριστο αριθμό σεναρίων, μεταβάλλοντας κάποια από τα παραπάνω δεδομένα, ανάλογα με το σκοπό της μελέτης. Με τον τρόπο αυτό μπορεί, στα πλαίσια μιας μελέτης, να διατυπώσει διαφορετικές εκδοχές του προβλήματος προσομοίωσης, π.χ. να εκτιμήσει τις παραμέτρους του μοντέλου με βάση τα υδρολογικά δεδομένα του παρελθόντος και να εξετάσει εναλλακτικά διαχειριστικά σενάρια, χρησιμοποιώντας τις ίδιες ή άλλες (π.χ. συνθετικές) χρονοσειρές.

Όλες οι πληροφορίες του έργου και των σεναρίων του, πλην των χρονοσειρών, αποθηκεύονται σε μορφή πινάκων (αρχεία τύπου dbf). Οι χρονοσειρές αποθηκεύονται σε αρχεία τύπου plain text, τα οποία είναι προσπελάσιμα και μέσω του λογισμικού Υδρογνώμων. Το σύνολο των δεδομένων του έργου είναι συγκεντρωμένα σε συγκεκριμένο φάκελο (folder), ενώ η διαχείρισή τους γίνεται μέσω των εφαρμογών, χωρίς να απαιτείται επέμβαση του χρήστη.

C:Wsers\Andreas\Projects\2008 Hydros	ko D	e\bkif_project								
File Edit View Eavorites Tools Help		<u>-</u> ,,								
🚱 Back 🔹 🕥 🕤 🏂 🔎 Search 📂 F	Folde	ers 🕼 🌶 🗙 🏹 🔟	•							
Address 🛅 bkif_project	vddress 🛅 bkif_project									
Folders	×	Name 🔺	Size	Туре	Date Modified 🔺					
🗉 🚞 2006_karathodori	~	🛅 InputSeries_1		File Folder	3/11/2009 6:57					
		CutputSeries_1		File Folder	4/11/2009 11:3 📃					
Discrete Contraction Contracti		🖬 Aqueduct.dbf	3 KB	DBF File	4/11/2009 11:3					
🗄 🧰 2007_Flash		🖬 Aqueduct.mwsr	1 KB	MWSR File	3/11/2009 2:50					
🚞 2007_MasterPlan		🖻 Aqueduct.prj	1 KB	PRJ File	19/10/2009 2:0					
🚞 2008_ChewCudRise		🖬 Aqueduct.shp	2 KB	SHP File	20/10/2009 2:4					
🗄 🧰 2008_Cyprus		🖬 Aqueduct.shx	1 KB	SHX File	20/10/2009 2:4					
🗄 🗀 2008_EYDAP		🖬 Borehole.dbf	17 KB	DBF File	4/11/2009 11:3					
🖃 🧰 2008_Hydroskope		🖬 Borehole.mwsr	2 KB	MWSR File	3/11/2009 2:24					
🖃 🚞 bkif_project		🖻 Borehole.prj	1 KB	PRJ File	16/10/2009 1:2					
🛅 InputSeries_1		🖬 borehole.sbn	1 KB	SBN File	16/10/2009 1:2					
🗉 🧰 OutputSeries_1		🖬 borehole.sbx	1 KB	SBX File	16/10/2009 1:2					
🗉 🧰 help		🖬 Borehole.shp	2 KB	SHP File	20/10/2009 10					
🗉 🛅 hydrogeios		🔮 borehole.shp.xml	12 KB	XML Document	16/10/2009 1:2					
🛅 proposal		🖬 Borehole.shx	1 KB	SHX File	20/10/2009 10					
i reports		🖬 dblbnd.adf	1 KB	ADF File	19/10/2009 12					
		🖬 Distance.dbf	52 KB	DBF File	4/11/2009 11:3					
COST		🖬 Edge.dbf	7 KB	DBF File	4/11/2009 11:3					
CO09_DEYKALION		🖬 GroundWater.dbf	12 KB	DBF File	4/11/2009 11:3					
👝 2009_stoupa		GroundWater.mwsr	2 KB	MWSR File	3/11/2009 12:4					
		🖻 GroundWater.prj	1 KB	PRJ File	15/10/2009 3:2					
E Cofware		🖬 GroundWater.shp	10 KB	SHP File	2/11/2009 3:13					
🗉 🧰 Studies		🖬 GroundWater.shx	1 KB	SHX File	2/11/2009 3:13					
🗉 🧰 var		🖬 hdr.adf	1 KB	ADF File	19/10/2009 12					
		🖬 hdr.bgd	267 KB	BGD File	2/11/2009 3:33					
🗉 🤐 DVD-RAM Drive (E;)	~	N hdr.bmp	200 KB	Bitmap Image	3/11/2009 11:2 ⊻					
<		<			> .::					

8

2 Δημιουργία έργου σε περιβάλλον ΣΓΠ

Η κατασκευή, επεξεργασία και οπτικοποίηση των γεωγραφικών δεδομένων του έργου γίνεται με το σύστημα γεωγραφικής πληροφορίας MapWindow, και την υποστήριξη της ειδικής εφαρμογής (άρθρωμα, plug-in) MW-HYdrogeios. Με τα παραπάνω διαμορφώνεται μια δικτυακή σχηματοποίηση των φυσικών και τεχνητών συνιστωσών της περιοχής μελέτης (λεκάνη απορροής), τα οποία εντάσσονται στις ακόλουθες κατηγορίες θεματικών επιπέδων:

- το επιφανειακό σύστημα, που περιλαμβάνει το υδρογραφικό δίκτυο, τις υπολεκάνες ανάντη κάθε κόμβου του δικτύου και τις πηγές (οι πηγές αποτελούν διεπιφάνεια με το υπόγειο σύστημα)
- Τις μονάδες υδρολογικής απόκρισης, που είναι γεωγραφικές ενότητες με κοινά γεωμορφολογικά και υδρολογικά χαρακτηριστικά και αναπαριστούν διαφορετικούς τύπους εδαφών
- Το υπόγειο σύστημα (υδροφορέας) που αναπαρίσταται ως ένα σύστημα κυττάρων πολυγωνικού σχήματος, στα οποία αντιστοιχούν εννοιολογικές δεξαμενές αποθήκευσης του υπόγειου νερού που συνδέονται μεταξύ τους με εννοιολογικά στοιχεία μεταφοράς και εκφορτίζονται είτε επιφανειακά, μέσω των πηγών, ή υπόγεια, προς γειτονικές λεκάνες και τη θάλασσα
- το σύστημα διαχείρισης υδατικών πόρων (υδροσύστημα), δηλαδή μια εννοιολογική απεικόνιση των θέσεων προσφοράς και ζήτησης νερού, των κύριων έργων αξιοποίησης των υδατικών πόρων της λεκάνης (υδραγωγεία, έργα εκτροπής, γεωτρήσεις και ομάδες γεωτρήσεων) και των χρήσεων νερού.

Τα επιμέρους θεματικά επίπεδα (δίκτυα) συνδέονται μέσω του υδρογραφικού δικτύου και των πηγών (επιφανειακό σύστημα – υπόγειο σύστημα), των γεωτρήσεων (υδροσύστημα – υπόγειο σύστημα) και των υδραγωγείων (επιφανειακό σύστημα – υδροσύστημα).

2.1 Απαιτήσεις σε δεδομένα

Τα γεωγραφικά δεδομένα που απαιτούνται για τη λειτουργία της εφαρμογής είναι:

- Ψηφιακό Μοντέλο υψομέτρων (hdr)
- Έξοδοι λεκανών απορροής (outlet)
- Λεκάνες αποροής (Subbasin)
- Υδρογραφικό δίκτυο (River)
- Υπόγειοι υδροφορείς (GroundWater)
- Μονάδες Υδρολογικής Απόκρισης (HRU)
- Πηγές (Spring)
- Γεωτρήσεις (Borehole)
- Αρδευόμενες εκτάσεις (Irrigation)
- Υδραγωγεία (Aqueduct)

9

Κόμβοι υδροσυστήματος (HydroJunction)

Τα δεδομένα πρέπει να είναι αποθηκευμένα όλα στον ίδιο φάκελο (σε αυτόν που αποθηκεύεται και το έργο που δημιουργείται).

Η ονοματολογία των επιπέδων είναι ρητή και άρα πρέπει να τηρείται υποχρεωτικά.

2.2 Έναρξη εφαρμογής

Η διαχείριση των δεδομένων του έργου γίνεται στο περιβάλλον του Map Window.

😔 MapW	/indow (GIS		2				
Αρχείο	Επεξεργ	/actia	Προβολή	ον Εργαλεία	Βοήθεια			
1 🗋 🖻) 🕂 -	W R	???) p p-	i - 😡		
Legend	μ×							
Drevie	Π×							
TTOMOT	т л							
X: -1.167 Y	: 1.133							

2.3 Προσθήκη απαραίτητων εργαλείων

Τα ελάχιστα εργαλεία που πρέπει να προστεθούν σε κάθε έργο είναι τα MW Hydrogeios, Shapefile editor και Watershed Delineation.

10

🍨 MapWindow GIS					
Αρχείο Επεξεργασία Προβολή	Εργ	αλεία	MW Hydrogeios	Shapefile Editor	Watershed Delineation
: 🗋 💼 🔚 🔒 💠 I 🖤 😿 I	2	Г€піλоγ	ές εργαλείων		hộ shộ 🕒 🖪 🍩 📮
Legend 🖡 🗙		Scripts.			
	*	Archive	e Project Tool		
	*	CSV to	Shapefile Converter	r	
	솖	Docume	ent Launcher		
	*	GIS Too	ols		
	余	Google	Geocoder		
	余	GPS Pro	oximity Tools		
	÷	GPS To	ols		
	余	GPX File	e Handler		
	*	Label M	lover		
	*	Launch	Other Mapping Soft	tware	
	*	Layout	AtlasGenerator		
	*	MapSer	rver Generator		
	*	MapWir	ndow GIS - Graph To	ool	
	*	Measur	ring Tool		
	33	Meems	Tools	•	
	*	MWHYE	DROGEIOS		
	*	Online I	Data Plug-in		
X: -1 342 X: -0 996	許	Open M	1etadata Manager		,
A. 1.942 1. 0.000	*	Path Ar	nalyzer 		III
	*	Photo \	viewer		
		Print La	ayout Taala		
		Samplin	iy 100ls ile Editor		
	277 - 1-1-1	Shapef	ile to grid		
		Waters	bed Delineation		

2.4 Δημιουργία έργου

Πρίν από τις επεξεργασίες πρέπει να δημιουργηθεί ένα νέο έργο. Ο χρήστης ορίζει τη θέση αποθήκευσης και την ονομασία του έργου. Στον φάκελο που δημιουργείται αποθηκεύονται, στο εξής, όλα τα δεδομένα του έργου και τα δεδομένα των σεναρίων που αναφέρονται σε αυτό.

4 N	lapW	indow GIS									
Αρ	χείο	Επεξεργασία	Προβολή	Εργαλεία	MV	V Hydrogeios	Shapel	file Editor	Watersh	ed Delineati	on
	Nέc)				₽- i -		a 👌 shp	ship 🐚	60	Ŧ
	ΆV	οιγμα									
	Geo	odatabase			•						
e 🗗	ΆV	οιγμα χάρτη σε ν	νέα ομάδα								
	And	οθήκευση									
Ð	And	οθήκευση ως									
۵	Ект	വ്നഗത്വ	13								
B	Ιδιά	πητες χάρτη									
2	Προ	όσφατοι χάρτες			۲						
۲	Έλ	εγχος για ενημε	ρώση του λογ	γισμικού							
5	Κλε	ίσιμο									
	Έξο	οδος									
Previ	ew	μ×				-					
X: -0.9	558 Y:	1.202].:

2.5 Ορισμός ψηφιακού μοντέλου υψομέτρων

Ο χρήστης προσθέτει στο χάρτη το ψηφιακό μοντέλο υψομέτρων που θα χρησιμοποιήσει για τη χάραξη των υπολεκανών και του υδρογραφικού δικτύου.

🍨 MapWindow GIS 🕞	vkif2*
Αρχείο Επεξεργασία	Προβολή Εργαλεία MW Hydrogeios Shapefile Editor Watershed Delineation
i 🗋 🚘 🔚 🗛 🕂 -	🛛 🕊 Ҡ 🎧 🔎 🔎 🖉 👔 🗠 🚦
Legend f	Προσθήκη θεματικού επιπέδου
🗹 Terrain Analys 💳	Αφαίρεση θεματικού επιπέδου 😽
Data Layers 🗙	Αφαίρεση όλων
Preview Мар Ц 🗙	
X: 367,877.883 Y: 4,319,133	3.866 Meters Lat: 39.011 Long: 22.474 1: 839897

2.6 Έναρξη εργαλείου MW Hygrogeios

Ο χρήστης ξεκινά το εργαλείο MW Hydrogeios και με την επιλογή Geographic operations εμφανίζεται το αντίστοιχο menu επιλογών

2.7 Χάραξη αρχικού υδρογραφικού δικτύου και λεκανών απορροής

Με την επιλογή Delineate Watershed εμφανίζεται το μενού αυτόματης χάραξης λεκάνης απορροής.

🎂 MapWindow GIS - vkif2*		
Αρχείο Επεξεργασία Προβολή Εργαλεί	MW Hydrogeios Shapefile Editor Water	rshed Delineation GIS Tools Metadata Tools
I 🗅 🗀 🗔 🗛 🔶 I 🕊 Ҡ 🕅	🖻 🔎 🔎 i - 🔝 🛯 📜 🚺 💒	Automatic Watershed Delineation
Legend 4 X		Setup and Preprocessing Elevation Units Base Elevation Data (DEM) Laver
Terrain Analysis		Meters V hdr
⊡ ✓ Data Layers		Rum in Existing Stream Polyling
		Salact a Straam Polulina Shapefile
		Use Current View Extents for Mask Set Extents
		O Use Grid or Shapefile for Mask
	A State of the second	Select a Mask Grid or Polygon Shapefile or Use Extents 📀 🔀
MW Hydrogeios		Draw Mask Select Mask R. Selected
Initialize geodata	Process geodata	
Step 1 Delineate Water	shed Step 4 Groundwater	Use Existing Intermediate Files Run
Step 2 Outlets lave	Step 5 HRU	Network Delineation by Threshold Method
		1600 # of Cells 100 sq. km 💌
Step 3 Create layer:	Step 6 HRU/Groundwater	Use Existing Intermediate Files Bun
Preview Map	Step 7 HydroJunctions	Custom Dutlet/Inlet Definition and Delineation Completion
	Step 8 Build Topology	Use a Custom Outlets/Inlets Laver
X		Select a Point Shapefile, then Select or Draw Outlets/Inlets
Hydrogeio	S Start Hydrogeios Engine	Draw Outlets/Inlets Select Outlets/Inlets 0 Selected
Project path: W:\hydrogeios\k	ifisos\Project2\	Snap Preview Snap Threshold 300,0000 Bun
X: 376,807.500 Y: 4,312,804.335 Meters Lat:	38.956 Long: 22.578	Advanced Settings Close Run All

Εκεί πρέπει να οριστούν τουλάχιστον το ψηφιακό μοντέλο υψομέτρων (DEM), η ελάχιστη επιφάνεια που δημιουργεί απορροή με αριθμό κυττάρων (# of Cells) ή έκταση (sq. km) και ένα ελάχιστο μήκος από το υδατόρευμα (Snap Threshold). Όταν οριστούν τα παραπάνω μεγέθη εκτελείται η ρουτίνα χάραξης του υδρογραφικού δικτύου και των υπολεκανών (Run All).

2.8 Ορισμός σημείων εξόδου υπολεκανών απορροής

Με την επιλογή Outlets layer το άρθρωμα δημιουργεί το θεματικό επίπεδο Outlet το οποίο περιέχει τα πλέον κατάντη σημεία όλων των κλάδων του υδρογραφικού (εκτός από την έξοδο). Ο χρήστης μπορεί να καθοδηγήσει τη χάραξη των υπολεκανών χρησιμοποιώντας αυτό το θεματικό επίπεδο το οποίο θα έχει τροποποιήσει κατάλληλα. Η μόνη επιτρεπτή τροποποίηση είναι η προσθήκη επιπλέον σημείων τα οποία αποτελούν σημεία ενδιαφέροντος του υδρογραφικού (π.χ. σημεία υδρομετρήσεων).

2.9 Χάραξη τελικού υδρογραφικού δικτύου και λεκανών απορροής

Με την επιλογή Delineate Watershed εμφανίζεται το μενού αυτόματης χάραξης λεκάνης απορροής. Στη φόρμα πρέπει να οριστούν το μοντέλο υψομέτρων (DEM), η ελάχιστη επιφάνεια που δημιουργεί απορροή με αριθμό κυττάρων (# of Cells) ή έκταση (sq. km), και ένα ελάχιστο μήκος από το υδατόρευμα (Snap Threshold). Ακόμη, πρέπει να οριστεί το επίπεδο των εξόδων των υπολεκανών, ενεργοποιώντας την επιλογή Use a Custom Outlets/Inlets Layer, ώστε να γίνει η χάραξη του τελικού υδρογραφικού δικτύου και των υπολεκανών (Run All).

			Automatic Watershed Delineation	×
MapWindow GIS	- vkit2*	_	Setup and Preprocessing	
Αρχείο Επεξεργασία	ο Προβολή Εργαλεία MW Hydrog	geios S	Elevation Units Base Elevation Data (DEM) Layer:	
E 🖬 🖬 🔒 🚽	┝╾ 👋 Ҡ 🕐 🥂 🖉 🔑 -	i • 😺	Meters 💌 Select a DEM Grid	🖻 📂 🛛
Legend	# ×		Burn-in Existing Stream Polyline	
🗆 🗹 Terrain Analysis	•		Select a Stream Polyline Shapefile	
- ✓ Outlets			Use a Focusing Mask	
			Use Current View Extents for Mask	Set Extents
□ □ Data Lavers	-		Use Grid or Shapefile for Mask	
L-⊞ □ hdr	##		Select a Mask Grid or Polygon Shapefile or Use Extents	
💙 MW Hydrogeios		~~	Draw Mask Select Mask 0 Selected	
Initialize geodata	Process geodata		Use Existing Intermediate Files	Run
Step 1 Delineate Watershed	Step 4 Groundwater			
		h	Network Delineation by Threshold Method	
Step 2 Outlets layer	Step 5 HRU	\sim	1600 # of Cells 100.0000	sq. km 💌
Step 3 Create layers	Step 6 HRU/Groundwater		Use Existing Intermediate Files	Bun
	Step 7 HydroJunctions		Custom Utitet/Inlet Definition and Delineation Completion	
	Step 8 Build Topology		Use a Custom Outlets/Inlets Layer	
X			Outlets	
Hydrogelos	Chart Hudronoice Engine		Draw Use to putter points and exclude basins	
riyurogeios			Snap Connected to inlet points in a point shapefile	Bun
Project path: W:\hydrogeios\kifisos\	Project2\			
		-	Advanced Settings Close	Run All
X: 348,945.947 Y: 4,305,	224.354 Meters Lat: 38.883 Long: 22	2.258	1: 771639	

2.10 Δημιουργία αρχείων δεδομένων

Με την επιλογή Create layers δημιουργούνται τα ακόλουθα αρχεία δεδομένων:

- κύτταρα υδροφορέα (πολύγωνα)
- 🗢 πηγές (σημεία)
- γεωτρήσεις (σημεία)
- αρδευόμενες εκτάσεις (πολύγωνα)
- υδραγωγεία (γραμμές)
- κόμβοι υδροσυστήματος (σημεία)

Τα παραπάνω επίπεδα είναι αναγκαία για τη λειτουργία της εφαρμογής

2.11 Τροποποίηση αρχείων δεδομένων

Τα αρχεία δεδομένων μπορούν να τροποποιηθούν με τον επεξεργαστή του MapWindow. Επεξεργασίες μπορούν να γίνουν σε οποιαδήποτε φάση ορισμού του υδροσυστήματος μέχρι το τελευταίο βήμα, στο οποίο καθορίζεται η τοπολογία του δικτύου.

Σε κάθε χρήση του επεξεργαστή, το snapping ορίζεται σε όλα τα επίπεδα με την επιλογή Snap to All Layers (από το μενού Shapefile Editor).

2.12 Χαρακτηριστικά μεγέθη υπόγειων υδροφορέων

Κατά τη χάραξη των κυττάρων του υπόγειου υδροφορέα είναι πολύ σημαντικό τα γειτονικά κύτταρα να έχουν κοινές κορυφές. Δηλαδή δεν επιτρέπεται ένα κύτταρο να έχει κορυφή πάνω σε ακμή άλλου κυττάρου. Για να διευκολυνθεί η ικανοποίηση αυτής της απαίτησης ενδείκνυται να είναι ενεργοποιημένη κατά τη σχεδίαση των κυττάρων η επιλογή Snap to Vertices που βρίσκεται κάτω από το μενού Shapefile Editor. Επίσης δεν επιτρέπεται σε οποιοδήποτε κύτταρο να καλύπτει τμήμα άλλου ούτε να υπάρχει κενό μεταξύ κυττάρων (εκτός και αν αυτό υποδεικνύει η γεωμετρία του υδροφορέα).

Με την επιλογή Groundwater υπολογίζονται τα χαρακτηριστικά μεγέθη του καννάβου (εμβαδά κυτάρων, αποστάσεις κέντρων βάρους, μήκη κοινών ακμών).

2.13 Δημιουργία μονάδων υδρολογικής απόκρισης

Οι μονάδες υδρολογικής απόκρισης (MYA, HRU) δημιουργούνται από δύο ή περισσότερα πολυγωνικά επίπεδα. Τα επίπεδα αυτά αναφέρονται σε κατηγορίες δεδομένων που σχετίζονται με τα γεωμορφολογικά και υδρολογικά χαρακτηριστικά της λεκάνης.

Με την επιλογή HRU εμφανίζεται η φόρμα επιλογής μέχρι 5 επιπέδων, με την ένωση των οποίων δημιουργούνται οι MYA (Create HRU).

2.14 Δημιουργία παράγωγων δεδομένων

Με την εντολή HRU/Groundwater εκτελούνται όλες οι απαραίτητες χωρικές πράξεις στα δεδομένα και προκύπτουν τα παράγωγα επίπεδα.

2.15 Ομαδοποίηση γεωτρήσεων

Οι γεωτρήσεις (Borehole) μπορούν να χωριστούν σε ομάδες, οι οποίες αντιμετωπίζονται ως ενιαίες διαχειριστικές οντότητες. Αυτό γίνεται επιλέγοντας αυτές που θα είναι στην ίδια ομάδα και ορίζοντας έναν αριθμό αναγνώρισης (GROUP_ID) στο αντίστοιχο πεδίο του Πίνακα Δεδομένων. Οι αριθμοί αναγνώρισης πρέπει να αρχίζουν από 0 και να αυξάνονται κατά 1.

2.16 Ορισμός αρδευόμενων περιοχών

Οι αρδευόμενες περιοχές (Irrigation) είναι πολυγωνικά επίπεδα, η μοντελοποίηση των οποίων προϋποθέτει τη διαμόρφωση ενός εννοιολογικού κόμβου, όπου θεωρείται ότι συγκεντρώνεται το σύνολο της αρδευτικής κατανάλωσης.

2.17 Δημιουργία κόμβων υδροσυστήματος

Με την επιλογή HydroJunctions δημιουργείται ένα ενιαίο σημειακό επίπεδο, που περιέχει τους κόμβους του υδρογραφικού δικτύου και τα κέντρα βάρους των αρδευόμενων περιοχών και των ομάδων γεωτρήσεων, που στο μοντέλο προσομοίωσης αντιμετωπίζονται ως σημεία στα οποία υλοποιούνται οι αρδευτικές απολήψεις και οι αντλήσεις, αντίστοιχα.

Ο τύπος του κόμβου ορίζεται στο πεδίο JUNCT_TYPE, που λαμβάνει τις τιμές:

- Ο, για κόμβους του υδρογραφικού δικτύου
- 1, για κόμβους ελέγχου πάνω στη λεκάνη
- 2, για αρδευτικούς κόμβους
- 3, για κόμβους άντλησης από ομάδες γεωτρήσεων

Επισημαίνεται ότι, στην παρούσα φάση, οι κόμβοι τύπου 1 δεν έχουν υλοποιηθεί ακόμη. Οι συγκεκριμένες οντότητες μπορούν να κατασκευαστούν στη συνέχεια, με προσθήκη σημειακού στοιχείου στο επίπεδο HydroJunction.

2.18 Ορισμός σημείων ελέγχου

Ο χρήστης μπορεί να δημιουργήσει άλλα σημεία ελέγχου (κόμβους) στη λεκάνη, προσθέτοντας στοιχεία στο επίπεδο HydroJunction. Οι κόμβοι αυτοί αφορούν σε θέσεις προσφοράς και ζήτησης νερού, αλλαγής της τοπολογίας των υδραγωγείων, κτλ.

2.19 Δημιουργία υδραγωγείων

Για να δημιουργηθεί υδραγωγείο πρέπει να υπάρχουν οι κόμβοι του στο αντίστοιχο επίπεδο (HydroJunction). Οι κόμβοι μπορούν να ανήκουν σε οποιαδήποτε κατηγορία, έτσι ώστε με το υδραγωγείο να μπορούν να υλοποιηθούν μεταφορές νερού από και προς το υδρογραφικό δίκτυο, τις ομάδες γεωτρήσεων, τις αρδευόμενες περιοχές και τους λοιπούς κόμβους ελέγχου της λεκάνης.

Κατά τον ορισμό του υδραγωγείου, η φορά πρέπει να είναι αυστηρά από κόμβο αρχής σε κόμβο τέλους κάθε τμήματος (σύμφωνα με την επιθυμητή κίνηση του νερού στο υδραγωγείο). Για κάθε στοιχείο, ο χρήστης πρέπει να επιλέξει έναν και μόνο κόμβο αρχής και έναν και μόνο κόμβο τέλους (δεν επιτρέπται να δημιουργήσει τεθλασμένη γραμμή). Κατά την επιλογή των κόμβων, πρέπει να είναι ενεργοποιημένη η εντολή Snap to Vertices.

2.20 Δημιουργία τοπολογίας δικτύου υδροσυστήματος

Με τη επιλογή Build Topology δημιουργείται η τοπολογία του δικτύου του υδροσυστήματος, οπότε μπορεί να κληθεί η κύρια εφαρμογή, με την επιλογή Start Hydrogeios Engine, η οποία ως τότε διατηρείται ανενεργή.

2.21 Μηνύματα σφάλματος

Κατά την εκτέλεση των λειτουργιών του αρθρώματος MW-Hydrogeios είναι δυνατό να εμφανιστούν διάφορα μηνύματα σφάλματος, η ερμηνεία των οποίων δίνεται στη συνέχεια.

Closest layer found is <layername>

Το άρθρωμα προσπαθεί να εκτελέσει μια λειτουργία πάνω σε ένα θεματικό επίπεδο το οποίο είτε δεν έχει ανοιχθεί από το MapWindow είτε έχει διαφορετικό όνομα από αυτό των προδιαγραφών. Εντοπίστηκε ένα θεματικό επίπεδο με ονοματολογία κοντινή σε αυτή των προδιαγραφών και αναμένει από το χρήστη να επιβεβαιώσει αν πρόκειται για το εν λόγω αρχείο.

Error creating new shapefile

Το άρθρωμα αποτυγχάνει στην προσπάθεια του να δημιουργήσει ένα νέο θεματικό επίπεδο. Πιθανότερη αιτία είναι ότι αυτό το θεματικό επίπεδο υπάρχει ήδη και είναι σε κατάσταση ανάγνωση-μόνο επειδή κάποιος άλλος χρήστης/πρόγραμμα το προσπελαύνει.

Error start-editing shapefile

Το άρθρωμα αποτυγχάνει στην προσπάθεια του να τροποποίηση ένα θεματικό επίπεδο. Πιθανότερη αιτία είναι ότι αυτό το θεματικό επίπεδο είναι σε κατάσταση ανάγνωση-μόνο επειδή κάποιος άλλος χρήστης/πρόγραμμα το προσπελαύνει.

Error adding lst field

Το άρθρωμα αποτυγχάνει στην προσπάθεια του να προσθέσει το πρώτο πεδίο στον πίνακα χαρακτηριστικών ιδιοτήτων ενός νέου θεματικού επιπέδου. Πιθανότερη αιτία είναι ότι αυτό το θεματικό επίπεδο υπάρχει ήδη και είναι σε κατάσταση ανάγνωσημόνο επειδή κάποιος άλλος χρήστης το προσπελαύνει.

Error adding shapes

Το άρθρωμα αποτυγχάνει στην προσπάθεια του να προσθέσει ένα σχήμα σε ένα θεματικού επίπεδο. Πιθανότερη αιτία είναι ότι αυτό το θεματικό επίπεδο είναι σε κατάσταση ανάγνωση-μόνο επειδή κάποιος άλλος χρήστης/πρόγραμμα το προσπελαύνει.

Error stop-editing shapefile

Το άρθρωμα αποτυγχάνει στην προσπάθεια του να αποθηκεύσει τις τροποποιήσεις που έγιναν σε ένα θεματικό επίπεδο. Πιθανότερη αιτία είναι ότι αυτό το θεματικό επίπεδο μετέβη σε κατάσταση ανάγνωση-μόνο λίγο πριν την αποθήκευση του.

Error adding field

Το άρθρωμα αποτυγχάνει στην προσπάθεια του να προσθέσει ένα νέο πεδίο στον πίνακα χαρακτηριστικών ιδιοτήτων ενός θεματικού επιπέδου. Πιθανότερη αιτία είναι ότι αυτό το θεματικό επίπεδο είναι σε κατάσταση ανάγνωση-μόνο επειδή κάποιος άλλος χρήστης/πρόγραμμα το προσπελαύνει.

<layername> not inside project path

Το άρθρωμα εντόπισε ότι κάποιο από τα θεματικά επίπεδα είναι αποθηκευμένο σε άλλη διαδρομή από αυτήν του φακέλου εργασίας. Όλα τα θεματικά επίπεδα πρέπει να είναι αποθηκευμένα στον ίδιο φάκελο εργασίας (project).

AWD plugin is not loaded

Το άρθρωμα εντόπισε ότι το άρθρωμα «Watershed Delineation» δεν έχει εισαχθεί στο MapWindow. Η εισαγωγή αυτή γίνεται από το μενού «Εργαλεία».

Please load <layername> layer

Το άρθρωμα εντόπισε ότι ένα από τα απαιτούμενα θεματικά επίπεδα δεν έχει

ανοιχθεί από το MapWindow.

Please create a new project or open an existing

Το άρθρωμα δεν μπορεί να ξεκινήσει αν δεν έχει οριστεί πρώτα ο φάκελος εργασίας (project). Ο ορισμός αυτός γίνεται από το μενού Αρχείο → Αποθήκευση ως (για δημιουργία καινούργιου) ή Αρχείο → Άνοιγμα (για άνοιγμα υπάρχοντος έργου).

group_id in Borehole should start from 0

Το άρθρωμα εντόπισε ότι τα group_id των γεωτρήσεων δεν αρχίζουν από 0 ως όφειλαν.

Invalid group_id in Borehole

Το άρθρωμα εντόπισε ότι οι μοναδικές τιμές των group_id των γεωτρήσεων δεν είναι διατεταγμένο ζεύγος ακέραιων αριθμών (παράδειγμα μη έγκυρων τιμών group_id: 0, 1, 2, 5, 6, ...).

3 Η κύρια εφαρμογή

Η κεντρική οθόνη της κύριας εφαρμογής (engine) καλείται είτε αυτόνομα είτε μέσα από το άρθρωμα (plug-in) MW-Hydrogeios, δηλαδή μέσα στο περιβάλλον του MapWindow. Στην πρώτη περίπτωση, θα πρέπει να έχει ήδη δημιουργηθεί ένα έργο, ενώ στη δεύτερη περίπτωση ελέγχεται πρώτα η εγκυρότητα της τοπολογίας του δικτύου με την εντολή Build Topology.

Στο πάνω μέρος της οθόνης εμφανίζονται τα ακόλουθα μενού λειτουργιών:

- Project: Διαχείριση έργων και σεναρίων
- Geodata: Διαχείριση γεωγραφικών δεδομένων έργου
- Scenario data: Διαχείριση δεδομένων σεναρίου
- **Calibration data**: Διατύπωση προβλήματος βαθμονόμησης
- Run: Εκτέλεση προσομοίωσης και βελτιστοποίησης
- Results: Πίνακες και διαγράμματα αποτελεσμάτων
- Help: Βοήθεια και πληροφορίες

Στο κάτω μέρος απεικονίζεται η μπάρα κατάστασης (status bar), στην οποία περέχονται πληροφορίες για την τρέχουσα κατάσταση του συστήματος ή αποτελέσματα της διαδικασίας βαθμονόμησης.

Μόλις κληθεί η εφαρμογή, όλα τα μενού εκτός από το Project και το Help διατηρούνται απενεργοποιημένα, μέχρι να επιλεγεί κάποιο έργο/σενάριο.

🌱 Hyd						
Project	Geodata	Scenario data	Calibration data	Run	Results	Help
Ready		C:\U	sers\Andreas\Proj	ects\2	008_Hydro	oskope\bkif_r 🤢

3.1 Επιλογή έργου

Με την εντολή Project → Import, ο χρήστης επιλέγει ένα συγκεκριμένο έργο (project), μεταβαίνοντας στον φάκελο των δεδομένων του και διαλέγοντας οποιοδήποτε αρχείο τύπου dbf. Με την εντολή Open καλείται η φόρμα επιλογής σεναρίου, ενώ αν η εφαρμογή καλείται για πρώτη φορά, δημιουργούνται αυτόματα οι πίνακες των υδρολογικών δεδομένων (δεδομένα σεναρίου) και δίνονται αρχικές τιμές στις γενικές ρυθμίσεις του σεναρίου.

3.2 Επιλογή σεναρίου

Μετά την επιλογή του έργου καλείται η φόρμα Scenarios, μέσω της οποία γίνεται η διαχείριση των σεναρίων του συγκεκριμένου έργου. Από τον κατάλογο των διαθέσιμων σεναρίων ο χρήστης επιλέγει ένα συγκεκριμένο σενάριο, η ονομασία και ο κωδικός (id) του οποίου απεικονίζεται στο μενού κατάστασης της φόρμας. Στη συνέχεια, με την εντολή Open scenario, και αφού ο χρήστης απαντήσει θετικά στο μήνυμα επιβεβαίωσης (Confirm), εισάγονται τα γεωγραφικά δεδομένα του έργου και τα δεδομένα του σεναρίου.

Scenario name	Description	Time step	Start date	End date	Date modified
Test BK scenario	First pilot run using MW Hydrogeios	monthly	1/10/1984	1/9/1994	3/11/2009
	Confirm		3		

3.3 Δημιουργία νέου σεναρίου

Μετά την εντολή New scenario δημιουργείται ένα νέο σενάριο και καλείται η φόρμα ρύθμισης των γενικών επιλογών του (Scenario options). Η φόρμα αποτελείται από τις ακόλουθες καρτέλες:

- Genaral info: Γενικές πληροφορίες
- Times: Ρυθμίσεις χρονικών μεγεθών
- Simulation: Ρυθμίσεις διαδικασιών προσομοίωσης
- Optimization: Ρυθμίσεις διαδικασιών βελτιστοποίησης
- Routing: Ρυθμίσεις μοντέλου διόδευσης

Για το νέο σενάριο, ο χρήστης απαιτείται να ρυθμίσει τουλάχιστον το χρονικό βήμα και τις ημερομηνίες έναρξης και λήξης της προσομοίωσης από την καρτέλα Times, με βάση τα οποία διαμορφώνονται τα μήκη όλων των χρονοσειρών του μοντέλου. Οι υπόλοιπες ρυθμίσεις αφορούν κυρίως σε αλγοριθμικές παραμέτρους, η τροποποίηση των οποίων συνιστάται να γίνεται μόνο από χρήστες που διαθέτουν σχετική εμπειρία.

Με το κλείσιμο της φόρμας ρυθμίσεων αποθηκεύονται τα δεδομένα του νέου σεναρίου, το οποίο εμφανίζεται στην τελευταία θέση του καταλόγου της φόρμας Scenarios.

33

Scenario op	otions					×
General info	Times	Simulation	Optimization	Routing		
-Project ir	fo					\neg
Name	C:M	Users\Andrea	as\Projects\20	08_Hydros	kope\bkif_	
Description						
Scenario	info					31
Name	Nev	w scenario			(id = 2)	
Description	No	info available	3			
Date modif	ied: 6/11	/2009 9:29:	58 пµ			

Scenario options			×
General info Times	Simulation Optimiz	ation Routing	
Time properties	1.2		ן
l ime interval of sin	nulation	💿 Month 🔘 Day	
Start of simulation	period	1/ 1 /1990 💌	
End of simulation p	eriod	1/12/2005	
Start of calibration	period	1/1/1990 🗟 💌	
End of calibration p	period	1/12/1995 💌	
Start of validation p	period	1/ 1 /1996 🛛 💌	
End of validation p	eriod	1/12/2005 💌	

3.4 Αντιγραφή σεναρίου

Μετά την εντολή Create a copy δημιουργείται ένα ακριβές αντίγραφο του επιλεγμένου σεναρίου και των δεδομένων του στους πίνακες της βάσης.

Scenar	rios					X
Avail	able scenarios for project	C:\Users\Andreas\Projects\2008_Hydros	kope\bkif_pı	roject		
id	Scenario name	Description	Time step	Start date	End date	Date modified
1	Test BK scenario	First pilot run using MW Hydrogeios	monthly	1/10/1984	1/9/1994	3/11/2009
2	Copy of Test BK scenario	First pilot run using MW Hydrogeios	monthly	1/10/1984	1/9/1994	4/11/2009 12:30:16 μ _j
		~~				
Op	en scenario New s	cenario Create a copy	Remove scer	nario		
Copy of	Test BK scenario (id = 2)					

3.5 Διαγραφή σεναρίου

Μετά την εντολή Remove scenario εμφανίζεται μήνυμα επιβεβαίωσης της διαγραφής και, εφόσον γίνει αποδεκτό, το επιλεγμένο σενάριο διαγράφεται από τον κατάλογο της φόρμας και ταυτόχρονα διαγράφονται όλα τα δεδομένα του από τους πίνακες της βάσης.

Επισημαίνεται ότι αν ο κατάλογος περιέχει ένα μόνο σενάριο, αυτό δεν μπορεί να διαγραφεί.

Scenario	name	Description	Time step	Start date	End date	Date modified
Test BK	cenario	First pilot run using MW Hydrogeios	monthly	1/10/1984	1/9/1994	4/11/2009
Copy of 1	est BK scenario	First pilot run using MW Hydrogeios	monthly	1/10/1984	1/9/1994	4/11/2009 12:49:33 μ
		Delete the selecte	d scenario?			

3.6 Αποθήκευση έργου/σεναρίου

Με την εντολή Project → Save, αποθηκεύονται στον φάκελο του έργου τα γεωγραφικά δεδομένα, τα δεδομένα του σεναρίου και οι χρονοσειρές εισόδου του σεναρίου. Για τις τελευταίες δημιουργείται αυτόματα ο υποφάκελος με την ονομασία InputSeries_κωδικός σεναρίου (ξεχωριστός για κάθε σενάριο), στον οποίο αποθηκεύονται τα αρχεία των χρονοσειρών, σε μορφή που είναι αναγνωρίσιμη από το λογισμικό Υδρογνώμων.

Για την εκτέλεση της εντολής ο χρήστης θα πρέπει πρώτα να κλείσει την εφαρμογή MapWindow (το πρόγραμμα εμφανίζει σχετικό προειδοποιητικό μήνυμα).

Warnin	g 🔀
⚠	Before you save the changes close MapWindow. Do you want to proceed?
	Yes No

3.7 Αποθήκευση χρονοσειρών σεναρίου

Με την εντολή Project → Export all timeseries, δημιουργείται αυτόματα ο υποφάκελος με την ονομασία OutputSeries_κωδικός σεναρίου (ξεχωριστός για κάθε σενάριο), στον οποίο αποθηκεύονται τα αρχεία όλων των χρονοσειρών εισόδου και εξόδου του σεναρίου, σε μορφή που είναι αναγνωρίσιμη από το λογισμικό Υδρογνώμων. Μέσα στον υποφάκελο δημιουργούνται ξεχωριστοί φάκελοι για κάθε συνιστώσα του δικτύου, ενώ οι συγκεντρωτικές χρονοσειρές του υδατικού ισοζυγίου της λεκάνης αποθηκεύονται στον φάκελο Totals.

Προφανώς, για να παραχθούν οι χρονοσειρές εξόδου θα πρέπει προηγουμένως να έχει γίνει προσομοίωση, διαφορετικά όλες οι χρονοσειρές του μοντέλου θα είναι μηδενικές.

C:Wsers	Andreas Project	ts\2008_Hyd	iroskop	e\bkif_project\OutputSeries_	.1	
File Edit	View Favorites	Tools <mark>Help</mark>				a
G Back 🝷	۵ - 🎓	🔎 Search 🛛	赺 Fold	ers 🕼 🎲 🗙 🍤 🚺		
Address 🛅 🤇	DutputSeries_1					💌 🄁 Go
Folders			×	Name 🔺	Size Type	Date Modified
	🗉 🚞 2006_ka	arathodori	^	C Aqueducts	File Folder	4/11/2009 11:38 n
	🗉 🚞 2006_O	penMI		C Basins	File Folder	4/11/2009 11:38 n
	🚞 2007_E1	YDAPAssets		BoreholeGroups	File Folder	4/11/2009 11:38 n
	표 🚞 2007_Fl	ash		Direholes	File Folder	4/11/2009 11:38 n
	🚞 2007_M	asterPlan			File Folder	4/11/2009 11:38 п
	🚞 2008_Cl	hewCudRise		GroundWaterCells	File Folder	4/11/2009 11:38 n
	🖽 🚞 2008_C)	yprus	_	hRUs 🔁	File Folder	4/11/2009 11:38 n
	🖽 🚞 2008_E1	YDAP		DirrigationNodes	File Folder	4/11/2009 11:38 п
	🖃 🚞 2008_H	ydroskope		Dunctions	File Folder	4/11/2009 11:38 n
	🖃 🧰 bkifj	_project		C RiverNodes	File Folder	4/11/2009 11:38 n
	i 🗀 :	InputSeries_1	_	Rivers	File Folder	4/11/2009 11:38 n
	± 🧰	OutputSeries_1		C Springs	File Folder	4/11/2009 11:38 n
	🗉 🚞 help	1		argets	File Folder	4/11/2009 11:38 n
	🗉 🚞 hydr	rogeios		🛅 Totals	File Folder	4/11/2009 11:38 n
	🚞 prop	oosal				
	🚞 repo	orts				
	표 🚞 2008_R/	anking				
	🚞 2009_C	OST				
	🚞 2009_DI	EYKALION				
	🚞 2009_st	oupa				
	🚞 2009_Ya	drPolyt				
	🗉 🚞 Sofware					
	🗉 🚞 Studies					
	🗉 🚞 var					
± 🗀	WINDOWS		_			
🕀 🤐 🖽	D-RAM Drive (E:)		~			
<			>	<		>

4 Διαχείριση γεω-δεδομένων

Από το μενού Geodata της κεντρικής οθόνης γίνεται η απεικόνιση και διαχείριαση των δεδομένων του έργου με γεωαναφορά (γεω-δεδομένα, geodata), τα οποία έχουν παραχθεί από το ΣΓΠ. Τα γεω-δεδομένα εντάσσονται στις ακόλουθες κατηγορίες:

- Δεδομένα υδρογραφικού δικτύου: κόμβοι υδρογραφικού δικτύου, υδατορεύματα, υπολεκάνες
- Δεδομένα υπόγειου συστήματος: υπόγεια κύτταρα, αγωγοί μεταφοράς, πηγές, γεωτρήσεις
- Δεδομένα υδροσυστήματος: απλοί κόμβοι ελέγχου, αρδευτικοί κόμβοι, ομάδες γεωτρήσεων, υδραγωγεία
- Μονάδες υδρολογικής απόκρισης (MYA)
- Διαμερίσεις υπολεκανών (ένωση υπολεκανών-MYA)

Οι γεωμετρικές ιδιότητες των παραπάνω δεδομένων δεν είναι προσπελάσιμες από τον χρήστη, και απεικονίζονται στα αντίστοιχα πεδία με γαλάζιο φόντο. Αντίθετα, οι διαχειριστικές πληροφοριές, οι παράμετροι και τα υδραυλικά χαρακτηριστικά απεικονίζονται στα αντίστοιχα πεδία με λευκό φόντο, και μπορούν να τροποποιηθούν. Με το κλείσιμο της αντίστοιχης φόρμας, όλες οι αλλαγές αποθηκεύονται τοπικά (δηλαδή στη μνήμη του προγράμματος), όχι όμως στη βάση δεδομένων. Για αποθήκευση στους πίνακες της βάσης, ο χρήστης πρέπει να επιλέξει την αντίστοιχη λειτουργία, από το μενού Project → Save.

Σε κάθε συνιστώσα του μοντέλου που ανήκει σε συγκεκριμένη κατηγορία (π.χ. υπολεκάνη, κύτταρο, γεώτρηση) το πρόγραμμα δίνει έναν αύξοντα αριθμό, που χρησιμοποιείται ως κωδικός αναγνώρισης (id). Για μεγαλύτερη διευκόλυνση στην αναγνώριση των διαφόρων συνιστωσών, ο χρήστης μπορεί ακόμη να προσδιορίσει ονομασία (Name) και περιγραφή (Description).

🌱 Hyd	rogeios 2	2.0						
Project	Geodata	Scenario data	Calibra	tion data	Run	Result	s Help	
	River n	etwork	×.	River	nodes			
	Ground	lwater system	Þ	River	segme	nts		
Ready	Hydros	ystem	•	Sub-b	asins		10.182	

4.1 Κόμβοι υδρογραφικού δικτύου

Από το μενού Geodata → River network → River nodes εμφανίζεται στο προσκήνιο η φόρμα των κόμβων του υδρογραφικού δικτύου, στην οποία κάθε κόμβος απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Node i, όπου i ο αντίστοιχος κωδικός. Στη φόρμα, άνω αριστερά, απεικονίζονται η ονομασία (Name), η περιγραφή (Description), οι τιμές των συντεταγμένων (X-coordinate, Y-coordinate), το υψόμετρο (Altitude) και ο τύπος του κόμβου (Node type). Ο κόμβος εξόδου επισημαίνεται με την ονομασία "Outlet" ενώ οι εσωτερικοί κόμβοι του δικτύου αναφέρονται με την

38

ονομασία "Internal node". Οι ανάντη κόμβοι, που δεν αποτελούν έξοδο υπολεκάνης και δεν συμμετέχουν στους υπολογισμούς του υδατικού ισοζυγίου, επισημαίνονται με την ονομασία "Upstream node".

River network	< nodes												X
-General info	rmation		Water ba	lance times	eries (m3/s)								
Name	Καρδίτσα α	ανάντη	Date	External infl	Pipe inflow	River inflow	Basin runoff	Spring runoff	Pipe outflow	Withdrawal	River outflow	Obs. outflow	~
			Οκτ-84	0.000	0.000	8.095	0.000	0.000	0.000	0.000	8.095		
Description			Noc-84	0.000	0.000	7.798	0.043	0.000	0.000	0.000	7.841		
Decomption			∆єк-84	0.000	0.000	8.956	0.003	0.000	0.000	0.000	8.959		
			Ιαν-85	0.000	0.000	30.761	0.972	0.000	0.000	0.000	31.734		
			Φεβ-85	0.000	0.000	16.041	0.518	0.000	0.000	0.000	16.559		
Properties			Μαρ-85	0.000	0.000	14.793	0.464	0.000	0.000	0.000	15.257		
		101.000	Апр-85	0.840	0.000	9.829	0.200	0.000	2.101	0.000	8.768		
X- coordinate (I	km)	424.228	Μαϊ-85	0.570	0.000	5.138	0.000	0.000	4.739	0.000	0.968		
			louv-85	2.540	0.000	4.291	0.000	0.000	6.831	0.000	0.000	-	
Y - coordinate	(km)	4254.000	louit-85	8.100	0.000	1.900	0.000	0.000	10.000	0.000	0.000		
			Auy-85	6.790	0.000	2.355	0.000	0.000	9.145	0.000	0.000	-	
Altitude (m)		93.0	Σεπ-85	0.000	0.000	5.235	0.000	0.000	5.235	0.000	0.000		
			Οκτ-85	0.000	0.000	8.367	0.000	0.000	0.000	0.000	8.367		
Node type		Internal node	Noc-85	0.000	0.000	10.547	0.035	0.000	0.000	0.000	10.582		
8 7 6 5 4 3 2 1 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Map - 88 28 - 11 - 28 Map - 28 Map - 29 Map - 20 Map - 20	Excernal inf	Low (m3/s	s)	Map-93 Eem-99 Map-94	35 f 30 - 25 - 20 - 15 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	Amp-86 Oxt-86 Amp-86 Am	River out	сторов (m3 окт.99 окт.99 окт.90 око.90 окт.	Ampediation	Amp-33 Ort-33 Amp-34 Ort-34	- Simulated Observed	
	1 (Node 2 (Node 3 (Node 4 / A	ode 5 (Nodo	6 (Node 7 /M	ode 8 (Node 9	Node 10 /N	ode 11 (Node	12 (Node 13	VNode 14 /M	ode 15 /			
(HODE O / HODE			In a sylande		ode o Anode :					008 10			

Άνω δεξιά της φόρμας δίνονται, σε μορφή πίνακα, οι τιμές των χρονοσειρών του υδατικού ισοζυγίου (σε μονάδες παροχής) και περιλαμβάνουν τις εξής συνιστώσες:

- Σημειακή εισροή από εξωτερικά υδροσυστήματα (External inflow)
- Ξ Εισροή από ανάντη υδραγωγεία (Pipe inflow)
- Ξ Εισροή από το ανάντη υδρογραφικό δίκτυο (River inflow)
- Ξ Επιφανειακή απορροή υπολεκανών που εκρέουν στον κόμβο (Basin runoff)
- Βασική απορροή υπολεκανών, λόγω εκφόρτισης πηγών (Spring runoff)
- Ξ Εκροή σε κατάντη υδραγωγεία (Pipe outflow)
- Τοπική χρήση νερού (απόληψη) στον κόμβο (Withdrawal)
- Εκροή στο κατάντη υδρογραφικό δίκτυο (River outflow)
- Παρατηρημένη εκροή (Obs. outflow)

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

Στο κάτω μέρος της καρτέλας υπάρχουν δύο διαγράμματα. Στο αριστερό

απεικονίζεται η χρονοσειρά που επιλέγει ο χρήστης, μετακινούμενος πάνω στον πίνακα, ενώ στο δεξί διάγραμμα απεικονίζονται, εξ ορισμού, οι χρονοσειρές προσομοιωμένης και παρατηρημένης (εφόσον υπάρχει) εκροής.

Στο κάτω μέρος της φόρμας υπάρχουν τρία πλήκτρα για την προσθήκη στόχου ύδρευσης (Add supply target), την εισαγωγή χρονοσειράς παρατηρημένης παροχής (Set obs. discharge ts) και την εισαγωγή χρονοσειράς εξωτερικής εισροής (Set external inflow ts), αντίστοιχα. Τα πλήκτρα αυτά είναι απενεργοποιημένα, εφόσον αναφερόμαστε σε ανάντη κόμβο.

4.2 Κλάδοι υδρογραφικού δικτύου

Από το μενού Geodata \rightarrow River network \rightarrow River segments εμφανίζεται στο προσκήνιο η φόρμα των κλάδων του υδρογραφικού δικτύου, στην οποία κάθε κλάδος απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Segment i, όπου i ο αντίστοιχος αύξων αριθμός. Στη φόρμα απεικονίζεται ένα πλήθος πληροφοριών, που ομαδοποιούνται στις ακόλουθες κατηγορίες:

- **Γενικές πληροφορίες** (General information): ονομασία (Name), περιγραφή (Description)
- Γεωμετρικά δεδομένα τοπολογίας (Topology): ονομασία και κωδικός (σε παρένθεση) ανάντη (Node up) και κατάντη (Node down) κόμβου, ονομασία και κωδικός υπολεκάνης που διατρέχει ο κλάδος (Parent basin), μήκος κλάδου (Length), πλήθος ανάντη κλάδων (Up segments), πλήθος κατάντη κλάδων (Down segments), τάξη κλάδου (Order), τάξη διόδευσης (Routing order)
- Χαρακτηριστικά μεγέθη τυπικής διατομής (Typical cross-section input data): κατά μήκος κλίση (Longitudinal slope), πλάτος πυθμένα (Bottom width), κλίση πρανών (Bank slope), συντελεστής τραχύτητας κατά Manning (Roughness), ελάχιστη αναμενόμενη παροχή (Minimum expected flow), μέγιστη αναμενόμενη παροχή (Maximum expected flow)
- Παράμετροι (Parameters): συντελεστής διήθησης (Infiltration coefficient), που ορίζεται ως ποσοστό της διερχόμενης παροχής και μπορεί να τροποποιηθεί από τον χρήστη (το σχετικό πεδίο έχει λευκό φόντο)
- Υδραυλικές ιδιότητες (Hydraulic properties): συντελεστές που χρησιμοποιούνται στον αναλυτικό υπολογισμό της παροχής συναρτήσει της βρεχόμενης επιφάνειας (a, b) και της επιφάνειας συναρτήσει της στάθμης (d, e)
- Υπολογιστικές ιδιότητες διόδευσης (Properties for routing procedures): αριθμητικό σχήμα (Routing model), αριθμητικό βήμα ως ποσοστό του χρόνου διαδρομής του πλημμυρικού κύματος (Comput. time step), πλήθος υποτμημάτων στα οποία χωρίζεται ο κλάδος (Number of sub-segments), μήκος υποτμήματος (Distance step), χρόνος διαδρομής (Travel time through the reach)
- Παράμετροι μεθόδου Muskingum (Parameters of the Muskingum method): συντελεστής X (Weight X), συντελεστής C1, συντελεστής C2, συντελεστής C3

River segmen	ıts						X
e 114							_
General inro	rmation		Hydraulic properties		Discharge s	eries (m3/s)	
Name	Διώρυγα Καρδίτσας		Multiplier of the O.A. europe (a)	0.000	Data	Discharge	
			Multiplier of the QA curve (a)	0.000	Date Over-94	o nos	- 2
Description			Power of the Q-A curve (b)	0.000	Nos-84	7.841	
					Ask-84	8 959	
			Intersection of the topwidth-area curve (d)	0.000	lav-85	31 734	
					Φεβ-85	16.559	
l opology			Slope of the topwidth-area curve (e)	0.000	Μαρ-85	15.257	
Node up	Καρδίτσα ανάντη (0)				Anp-85	8.768	
			Properties for routing procedures		Μαϊ-85	0.968	
Node down	Έξοδος προς Υλίκη (15)		Routing model None		louv-85	0.000	
			Notice	•	1009-82	0.000	
Parent basin	(13)		Comput time step (dimensionaless, At/K)	0.000	Αυγ-85	0.000	
			Comput. time step (dimensioneless, 2013)	0.000	Σεπ-85	0.000	
Length (km)	10.510 Upstrea	am segment	Number of sub-segments	1	Οκτ-85	8.409	
			Number of sub-segments	Ľ	Noc-85	10.617	
Up segments	2 Down segr	ments 0	Distance step Av (km)	10.510	∆ек-85	10.312	
0.4	0		Distance step, ZX (Kin)	10.010	Ιαν-86	10.191	
Urder	P Routing or	der 15	Travel time through the reach, K (b)	0.000	Φεβ-86	14.593	
			Haver time through the reach, it (ii)		Μαρ-86	11.017	_
Typical cros	s-section input data		-Parameters of the Muskingum metho	d	Апр-86	4.537	_
Longitudinal sl	one (%)	0.000			Μαϊ-86	0.000	_
Congradinaron	000 (10)		Weight X C1		100V-86	0.000	_
Bottom width (r	m)	0.000			00/1-86	0.000	
					AUY-00	0.000	
Bank slope		0.000					
			Disc	harge (m3/s	0		
Roughness (M	anning's coefficient)	0.000	30				
Minimum expe	cted flow (m3/s)	0.000	25				
Maximum expe	ected flow (m3/s)	0.000	20	. <u>h</u>			
Parameters Infiltration coef	ficient (% of actual flow)	0.000	10	MA	Λ_{Λ}	A	
Add minimum ri	iver flow target		Мар-85 2677-85 Мар-86 2677-86 Мар-86 Мар-88 Мар-87 2677-87	Мαр-89- Σεπ-89- Мар-90-	Δεπ-30 Μαρ-91 - Σεπ-91 - Μαρ-92	Σεπ-92- Μαρ-93- Σεπ-93- Μαρ-94-	Σεπ-94

Οι περισσότερες από τις παραπάνω πληροφορίες (χαρακτηριστικά μεγέθη και υδραυλικές ιδιότητες διατομής, υπολογιστικές ιδιότητες, αριθμητικοί συντελεστές) ορίζονται μόνο εφόσον το χρονικό βήμα είναι ημερήσιο και ο χρήστης έχει επιλέξει την ενσωμάτωση του μοντέλου διόδευσης στην προσομοίωση. Διαφορετικά, τα πεδία είναι απενεργοποιημένα και τα σχετικά μεγέθη φαίνονται ως μηδενικά.

Στο δεξιό μέρος της καρτέλας δίνεται η προσομοιωμένη χρονοσειρά παροχής του κλάδου, η οποία απεικονίζεται στο διάγραμμα που βρίσκεται στο κάτω μέρος. Με πάτημα του πλήκτρου πάνω δεξιά, η χρονοσειρά αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

Στο κάτω μέρος της φόρμας υπάρχει πλήκτρο για την προσθήκη περιορισμού ελάχιστης παροχής (Add minimum river flow target). Το πλήκτρο αυτό, όπως και οι υπόλοιπες εγγραφές που επιτρέπται να τροποποιήσει ο χρήστης, είναι απενεργοποιημένα, εφόσον αναφερόμαστε σε ακραίο τμήμα του δικτύου (Upstream segment), ο ανάντη κόμβος του οποίου δεν είναι έξοδος υπολεκάνης. Στην περίπτωση αυτή, η παροχή του κλάδου θεωρείται μηδενική, καθώς δεν υπάρχει εισροή λόγω απορροής ανάντη.

4.3 Υπολεκάνες

Από το μενού Geodata \rightarrow River network \rightarrow Sub-basins εμφανίζεται στο προσκήνιο η φόρμα των υπολεκανών του υδρογραφικού δικτύου, στην οποία κάθε υπολεκάνη απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Basin i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) της λεκάνης, τα χαρακτηριστικά γεωμετρικά της μεγέθη, δηλαδή η έκταση (Area), το μέσο υψόμετρο (Mean elevation), το μήκος της κύριας μισγάγγειας (Length of main tributary) και η μέση κλίση (average slope), καθώς και οι ονομασίες και κωδικοί του κατάντη κόμβου (Downstream node) και του κλάδου που διατρέχει την υπολεκάνη (Parent river segment). Επισημαίνεται ότι οι ανάντη υπολεκάνες δεν διατρέχονται από κλάδο, οπότε στο σχετικό πεδίο εμφανίζεται το μήνυμα "No river assigned". Οι παραπάνω ιδιότητες (εκτός από την ονομασία και την περιγραφή) είναι γεωμετρικά μεγέθη που δεν μπορούν να τροποποιηθούν από την χρήστη.

Η μόνη ιδιότητα που μπορεί να τροποποιηθεί είναι ο χρόνος υστέρησης (Lag time), που εκφράζει το χρόνο που απαιτείται για τη μεταφορά του υδρογραφήματος της λεκάνης στον κατάντη κόμβο και αποτελεί μεταβλητή του μοντέλου διόδευσης. Προφανώς, η ιδιότητα αυτή έχει νόημα μόνο στην ημερήσια προσομοίωση.

Άνω δεξιά της φόρμας δίνονται, υπό μορφή πίνακα, οι τιμές των χρονοσειρών του υδατικού ισοζυγίου της υπολεκάνης, που δίνονται σε ισοδύναμα ύψη νερού και περιλαμβάνουν τις εξής συνιστώσες:

- Βροχόπτωση (Precipitation)
- Δυνητική εξατμοδιαπνοή (Pot. evapor.)
- Πραγματική εξατμοδιαπνοή (Real evapor.)
- Κατείσδυση (Percolation)
- Διήθηση (Infiltration)
- Ξ Επιφανειακή απορροή (Runoff)
- Αποθήκευση εδαφικής υγρασίας (Soil storage)
- Επιφανειακή αποθήκευση νερού για εξάτμιση (Evap. storage)
- Παρατηρημένη απορροή (Obs. runoff)

Οι δύο πρώτες χρονοσειρές είναι είσοδοι του μοντέλου επιφανειακής υδρολογίας, ενώ η τελευταία έχει νόημα μόνο στην ημερήσια λειτουργία του μοντέλου. Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

Στο κάτω μέρος της καρτέλας απεικονίζεται η χρονοσειρά που επιλέγει ο χρήστης, μετακινούμενος πάνω στον πίνακα.

Στο κάτω μέρος της φόρμας υπάρχουν τρία πλήκτρα για την εισαγωγή των δύο χρονοσειρών εισόδου της λεκάνης, ήτοι της επιφανειακής βροχόπτωσης (Set rainfall ts) και της δυνητικής εξατμοδιαπνοής (Set potevap ts), καθώς και της παρατηρημένης παροχής (Set discharge ts), η οποία χρησιμοποιείται για τον έλεγχο της προσαμρογής του μοντέλου.

4.4 Κύτταρα υδροφορέα

Aπό το μενού Geodata → Groundwater system → Groundwater cells εμφανίζεται στο προσκήνιο η φόρμα των κυττάρων του υδροφορέα, στην οποία κάθε κύτταρο απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Cell i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) του κυττάρου, οι ιδιότητές του, δηλαδή ο τύπος του κυττάρου (Type), οι συντεταγμένες του κέντρου βάρους (X-coordinate, Ycoordinate), η έκταση (Area), η κατώτερη και ανώτερη στάθμη της δεξαμενής (Bottom level, Top level), η στάθμη στην αρχή και το πέρας της προσομοίωσης (Initial level, Final level) και το αντίστοιχο αρχικό και τελικό απόθεμα (Initial storage, Final storage), και οι δύο παράμετροι του κυττάρου, δηλαδή το πορώδες (Porosity) και η υδραυλική αγωγιμότητα (Conductivity).

Οι γεωμετρικές ιδιότητες που μπορούν να τροποποιηθούν από τον χρήστη είναι η κατώτερη, ανώτερη και αρχική στάθμη του κυττάρου, καθώς και οι παράμετροι του μοντέλου. Η αρχική στάθμη μπορεί να τροποποιηθεί και μέσω της φόρμας αρχικών συνθηκών (Scenario data -> Initial conditions). Οι χαρακτηριστικές στάθμες δεν μπορούν να λάβουν αυθαίρετες τιμές. Αν για παράδειγμα ο χρήστης ορίσει κατώτερη

στάθμη που υπερβαίνει την ανώτερη, τότε το λογισμικό εμφανίζει μήνυμα λάθους.

Το μαθηματικό μοντέλο του υδροφορέα υποστηρίζει τρεις τύπους κυττάρων:

- Υπόγεια δεξαμενή (Tank)
- Υπόγεια εκροή εκτός λεκάνης (Outflow)
- Πηγή (Spring)

Στην περίπτωση κυττάρου που αναπαριστά τους μηχανισμούς μιας υπόγειας εκροής ή πηγής, δεν έχει νόημα ο ορισμός της παραμέτρου του πορώδους, καθώς το κύτταρο θεωρείται εικονικό. Εξ ορισμού, το μοντέλο θεωρεί την εν λόγω τιμή μηδενική, ανεξάρτητα αν ο χρήστης έχει εισάγει στο σχετικό πεδίο διαφορετική τιμή. Ακόμη, για τα κύτταρα που αναπαριστούν πηγές, η στάθμη του πυθμένα ταυτίζεται με το υψόμετρο εκροής της πηγής.

General i	informati	on				_	Water bala	ance timese	ries (level in	m, volume:	s in m3)	Set obs. cel	l level TS	R
Name	Lilea						Date	Storage	Percolation	Infiltration	Pumping	Sim. level	Real level	T
							Οκτ-84	5332806	0	0	0	304.715		
Description							Noε-84	3959713	1277460	0	0	303.501		
5 50011p.101							∆ек-84	3592398	1612976	0	0	303,176	-	
							Ιαν-85	5180830	4432662	0	0	304.581	-	
Propertie	s						Φεβ-85	4905739	2598159	0	0	304.338		
Tupe	Ground	uater tank	Top	level (m)	365,000		Μαρ-85	4315576	2092276	0	0	303.816	-	
Type	around		TOP	never (m)			Апр-85	3493644	1175288	0	145986	303.089	-	
. centroir	d (km) 🖪	70.023	loiti:	al laval (m)	310.000		Μαϊ-85	2432537	229211	0	340267	302.151		
, control		0.020	THUS .	an lo vor (m)			louv-85	1769544	33507	0	518400	301,565	-	
Y - centroir	díkm) 👍	273.320	Initia	al storage (bm3).	11.309		loui7-85	1439080	5928	0	535680	301.272		
	a (ran)		TT IISIS	an otorago (rinno)			Auv-85	1256832	1855	0	535680	301.111	-	
Area (km2)	1 2	6.913	Fina	il level (m)	300.648		Σεπ-85	1229050	1098	0	363757	301.087		
,	· _						Οκτ-85	1744557	577807	0	0	301.543	-	
Bottom lev	el (m) 3	00.000	Fina	al storage (hm3)	0.732		Noc-85	2761916	1945733	0	0	302.442		
							∆ек-85	3020718	1785752	0	0	302.671		
Paramete	ers						Ιαν-86	3190101	1896973	0	0	302.821		
			_				Φεβ-86	3709816	2400531	0	0	303,280		
Porosity (%	5) 4	.202	Con	iductivity (m/s)	0.007151		Μαρ-86	3551437	2010717	0	0	303.140		
							Апо-86	2640783	690640	0	145986	302.335	-	
Area of u	inner ha	sin - HBII		Length o	upper river		Μαϊ-86	1908856	316964	0	340267	301.688	-	
combinat	tions (km	2)		segments	(km)		louv-86	1354178	77475	0	518400	301.197		
n :	lunu	- 1.					louil-86	1061521	19845	0	535680	300.939		
Basin	17	Area		Segment	Length									
1	17	0.162		1	0.000					Sim. 16	evel			
-	17	0.000		1	0.000		1 K							
	17	0.000		2	0.000		304	L			 			j
2	17	0.000		3	0.000						$ \wedge$	Y I I I	- : A	
2 3		0.000		4	0.000		IV	3 1 6	1 A I I			X + + +	\square	
2 3 4	17			5	0.000		303	and Arr		T Ni		1.1.1.1.1.1		t
2 3 4 5	17	0.000		0	0.000		1			1110		- 1 A - 1 - 1 - 1 - 1 - 1	0 1	1
2 3 4 5 7	17 17 17	0.000		6	0.000			144	1741 I A	- 1 V3			Λ I	: n -
2 3 4 5 7 8	17 17 17 17 17	0.000		6 7	0.000		302	14	$/ \downarrow /$		A	$+ \sim$	{\}	1
2 3 4 5 7 8 10	17 17 17 17 17 17	0.000 0.000 0.000 0.000		6 7 8	0.000 0.000 0.000 0.000		302	\/}	$f \setminus f$	V3 	Λ^+	$\uparrow \land$		
2 3 4 5 7 8 10 11	17 17 17 17 17 17 17	0.000 0.000 0.000 0.000 0.000 0.000		6 7 8 9	0.000 0.000 0.000 0.000		302 301	VI	$/ \langle / \rangle$		Λ	\mathbb{N}	Λſ	
2 3 4 5 7 8 10 11 13	17 17 17 17 17 17 17 17 17	0.000 0.000 0.000 0.000 0.000 0.000 0.000		6 7 8 9 10	0.000 0.000 0.000 0.000 0.000		302 301	VL			Λ	\mathbb{N}	M	
2 3 4 5 7 8 10 11 13 14	17 17 17 17 17 17 17 17 17 17	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		6 7 8 9 10 11	0.000 0.000 0.000 0.000 0.000 0.000		302		200 200 200 200 200 200 200 200 200 200			8 8 8		+n+n

Άλλες γεωμετρικές πληροφορίες που απαιτούνται από το μοντέλο προσομοίωσης είναι οι τομές των κυττάρων με τις ενώσεις υπολεκανών-μονάδων υδρολογικής απόκρισης καθώς και με τους κλάδους του υδρογραφικού δικτύου. Οι σχετικές επιφάνειες και μήκη, αντίστοιχα, φαίνονται στους σχετικούς πίνακες κάτω αριστερά της καρτέλας (Area of upper basin-HRU combinations, Length of upper river segments). Με βάση τα στοιχεία αυτά υπολογίζονται τα ύψη κατείσδυσης και διήθησης, αντίστοιχα, που προέρχονται από το επιφανειακό σύστημα. Στην τελευταία γραμμή των πινάκων δίνονται η συνολική επιφάνεια που καταλαμβάνει το κύτταρο στη λεκάνη και το συνολικό μήκος υδρογραφικού δικτύου που του αντιστοιχεί.

Άνω δεξιά της φόρμας δίνονται, υπό μορφή πίνακα, οι τιμές των χρονοσειρών του υδατικού ισοζυγίου του κυττάρου, περιλαμβάνουν τις εξής συνιστώσες:

- Υπόγεια αποθήκευση (Storage)
- Εισροή λόγω κατείσδυσης από τις υπολεκάνες (Percolation)
- Εισροή λόγω διήθησης από το υδρογραφικό δίκτυο (Infiltration)
- Εκροή λόγω άντλησης από τις γεωτρήσεις (Pumping)
- Προσομοιωμένη στάθμη (Sim. level)
- Παρατηρημένη στάθμη (Real level)

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows. Στο κάτω δεξιά μέρος της καρτέλας απεικονίζεται η χρονοσειρά που επιλέγει ο χρήστης, μετακινούμενος πάνω στον πίνακα.

Τέλος, με το πλήκτρο Set obs. cell level TS, ο χρήστης εισάγει χρονοσειρά παρατηρημένης στάθμης, η οποία χρησιμοποιείται για τον έλεγχο της προσαρμογής του μοντέλου στα ιστορικά δεδομένα.

4.5 Αγωγοί υπόγειου νερού

Aπό το μενού Geodata → Groundwater system → Groundwater conduits εμφανίζεται στο προσκήνιο η φόρμα των εννοιολογικών αγωγών υπόγειου νερού, στην οποία κάθε αγωγός απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Conduit i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) του αγωγού, οι ονομασίες και κωδικοί των κυττάρων που συνδέει (Cell up, Cell down), η απόσταση των αντίστοιχων κέντρων βάρους (Length), το μήκος της κοινής τους ακμής (Common edge) και η ύπαρξη ή όχι αδιαπέρατου ορίου (Impervious edge). Η τελευταία ιδιότητα είναι η μόνη που επιτρέπεται να τροποποιήσει ο χρήστης, και αποτελεί οριακή συνθήκη του μοντέλου υπόγειας ροής. Εφόσον επιλεγεί συνθήκη αδιαπέρατου ορίου, τότε απαγορεύεται η ανταλλαγή νερού μεταξύ των κυττάρων.

Στο δεξιό μέρος της καρτέλας δίνεται η προσομοιωμένη χρονοσειρά παροχής του αγωγού, η οποία απεικονίζεται στο διάγραμμα που βρίσκεται στο κάτω μέρος. Οι θετικές τιμές παροχής υποδηλώνουν μεταφορά νερού από το "ανάντη" κύτταρο (Cell up) προς το "κατάντη" (Cell down), και αρνητικές το αντίστροφο (η φορά της ροής στο μοντέλο ορίζεται αυθαίρετα). Με πάτημα του πλήκτρου πάνω δεξιά, η χρονοσειρά αντιγράφεται στο πρόχειρο (Clipboard) των Windows. Επισημαίνεται ότι το πρόγραμμα υπολογίζει αναλυτικά την εν λόγω χρονοσειρά, μόνο εφόσον χρησιμοποιείται το ρητό σχήμα επίλυσης του προβλήματος υπόγειας ροής (explicit numerical solver). Η σχετική ρύθμιση γίνεται μέσω της φόρμας επιλογών, που εμφανίζεται από το μενού Scenario data → Options.

4.6 Πηγές

Από το μενού Geodata → Groundwater system → Springs εμφανίζεται στο προσκήνιο η φόρμα των πηγών, στην οποία κάθε πηγή απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Spring i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) της πηγής, οι ιδιότητές της, δηλαδή οι συντεταγμένες (X-coordinate, Y-coordinate), το υψόμετρο εκροής (Altitude), το εικονικό κύτταρο στο οποίο αντιστοιχεί (Dummy cell), το πραγματικό κύτταρο από το οποία τροφοδοτείται (Upstream cell), η υπολεκάνη στην οποία ανήκει (Parent basin), η τιμή της παροχής στην αρχή της προσομοίωσης (Initial discharge), καθώς και η υδραυλική αγωγιμότητα (Conductivity) του εικονικού κυτάρου που αναπριστά τη λειτουργία της πηγής, η οποία αποτελεί παράμετρο του μοντέλου. Τα δύο τελευταία μεγέθη είναι τα μόνο που μπορούν να τροποποιηθούν από τον χρήστη στη συγκεκριμένη φόρμα.

Στο δεξιό μέρος της καρτέλας δίνονται η προσομοιωμένη και παρατηρημένη (εφόσον

υπάρχει) χρονοσειρά παροχής της πηγής, οι οποίες απεικονίζονται στο διάγραμμα που βρίσκεται στο κάτω μέρος. Με πάτημα του πλήκτρου πάνω δεξιά, οι χρονοσειρές αντιγράφονται στο πρόχειρο (Clipboard) των Windows.

Τέλος, με το πλήκτρο Set obs. discharge TS, ο χρήστης εισάγει την χρονοσειρά παρατηρημένης παροχής της πηγής, η οποία χρησιμοποιείται για τον έλεγχο της προσαρμογής του μοντέλου στα ιστορικά δεδομένα.

Springs										×
General inform ■	nation				<u> </u>					
				_	Seto	bs. disc	harge ts			
Name	Melanas			_ I	Discha	arge tin	neseries (I	m3/s)	
Description					Date		Simulated		Observed	~
Decemption					Οκτ-84	ţ	3.322		2.750	
					Noe-84	4	3.017		3.050	
					∆єк-84	1	2.985		3.440	
Properties					Ιαν-85		3.230		3.650	
				_	Φεβ-8	5	3.447		3.550	
X- coordinate (kr	m)	409.700			Μαρ-8	5	3.485		3.430	
		4000 750		_	Апр-85	5	3.424		3.240	
Y - coordinate (k	.m)	4262.758			Mαϊ-85	5	3.336		3.110	
1.65 1.7 5		100.000		_	louv-8	5	2.980		3.030	
Altitude (m)		100.000			8-fruol	5	2.699		2.770	
N U		Malaway (40)			Αυγ-8	5	2.636		3.100	
Dummy cell		Melanas (46)			Σεπ-85	5	2.539		3.170	
Lineberger and		Malanas (C)			Οκτ-85	5	2.773		2.890	
Upstream cell		Melanas (6)			Noc-85	5	3.146		3.220	
Decemble a sin		60			∆ек-85	5	3.354		2.960	
Farent Dasin		(4)			Ιαν-86		3.422		3.440	
Initial discharge I	(~2/~)	0.000			Φεβ-8	6	3.479		3.130	
initial discharge	(mors)	0.000			Μαρ-8	6	3.484		2.740	
Parametere					Апр-86	3	3.411		3.140	
1 didilecters					Μαϊ-86	3	3.274		3.500	
Conductivity (m/	's)	0.009258			louv-8	6	2.925		3.420	
					lou3.90	-	2,600		2.450	~
4 3 2 1 0 58-day 58-day	tap-86	Disch Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	arge (m3,	(a)	16-LL-3	hαp-92 επ-92	lap-93 [Em-93	100-94	- Simula	ated ved
\Spring 0 (Spring	∠ ∽ 1 (Spring)	2 (Spring 3) Sprin	a 4 (Spring	5/		2 10	2 ~ 3	2 10		
(oping o/(oping	- <u>Naburð</u>		a - Vaburd	9						

4.7 Γεωτρήσεις

Από το μενού Geodata \rightarrow Groundwater system \rightarrow Boreholes εμφανίζεται στο προσκήνιο η φόρμα των γεωτρήσεων, στην οποία κάθε γεώτρηση απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Borehole i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) της γεώτρησης, η ομάδα στην οποία εντάσσεται (In group), η υπολεκάνη στην οποία ανήκει (Parent basin), η αντλητική ικανότητα (Pumping capacity) και το ποσοστό με το οποίο συμμετέχει στις απολήψεις της ομάδας (Pumping ratio).

Boreholes							×
General infor	mation		Р	umping	time s	eries (m3)
Name	KP1] [Date	F	umping	
				Окт-84	O		
Description			1	Noc-84	0	1	
			Z	∆єк-84	0	1	
				αν-85	0	1	
			-	⊅εβ-85	0	1	
Properties				4αρ-85	0	1	
In aroup:	Γεώτο Κερατοβούνι (4)	4	Апр-85	0	1	
in group.		+)	<u> </u>	ναϊ-85	0	1	
Parent basin	10			ouv-85	7	25760	
1 dione basin	((3)			ouil-85	7	49952	
Underlying cell	(18)		4	λυγ-85	7	49952	
0.000,000,000	()		<u> </u>	Есп-85	5	61000	
Pumping capac	city (m3/s)	0.280	<u> </u>	Окт-85	0	1	
	., (,		<u> </u> -	Noe-85	0	1	
Ratio to total gr	oup abstractions	0.203	4	∆ек-85		1	
			<u> </u>	αν-86	0	1	_
		Pumping(m3)				
700 000 🕂			4- 6 6-				
600 000		244-244-	.i.(.)		.44		
500.000		91.1.91.1.	H.L.	HL.	11.1		
100 000 1			HT.	77	111	11	
400 000			111		111		
300 000 🔒	****	생애사	· [] -				·
200 000 🕂	· · · · · · · · · · · · · · · · · · ·	4-4-4-4-4-4	44-		- -		·
100 000		4.4.4.4.	4		44		
			1 1		1 1		
U v	8 8 8 7 8 7 8 7	8 8 8 8	8 8	9 9	92	8 8	94 94
e e			de Ha	da ⊨	de ta	da ⊨	da ⊨
2	<u>s n z n z n</u>	ZWZW	ΣW	ΣW	2 14	ΣW	≥ W
	rehole 1 (Borehole 2 (Bo	rehole 3 (Borehol	e4,∕Bo	rehole 5 /	Boreho	ole 6 (Bore	hole 💽 🕨
					-		

Ο χρήστης μπορεί να τροποποιήσει την αντλητική ικανότητα της γεώτρησης, οπότε αυτόματα επικαιροποιείται συνολική η αντλητική ικανότητα της ομάδας γεωτρήσεων. Το ποσοστό συμμετοχής στις απολήψεις προκύπτει αυτόματα, ως ο λόγος της επιμέρους προς τη συνολική αντλητική ικανότητα.

Στο δεξιό μέρος της καρτέλας δίνονται η προσομοιωμένη χρονοσειρά άντλησης, που απεικονίζεται στο διάγραμμα που βρίσκεται στο κάτω μέρος. Με πάτημα του πλήκτρου πάνω δεξιά, η χρονοσειρά αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

4.8 Απλοί κόμβοι

Οι απλοί κόμβοι του υδροσυστήματος αναπαριστούν σημεία ελέγχου πάνω στη λεκάνη (κόμβοι υδραγωγείων, θέσεις ζήτησης νερού, κτλ.), και διαφοροποιούνται από τους κόμβους του υδρογραφικού δικτύου που αναπαριστούν σημεία που ενώνουν κλάδους ποταμών. Από το μενού Geodata \rightarrow Hydrosystem \rightarrow Junctions εμφανίζεται στο προσκήνιο η σχετική φόρμα, στην οποία κάθε κόμβος απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Junction i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) του κόμβου, οι ιδιότητές του, δηλαδή οι συντεταγμένες του (Xcoordinate, Y-coordinate), το υψόμετρο (Altitude) και ο τύπος του κόμβου (Node type). Σε αντιστοιχία με το υδρογραφικό δίκτυο, οι τελικοί κόμβοι του υδροσυστήματος επισημαίνονται με την ονομασία "Outlet" ενώ όλοι οι υπόλοιποι αναφέρονται με την ονομασία "Junction".

Άνω δεξιά της φόρμας δίνονται, υπό μορφή πίνακα, οι τιμές των χρονοσειρών του υδατικού ισοζυγίου του κόμβου, που δίνονται σε μονάδες παροχής και περιλαμβάνουν τις εξής συνιστώσες:

- Σημειακή εισροή από εξωτερικά υδροσυστήματα (External inflow)
- Ξ Εισροή από ανάντη υδραγωγεία (Pipe inflow)
- Ξ Εκροή σε κατάντη υδραγωγεία (Pipe outflow)
- Τοπική απόληψη στον κόμβο (Withdrawal)

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows. Στο κάτω δεξιά μέρος της καρτέλας απεικονίζεται η χρονοσειρά που επιλέγει ο χρήστης, μετακινούμενος πάνω στον πίνακα.

Στο κάτω μέρος της φόρμας υπάρχουν δύο πλήκτρα για την προσθήκη στόχου ύδρευσης (Add supply target) και την εισαγωγή χρονοσειράς εξωτερικής εισροής (Set external inflow ts), αντίστοιχα.

4.9 Αρδευτικοί κόμβοι

Οι αρδευτικοί κόμβοι αναπαριστούν, στην πραγματικότητα, αρδευόμενες επιφάνειες, οι απολήψεις των οποίων γίνονται στο κέντρο βάρους τους. Από το μενού Geodata → Hydrosystem → Irrigation nodes εμφανίζεται στο προσκήνιο η φόρμα των αρδευτικών κόμβων, στην οποία κάθε κόμβος απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Irrigation i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα με απεικονίζονται η ονομασία (Name) του κόμβου, η περιγραφή (Description), οι συντεταγμένες του κέντρου βάρους (X-coordinate, Y-coordinate), το μέσο υψόμετρο (Average altitude), η αρδευόμενη έκταση (Irrigated area) και ο τύπος του κόμβου (Node type). Σε αντιστοιχία με προηγουμένως, οι τελικοί αρδευτικοί κόμβοι επισημαίνονται με την ονομασία "Outlet" ενώ όλοι οι υπόλοιποι αναφέρονται με την ονομασία "Junction".

h	rigation nod	les								
ſ	General info	rmation		Water bala	ince timeserie	es (m3/s)			(þ
	Name	Αρδ. Κάτι	υ ρου	Date	External inflow	Pipe inflow	Pipe outflow	Drained water	Withdrawal	^
				Οκτ-84	-	0.000	0.000	0.000	0.000	
	Description			Noc-84	-	0.000	0.000	0.000	0.000	
	·			∆єк-84	-	0.000	0.000	0.000	0.000	
				Ιαν-85	-	0.000	0.000	0.000	0.000	
				Φεβ-85	-	0.000	0.000	0.000	0.000	
				Μαρ-85	-	0.000	0.000	0.000	0.000	
	Properties			Апр-85	-	0.370	0.000	0.000	0.370	
	. Topolitoo			Μαϊ-85	-	0.834	0.000	0.000	0.834	
	X- centroid (km))	400.078	louv-85	-	1.414	0.000	0.000	1.414	
			4000 450	loui1-85	-	1.771	0.000	0.000	1.771	
	Y - centroid (km	n)	4262.150	Αυγ-85	-	1.609	0.000	0.000	1.609	
	A 100 1		110.000	Σεπ-85	-	0.921	0.000	0.000	0.921	
	Average altitud	e (mj	113.000	Οκτ-85	-	0.000	0.000	0.000	0.000	~
	Irrigated area (k Node type	(m2)	20.141 Outlet node			Exter	nal inflo	a .		_
	Drainage (wa	ater returi	n)							
	Aqueduct	ed water ωρ. Μαυρο	v. (15)	0						
	Add irrigation ta	arget S	et extern. inflow TS	(Irrigation A (Irri	astion 5 (Irrigati	on 6 /	Дек-99-			
,	unigation o Almg	jauon i Ain	igation 2 Aimgation 3	Amgadon 4 Am	yadon o Almgad	unoy				

Μια ιδιαιτερότητα των αρδευτικών κόμβων είναι η δυνατότητα επιστροφής σταθερού ποσοστού του νερού που καταναλώνεται στην άρδευση (Ratio of returned water) σε κάποιον κατάντη κόμβο, που υλοποιείται μέσω συγκεκριμένου υδραγωγείου (Aqueduct). Εξ ορισμού, το μοντέλο ταυτίζει τον αποστραγγιστικό αγωγό με τον αγωγό που συνδέει το υδροσύστημα με τον αρδευτικό κόμβο. Ο χρήστης μπορεί να επιλέξει έναν άλλο αγωγό, από τη σχετική λίστα Aqueduct, και να τροποποιήσει την τιμή του ποσοστού επιστροφής (η τιμή ορισμού είναι μηδενική).

Άνω δεξιά της φόρμας δίνονται, υπό μορφή πίνακα, οι τιμές των χρονοσειρών του υδατικού ισοζυγίου του αρδευτικού κόμβου, που δίνονται σε μονάδες παροχής και περιλαμβάνουν τις εξής συνιστώσες:

- Σημειακή εισροή από εξωτερικά υδροσυστήματα (External inflow)
- Ξ Εισροή από ανάντη υδραγωγεία (Pipe inflow)
- Εκροή σε κατάντη υδραγωγεία (Pipe outflow)
- Επιστροφή (αποστράγγιση) μέρους του νερού που καταναλώθηκε (Drained water)
- Τοπική απόληψη στον κόμβο (Withdrawal)

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows. Στο κάτω δεξιά μέρος της καρτέλας απεικονίζεται η χρονοσειρά που επιλέγει ο χρήστης, μετακινούμενος πάνω στον πίνακα.

Στο κάτω μέρος της φόρμας υπάρχουν δύο πλήκτρα για την προσθήκη στόχου άρδευσης (New irrigation target) και την εισαγωγή χρονοσειράς εξωτερικής εισροής (Set extern. inflow ts), αντίστοιχα.

4.10 Ομάδες γεωτρήσεων

Οι ομάδες γεωτρήσεων του υδροσυστήματος είναι εικονικές συνιστώσες, μέσω των οποίων υλοποιείται η απόληψη από υπόγεια νερά ευρύτερων διαχειριστικών ενοτήτων. Από το μενού Geodata → Hydrosystem → Borehole groups εμφανίζεται στο προσκήνιο η φόρμα των ομάδων γεωτρήσεων, στην οποία κάθε ομάδα απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Group i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) της ομάδας, το πλήθος των επιμέρους γεωτρήσεων που ανήκουν στην ομάδας (Number of boreholes) και η συνολική αντλητική ικανότητα της ομάδας (Pumping capacity).

Ο χρήστης δεν μπορεί να τροποποιήσει καμία από τις παραπάνω ιδιότητες. Για την τροποποίηση της αντλητικής ικανότητας της ομάδας απαιτείται ενημέρωση του αντίστοιχουν πεδίου των επιμέρους γεωτρήσεων που την απαρτίζουν.

Boreh	ole grou	ps																			X
Gen	ieral info	mation		_	Water	bala	nce ti	me s	eries ([m3/s]	I										2
Nam	e	Γεωτρ. Βασιλικών			Date		Bo	rehole	pump	Extern	al inflov	/ Pip	e inflo	w	Pipe	e outf	low	With	ndrawa		^
					Οκτ-8-	4	0.0	100				0.0	00		0.00	00		0.00)0		
Desc	cription				Noc-8	4	0.0	00				0.0	00		0.00	00		0.00)0		
					∆ек-8-	4	0.0	00		-		0.0	00		0.00	00		0.00)0		
					Ιαν-85		0.0	00		-		0.0	00		0.00	00		0.00)0		
					Φεβ-8)5	0.0	00				0.0	00		0.00	00		0.00)0		
Prop	perties				Μαρ-8	5	0.0	00		-		0.0	00		0.00	00		0.00)0		
			10		Апр-8	5	0.0	000		-		0.0	00		0.00	00		0.00)0		
Num	ber of bore	holes	18		Μαϊ-8	5	0.0	000		-		0.0	00		0.00	00		0.00)0		
. .			2.070		louv-8	5	0.1	94		-		0.0	00		0.19	34		0.00)0		
Lota	il pumping i	capacity (m3/s)	2.670		8-fuol	5	0.0	000		-		0.0	00		0.00	00		0.00)0		
					Αυγ-8	5	0.0	00		-		0.0	00		0.00	00		0.00)0		
					Σεп-8	5	0.0	000		-		0.0	00		0.00	00		0.00)0		
List o	f group a	omponents (boreho	oles)		Οκτ-8	5	0.0	000		-		0.0	00		0.00	00		0.00)0		
	1	1	. I		Noc-8	5	0.0	00				0.0	00		0.00	00		0.00)0		
id	Name	Capacity (m3/	s) Pump ratio		∆ек-8	5	0.0	00				0.0	00		0.00	00		0.00)0		~
16	MP1	0.250	0.094				-												-		
17	MP3	0.210	0.079																		
18	MP2	0.230	0.086							Pip	e out	flo	w ()	m3/:	з)						
19	EMP22	0.100	0.037		ſ	;	; ;			; ;				_			T	;			
20	YMPΣ13	0.130	0.049		2						l									¦	
21	YMPΣ14	0.130	0.049				1 1					11		- 1		1			1		
22	YMPΣ10	0.130	0.049																10		
23	YMPI17	0.100	0.037		1								- 11						- V)		
24	YMPI14	0.100	0.037		1		1 1							1		1			- 14	1	
25	YMPI12	0.100	0.037		1															J	
26	EMP11	0.130	0.049	~			1 1	44				1.1	- 11		-11		1	17		(
27		0.100	0.027					A÷.	11									11			
6dd	min numn	target Add wat	er supplu target				11	H.	- N			13	- 1					UE.			
	nan pamp		or supply target			۸		NL.	$\exists J'$	1											
					0.4	-28	38- 18-	8	87	5 8	8 8	S g	6	8	5	5 8	2 6	5 8	8 2		5
Add	max pump	target Set ext	ernal inflow ts			å	÷ 9	ΗĒ	÷ 1		E S	÷Ë	đ	μ	ę.	É S	÷ È	÷ ÷	Ê	ģ	5
						Σ	μŽ	ŭ	Σù	νž	μ N	ыű	Σ	Ŵ	Σ	M 2	εĥ	Σ	й ;	ΣΥ	J
\Grou	o II (Group	1) Group 2 (Group 3)	(Group 4 (Group 5	Gro	in 67																
Lanout	лодиновр		naioup + Maioup a	Acuto	<u> </u>																

Άνω δεξιά της φόρμας δίνονται, υπό μορφή πίνακα, οι τιμές των χρονοσειρών του υδατικού ισοζυγίου του εικονικού κόμβου που συγκεντρώνει τις αντλήσεις της ομάδας γεωτρήσεων, που δίνονται σε μονάδες παροχής και περιλαμβάνουν τις εξής συνιστώσες:

- Συνολική άντληση γεωτρήσεων (Borehole pump)
- Σημειακή εισροή από εξωτερικά υδροσυστήματα (External inflow)
- Ξ Εισροή από ανάντη υδραγωγεία (Pipe inflow)
- Ξ Εκροή σε κατάντη υδραγωγεία (Pipe outflow)
- Τοπική απόληψη στον κόμβο (Withdrawal)

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows. Στο κάτω δεξιά μέρος της καρτέλας απεικονίζεται η χρονοσειρά που επιλέγει ο χρήστης, μετακινούμενος πάνω στον πίνακα.

Στο κάτω μέρος της φόρμας υπάρχουν τέσσερα πλήκτρα για την προσθήκη περιορισμών ελάχιστης και μέγιστης παροχής άντλησης (Add min pump target, Add max pump target), την εισαγωγή στόχου ύδρευσης (New supply target) και την εισαγωγή χρονοσειράς εξωτερικής εισροής (Set external inflow ts), αντίστοιχα.

4.11 Υδραγωγεία

Τα υδραγωγεία αναπαριστούν πραγματικά ή εικονικά έργα, μέσω των οποίων υλοποιείται η μεταφορά νερού από τις θέσεις απόληψης (κόμβοι υδρογραφικού δικτύου, ομάδες γεωτρήσεων) στα σημεία κατανάλωσης, για την ικανοποίηση των στόχων και λειτουργικών περιορισμών. Από το μενού Geodata → Hydrosystem → Aqueducts εμφανίζεται στο προσκήνιο η φόρμα των υδραγωγείων, στην οποία κάθε υδραγωγείο απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Aqueduct i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) του υδραγωγείου, η ονομασία και ο κωδικός (σε παρένθεση) του ανάντη (Upstream node) και κατάντη (Downstream node) κόμβου, το μήκος (Length), η παροχετευτικότητα (Discharge capacity), το μοναδιαίο κόστος μεταφοράς (Unit cost) και ο συντελεστής διαρροών (Leakage coefficient), που ορίζεται ως σταθερό ποσοστό επί της διερχόμενης παροχής.

Τα τρία τελευταία είναι χαρακτηριστικά μεγέθη του μοντέλου διαχείρισης και μπορούν α τροποποιηθούν από τον χρήστη. Ειδικότερα, το μοναδιαίο κόστος μπορεί να χρησιμοποιηθεί ως εικονικό μέγεθος, για την ιεράρχηση των χρήσεων νερού και της πολιτικής κατανομής των απολήψεων. Αν το κόστος είναι μηδενικό, η διαδρομή αυτή προτιμάται σε σχέση με μια εναλλακτική της.

Στο δεξιό μέρος της καρτέλας δίνεται η προσομοιωμένη χρονοσειρά παροχής, που απεικονίζεται και σε διάγραμμα. Με πάτημα του πλήκτρου πάνω δεξιά, η χρονοσειρά αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

Στο κάτω μέρος της φόρμας υπάρχουν δύο πλήκτρα για την προσθήκη περιορισμών ελάχιστης (Add minflow target) και μέγιστης (Add maxflow target) παροχής, αντίστοιχα.

4.12 Μονάδες υδρολογικής απόκρισης

Από το μενού Geodata → Hydrological response units εμφανίζεται στο προσκήνιο η φόρμα των μονάδων υδρολογικής απόκρισης (MYA), στην οποία κάθε μονάδα απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία HRU i, όπου i ο αντίστοιχος κωδικός. Στο πάνω μέρος της καρτέλας απεικονίζονται η ονομασία (Name), η περιγραφή (Description) και η συνολική έκταση που καταλαμβάνει ο συγκεκριμένος τύπος εδάφους στη λεκάνη (Total area in river basin).

55

Στο κάτω μέρος της φόρμας δίνονται οι τιμές των παραμέτρων της ΜΥΑ, τις οποίες μπορεί να μεταβάλλει ο χρήστης. Οι εν λόγω παράμετροι είναι:

- Συντελεστής άμεσης απορροής (Direct runoff coefficient)
- Χωρητικότητα δεξαμενής εδαφικής υγρασίας (Soil moisture storage capacity)
- Κατώφλι παραγωγής υποδερμικής ροής, που δίνεται ως ποσοστό της χωρητικότητας υγρασίας (Interflow threshold)
- Συντελεστής στείρευσης υποδερμικής ροής (Recession rate for interflow)
- Συντελεστής στείρευσης κατείσδυσης (Recession rate for percolation)
- Χωρητικότητα κατακράτησης της βροχόπτωσης (Interception capacity)
- Χωρητικότητα δεξαμενής ημερήσιας εξατμοδιαπνοής (Daily evaporation tank capacity)

Η τελευταία παράμετρος είναι ενεργοποιημένη μόνο στην περίπτωση ημερήσιας προσομοίωσης.

Hydrological	response units (HRUs)	
-General info	ormation]
Name	Alluvial, low slope	
Description		
Properties		
Total area in ri	iver basin (km2)	696.133
Parameters		
Direct runoff c	oefficient (%)	5.600
Soil moisture s	torage capacity (mm)	443.000
Lower zone th	reshold (% of stor. capacity)	36.000
Recession rate	e for interflow (%)	9.600
Recession rate	e for percolation (%)	5.700
Interception c	apacity (mm)	80.000
Daily evapora	tion tank capacity (mm)	
	<u>J 33 (HRU 49 (HRU 18 (HR</u>	U 34 (HRU 50/

4.13 Διαμερίσεις υπολεκανών

Από το μενού Geodata → Sub-basin partitions εμφανίζεται στο προσκήνιο η φόρμα των ενώσεων των υπολεκανών του υδρογραφικού δικτύου με τις μονάδες υδρολογικής απόκρισης (διαμερίσεις υπολεκανών), στην οποία κάθε τέτοια διαμέριση απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Union i, όπου i ο αντίστοιχος κωδικός. Πρόκειται για το ελάχιστο χωρικό στοιχείο, στο οποίο υπολογίζεται το ισοζύγιο των επιφανειακών υδατικών πόρων. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name) και η περιγραφή (Description) της ένωσης, οι ονομασίες και κωδικοί της αντίστοιχης υπολεκάνης (Sub-basin) και μονάδας υδρολογικής απόκρισης (Hydrological response unit), καθώς η έκταση της διαμέρισης (Area).

s	ub-basin partitions (union of sub-basin and hy	drological res	ponse laye	rs)					
	General information	Water bala	nce timeseri	es (m3/s)					
	Name	Date	Precipitation	Pot. evapor.	Real evapor.	Percolation	Runoff	Soil storage	Evap. storag 木
		Οκτ-84	23.0	57.3	24.8	1.1	0.0	7.0	0.0
	Description	Noε-84	165.9	31.1	31.1	19.0	4.3	118.6	0.0
	· · ·	∆єк-84	115.7	23.3	23.3	28.5	4.4	178.1	0.0
		Ιαν-85	397.9	27.1	27.1	68.7	50.9	429.3	0.0
		Φεβ-85	77.7	32.9	32.9	61.4	29.1	383.6	0.0
	Properties	Μαρ-85	114.1	55.2	55.2	57.3	27.5	357.7	0.0
	с. ц. с. (0)	Апр-85	72.1	82.0	82.0	45.7	16.5	285.6	0.0
	Sub-basin (U)	Μαϊ-85	43.1	116.3	116.3	28.9	2.9	180.6	0.0
	11 July 1 July 2 June 200 June	louv-85	17.7	137.1	92.6	14.6	0.0	91.1	0.0
	Hydrological response unit Low perm., low slope (17)	loui-85	12.9	142.1	63.6	5.6	0.0	34.9	0.0
	14100	Αυγ-85	0.0	127.8	22.2	1.8	0.0	10.9	0.0
	Area (km2) 14.109	Σεπ-85	21.8	82.7	25.3	1.0	0.0	6.4	0.0
	10,000	Οκτ-85	110.5	49.8	49.8	9.0	1.5	56.5	0.0
	Initial soil moisture storage (mm)	Noε-85	203.3	32.7	32.7	30.0	10.0	187.2	0.0
		∆єк-85	93.4	24.3	24.3	34.3	7.9	214.1	0.0
	Initial evaporation tank storage [mm]	Ιαν-86	115.5	27.5	27.5	39.8	13.5	248.8	0.0 🗸
er -	450 400 350 300 250 200 150 100 50 	Дж. 87 Мар-38 Iouv-88 ЕЕП-88 Амг 88	Soil stor	age	2211-30 2210-31 Map-91 Jouv-91	Σεπ-91 Δακ-91 Μαρ-92	louv-92 2£тт-92 Дак-92 Мито-93	имен-со louv-33 	Mαp-94 Ιουν-94 Σεπ-94
	Union 0 (Union 1 (Union 2 (Union 3 (Union 4 (Union 5 (U	nion 6 (Union 7 (Union 8 (Unio	n 9 (Union 10	Union 11 (Jnion 12/(Un	ion 13 (Union	14 (Union 15	i/Union 16/ 🕬

Ο χρήστης μπορεί να τροποποιήσει τις δύο αρχικές συνθήκες του μοντέλου, δηλαδή το ύψος εδαφικής υγρασίας (Initial soil moisture storage) και το ύψος νερού που έχει κατακρατηθεί στη δεξαμενή εξατμοδιαπνοής (Initial evaporation tank storage), στην αρχή της προσομοίωσης. Επισημαίνεται ότι η δεύτερη αρχική συνθήκη έχει νόημα μόνο στην περίπτωση ημερήσιας προσομοίωσης, διαφορετικά το σχετικό πεδίο είναι ανενεργό.

Άνω δεξιά δίνονται, υπό μορφή πίνακα, οι τιμές των χρονοσειρών του υδατικού ισοζυγίου της διαμέρισης, που δίνονται σε ισοδύναμα ύψη νερού και περιλαμβάνουν τις εξής συνιστώσες:

57

- Βροχόπτωση (Precipitation)·
- Δυνητική εξατμοδιαπνοή (Pot. evapor.)
- Πραγματική εξατμοδιαπνοή (Real evapor.)
- Κατείσδυση (Percolation)
- Επιφανειακή απορροή (Runoff)
- Αποθήκευση εδαφικής υγρασίας (Soil storage)
- Επιφανειακή αποθήκευση νερού για εξάτμιση (Evap. storage)

Οι δύο πρώτες χρονοσειρές είναι είσοδοι του μοντέλου επιφανειακής υδρολογίας και είναι κοινές για όλες τις ΜΥΑ που αναπτύσσονται στη συγκεκριμένη υπολεκάνη, ενώ η τελευταία έχει νόημα μόνο στην ημερήσια λειτουργία του μοντέλου. Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows. Στο κάτω μέρος της καρτέλας απεικονίζεται η χρονοσειρά που επιλέγει ο χρήστης, μετακινούμενος πάνω στον πίνακα.

4.14 Συγκεντρωτικός πίνακας γεω-δεδομένων

Από το μενού Geodata → Geodata tables απεικονίζονται όλα τα γεω-δεδομένα του έργου, σε μορφή πίνακα. Για κάθε τύπο δεδομένων διαμορφώνεται μια καρτέλα, στην οποία απεικονίζονται οι κύριες διαχειριστικές πληροφορίες, ιδιότητες και παράμετροι κάθε χωρικής συνιστώσας. Κάνοντας διπλό κλικ σε οποίοδήποτε κελί, το πρόγραμμα καλεί αυτόματα την αντίστοιχη φόρμα με τα ανλυτικά δεδομένα της αντίστοιχης συνιστώσας.

Με την επιλογή Copy Table ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

	Name	X (km)	Y (km)	Elevation (m)	Node type	Inflow id	Discharge id		
	Καρδίτσα ανάντη	424.228	4254.000	93.0	Internal node	38			
	Αλίαρτος	418.478	4254.750	93.0	Internal node				
2	Συμβολή Έρκυνα	410.978	4260.250	101.0	Internal node				
	Αγ. Βλάσιος	395.978	4265.000	122.0	Internal node	-	-		
	Ανθοχώρι	395.728	4267.750	138.0	Internal node		-		
j	Τιθορέα	387.228	4275.500	157.0	Internal node		-		
;	Μεριστής Μέλανα	423.728	4255.250	94.0	Internal node	•			
7	Αμφίκλεια	375.228	4280.250	260.0	Internal node	•			
	Αγία Τριάδα	412.728	4255.250	100.0	Outlet node	-			
9	Λειβαδιά	407.478	4258.000	101.0	Outlet node	-			
10	Πολυγύρα	416.978	4261.250	86.0	Outlet node	-			
1	Κάστρο	428.228	4261.500	85.0	Outlet node	-			
2	Δαύλεια	392.978	4263.750	146.0	Outlet node	-			
3	Προφ. Ηλίας	397.478	4269.000	138.0	Outlet node	-	-		
4	Γραβιά	367.728	4280.000	307.0	Outlet node	•			
15	Έξοδος προς Υλίκη	432.728	4254.500	99.0	Outlet node	-	40		

5 Διαχείριση δεδομένων σεναρίου

Από το μενού Scenario data της κεντρικής οθόνης γίνεται η απεικόνιση και διαχείριαση των δεδομένων του τρέχοντος σεναρίου, τα οποία εντάσσονται στις ακόλουθες κατηγορίες:

- **Ρυθμίσεις σεναρίου**: χρονικό βήμα, ημερομηνίες, ορίσματα αλγορίθμων προσομοίωσης και βελτιστοποίησης, κριτήρια σύγκλισης αριθμητικών σχημάτων, ρυθμίσεις μοντέλου διόδευσης, κτλ.
- Χρονοσειρές: επιφανειακή βροχόπτωση και δυνητική εξατμοδιαπνοή υπολεκανών, χρονοσειρές εισροών, χρονοσειρές ζήτησης και περιορισμών, χρονοσειρές παρατηρημένων παροχών, κτλ.
- Στόχοι: ύδρευση, άρδευση, ελάχιστη και μέγιστη παροχή, ελάχιστη και μέγιστη άντληση
- Αρχικές συνθήκες: αρχικό ύψος νερού δεξαμενών εδαφικής υγρασίας (διαμερίσεις υπολεκανών), αρχική στάθμη δεξαμενών υπόγειου νερού (κύτταρα)

Για όλες τις παραπάνω πληροφορίες, όπως και για τα δεδομένα του προβλήματος βαθμονόμησης (Calibration data), μπορούν να διαμορφωθούν διαφορετικά σενάρια, στα πλαίσια του ίδιου έργου.

Οι χρονοσειρές και οι στόχοι του σεναρίου αναφέρονται σε συγκεκριμένες συνιστώσες του υδροσυστήματος, και η εισαγωγή τους γίνεται από τη φόρμα της ίδιας της συνιστώσας. Από την συγκεντρωτική φόρμα των χρονοσειρών και στόχων γίνεται η διαχείριση των δεδομένων (τροποποίηση - διαγραφή χρονοσειράς ή στόχου). Με το κλείσιμο της κάθε φόρμας, όλες οι αλλαγές αποθηκεύονται τοπικά (δηλαδή στη μνήμη του προγράμματος), όχι όμως στη βάση δεδομένων. Για αποθήκευση στους πίνακες της βάσης, ο χρήστης πρέπει να επιλέξει την αντίστοιχη λειτουργία, από το μενού Project -> Save.

🌱 Hyd	rogeios 2	2.0					
Project	Geodata	Scenario data	Calibra	ition data	Run	Results	Help
		Options		_			
		Timeseries					
Ready		Targets		7.913,	F(valio	lation) = 1	10.182

5.1 Επιλογές σεναρίου

Από το μενού Scenario data → Options καλείται η φόρμα με την οποία ορίζεται ένα πλήθος γενικών και εξειδικευμένων πληροφοριών, που αφορούν στις υπολογιστικές διαδικασίες. Η φόρμα περιέχει πέντε καρτέλες, που περιγράφονται στη συνέχεια.

Γενικές επιλογές

Η πρώτη καρτέλα (General info) περιέχει τις γενικές πληροφορίες του έργου και του τρέχοντος σεναρίου του, δηλαδή την ονομασία (Name) και περιγραφή (Description)

τους. Τα στοιχεία του έργου δεν επιτρέπεται να τροποποιηθούν. Στο κάτω μέρος αναγράφεται η ημερομηνία της τελευταίας αποθήκευσης του σεναρίου (Date modified).

Scenario op	tions	\mathbf{X}
General info	Times Simulation Optimization Routing	
-Project in	fo	
Name	C:\Users\Andreas\Projects\2008_Hydroskope\bkif_	
Description		
Scenario	info	ר
Name	Test BK scenario (id = 1)	
Description	First pilot run using MW Hydrogeios	
Date modifi	ed: 5/11/2009 12:00:00 nμ	

Χρονικές ρυθμίσεις

Η δεύτερη καρτέλα (Times) περιέχει τις χρονικές ρυθμίσεις του σεναρίου, δηλαδή:

- το χρονικό βήμα της προσομοίωσης (Time interval of simulation), μηνιαίο ή ημερήσιο
- την ημερομηνία έναρξης της περιόδου προσομοίωσης (Start of simulation period)
- Την ημερομηνία λήξης της περιόδου προσομοίωσης (End of simulation period)
- Την ημερομηνία έναρξης της περιόδου βαθμονόμησης (Start of calibration period)
- Την ημερομηνία λήξης της περιόδου βαθμονόμησης (End of calibration period)
- Την ημερομηνία έναρξης της περιόδου επαλήθευσης (Start of validation period)
- Την ημερομηνία έναρξης της περιόδου βαθμονόμησης (End of validation period)

Επισημαίνεται ότι οι περίοδοι βαθμονόμησης και επαλήθευσης αποτελούν υποσύνολο της περιόδου προσομοίωσης και δεν πρέπει να επικαλύπτονται.

Scenario o	ptions							X
General info	Times	Simulation	Optimizati	ion	Routing			
Time pro	perties							
Time interv	al of simu	ulation		۲) Month	🔵 Day		
Start of sim	ulation p	eriod	[1/	/10/1984		۷	
End of sim	ulation pe	riod	[1/	′ 9 /1994		~	
Start of ca	libration p	eriod	[1/	/10/1984		¥	
End of cali	bration pe	eriod	[1/	′ 9 /1990		~	
Start of va	lidation pe	eriod	[1/	/10/1990		¥	
End of vali	dation pe	riod	[1/	′ 9 /1994		¥	
								-

Επιλογές μοντέλου προσομοίωσης

Η τρίτη καρτέλα (Simulation) περιέχει τις ρυθμίσεις του μοντέλου προσομοίωσης. Οι δύο πρώτες αφορούν την επαναληπτική διαδικασία εντός του χρονικού βήματος (Simulation loop), δηλαδή:

- τη μέγιστη απόκλιση μεταξύ δύο διαδοχικών εκτιμήσεων της παροχής των πηγών (Maximum deviation in spring discharge estimation)
- το μέγιστο αριθμό επαναλήψεων της διαδικασίας κατανομής των ροών (η οποία ανάγεται σε προβλήματος γραμμικού προγραμματισμού) ανά χρονικό βήμα (Maximum iterations within each time step)

Οι υπόλοιπες ρυθμίσεις αναφέρονται σε παραμέτρους εισόδου του μοντέλου υπόγειας υδρολογίας (Groundwater model arguments). Συγκεκριμένα:

- την επιλογή σταθερής (ανεξάρτητης της στάθμης των κυττάρων) ή μεταβλητής μεταφορικότητας (Transmissivity)
- την επιλογή του τελεστή υπολογισμού της υδραυλικής αγωγιμότητας των αγωγών μεταφοράς των υπόγειων νερών (Flow conductivity operator),μεταξύ του αριθμητικού, αρμονικού και γεωμετρικού μέσου (ο αρμονικός μέσος έχει μεγαλύτερη φυσική συνέπεια)
- την επιλογή του επιλυτή του προβλήματος υπόγειας ροής (Numerical solver), μεταξύ του ρητού και δύο μη ρητών (πεπλεγμένων) αριθμητικών σχημάτων (Gauss, sparce)
- την επιλογή της σχέσης υπολογισμού της παροχής (Flow equation), μεταξύ της εξίσωσης Darcy (γραμμική) και της μικτής (μη γραμμική) εξίσωσης

Τις παραμέτρους της μικτής εξίσωσης ροής (Parameters of mixed flow equation)

63

- τον λόγο της ειδικής απόδοσης προς την αποθηκευτικότητα του υδροφορέα υπό συνθήκες πίεσης (Ratio of specific yield to confined storage coefficient)
- τον αριθμό των υπολογιστικών βημάτων στα οποία χωρίζεται το χρονικό βήμα προσομοίωσης (Number of computational time steps), προκειμένου να εξασφαλιστεί ευστάθεια του αριθμητικού σχήματος

Γενικά, οι τιμές ορισμού που χρησιμοποιεί το πρόγραμμα για τις ρυθμίσεις της προσομοίωσης είναι επαρκείς, και δεν συστήνεται η τροποποίησή τους, παρά μόνο από έμπειρους χρήστες.

Scenario options				×
General info Times	Simulation	Optimization	Routing	
Simulation loop				
Maximum deviation	in spring discl	harge estimatio	on (m3/s)	0.010
Maximum iterations	within each ti	me step		5
Groundwater mod Transmissivity Constant Variable Flow equation Darcy Mixed Ratio of specific yiel Number of computa	del argume Conductivil Arithme Harmor Geomel J = 1.000 d to confined	nts ty operator tic mean tic mean tric mean s of mixed flow a = 1.0 l storage coeffi eps	Numeric Explic Implic Implic equation 00 D	al solver cit cit (Gauss) cit (sparse) = 1.000 1.000

Επιλογές μοντέλου βελτιστοποίησης

Η τέταρτη καρτέλα (Optimization) περιέχει τις ρυθμίσεις της διαδικασίας βελτιστοποίησης και περιλαμβάνει δύο ομάδες. Η πρώτη περιέχει τις παραμέτρους εισόδου του αλγορίθμου βελτιστοποίησης (εξελικτικός αλγόριθμος ανόπτησηςαπλόκου), δηλαδή:

- τον πολλαπλασιαστικό συντελεστή του πληθυσμού, το μέγεθος του οποίου θεωρείται ακέραιο πολλαπλάσιο του πλήθους των μεταβλητών ελέγχου (Pop. mult.)
- τον μέγιστο επιτρεπόμενο αριθμό δοκιμών για τον υπολογισμό της στοχικής συνάρτησης, που χρησιμοποιείται ως κριτήριο τερματισμού (Maximum number of function evaluations)
- το σχετικό ποσοστό βελτίωσης της τιμής της στοχικής συνάρτησης, που χρησιμοποιείται ως κριτήριο σύγκλισης (Convergence ratio)
- Tov συντελεστή μείωσης της θερμοκρασίας (Ratio of temperature reduction)

- Το μέγιστο εύρος διακύμανσης της θερμοκρασίας, συναρτήσει της διαφοράς τιμών της στοχικής συνάρτησης μεταξύ της καλύτερης και χειρότερης λύσης στον τρέχοντα πληθυσμό (Maximum range of temperature)
- τον μέγιστο επιτρεπόμενο αριθμό των βημάτων αναρρίχησης προς την αντίθετη κατεύθυνση του τρέχοντος τοπικού ελαχίστου (Maximum number of hill-climbing steps)
- την πιθανότητα αποδοχής ενός χειρότερου απογόνου που γεννάται μέσω μετάλλαξης (Mutation probability)

Με εξαίρεση τον μέγιστο πλήθος δοκιμών, η ερμηνεία του οποίου είναι προφανής, οι υπόλοιπες παράμετροι είναι εξειδικευμένες, και απαιτούν εμβάθυνση στις διαδικασίες του αλγορίθμου. Συνεπώς, οι τιμές ορισμού που χρησιμοποιεί το πρόγραμμα για τις εν λόγω ρυθμίσεις είναι επαρκείς, και δεν συστήνεται η τροποποίησή τους, παρά μόνο από έμπειρους χρήστες.

Η δεύτερη ομάδα ρυθμίσεων αναφέρεται σε επιλογές της πολυκριτηριακής βαθμονόμησης. Συγκεκριμένα:

- το ζητούμενο πλήθος των Pareto βέλτιστων λύσεων (Number of Pareto sets), που ταυτίζεται με το μέγεθος του πληθυσμού του αλγορίθμου πολυκριτηριακής βελτιστοποίησης
- τον κωδικό της Pareto βέλτιστης λύσης που θεωρείται η πλέον συμβιβαστική του προβλήματος (Best-compromise solution), τα αποτελέσματά της οποίας (τιμές παραμέτρων, χρονοσειρές απόκρισης) απεικονίζονται στους πίνακες και τα διαγράμματα των οθονών.

Scenario options	×
General info Times Simulation Optimization Routin	9
Algorithmic input arguments	
Pop. mult. (pop. size = mult * number of control vars)	2
Maximum number of function evaluations	5000
Convergence ratio (%)	0.100
Ratio of temperature reduction (< 1)	0.990
Maximum range of temperature (> 1)	2.000
Maximum number of hill-climbing steps	5
Mutation probability (%)	10.000
Multiobjective calibration	
Number of Pareto sets	1
Best-compromise solution	1

65

Επιλογές μοντέλου διόδευσης

Η πέμπτη καρτέλα (Routing) αφορά στο μοντέλο διόδευσης, το οποίο ενσωματώνεται στην υπολογιστική διαδικασία εφόσον το χρονικό βήμα της προσομοίωσης είναι ημερήσιο και ο χρήστης εενεργοποιήσει την επιλογή Include routing within daily simulations.

Μέσω της καρτέλας ρυθμίζονται δύο χαρακτηριστικά μεγέθη της διαδικασίας:

- το πλήθος των υπολογιστικών βημάτων στα οποία επιμερίζεται το ημερήσιο βήμα, με βάση τα οποία γίνεται η ανάλυση των υδρογραφημάτων
- το βήμα (εντός της ημέρας) στο οποίο εμφανίζεται η αιχμή

Εξ ορισμού, στο μοντέλο διόδευσης θεωρούνται 24 χρονικά βήματα (γίνεται, δηλαδή, επιμερισμός των μέσων ημερήσιων παροχών σε μέσες ωριαίες) και διαμορφώνονται τριγωνικά υδρογραφήματα γύρω από τις αιχμές, που υποτίθεται ότι εμφανίζονται στις 8 ώρες.

Scenario options			
General info Times Simulation	Optimization	Routing	
Include routing procedures with	hin daily simula	tions	
Number of fine time steps	24		
Number of fine steps to peak	8		

5.2 Χρονοσειρές

Από το μενού Scenario data → Timeseries εμφανίζεται στο προσκήνιο η φόρμα των χρονοσειρών εισόδου του σεναρίου, στην οποία κάθε χρονοσειρά απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Series i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η περιγραφή (Description) της χρονοσειράς, η ονομασία του αρχείου της (File name), η προσωρινή διαδρομή (File path) του αρχείου (μόνο για χρονοσειρές που εισάγονται πριν την αοθήκευση του σεναρίου), ο τύπος της μεταβλητής ()Variable type), η συνιστώσα του υδροσυστήματος στην οποία αναφέρεται η χρονοσειρά (System component), το χρονικό βήμα (Time step), οι μονάδες μέτρησης (Units) και οι ημερομηνίες αρχής (Start data) και τέλους (End date). Οι τιμές της χρονοσειράς απεικονίζονται τόσο σε μορφή πίνακα όσο και σε μορφή διαγράμματος. Με την εντολή Copy data, η χρονοσειρά αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

Input time series				
Description	Precipitation in basin 0 ()	Date	Value	^
·		Οκτ-84	23.000	E
File name rain_0		Noε-84	165.900	
		∆єк-84	115.700	
File path		Ιαν-85	397.900	
		Φεβ-85	77.700	
Variable type Precipitation (subbasin)		Μαρ-85	114.100	
		Апр-85	72.100	
System component (id = 0)		Μαϊ-85	43.100	
		louv-85	17.700	
Time step Monthly Units mm		louij-85	12.900	
		Αυγ-85	0.000	
Start date 1/10/1984		Σεπ-85	21.800	
		Οκτ-85	110.500	
End date	Noε-85	203.300		
L	∆єк-85	93.400		
Plain text fr	Ιαν-86	115.500		
- I Idiri (excit	Φεβ-86	168.900		
V Historical	Μαρ-86	121.500	~	
Mistorical	Number of synthetic sets	A 00		
400 350 300 250 200 150 0 50 0 50 0 50 50 50 50 50				
🕞 Get da	ita file 🛛 🙀 Copy data	1	Delete serie	s
Series 1/(Series 2/(Series 3/(Series 4/(Series 5/(Series 6/(Series 7/(Series 8/				

Για να δημιουργηθεί μια νέα χρονοσειρά εισόδου, ο χρήστης μεταβαίνει στη φόρμα της σχετικής συνιστώσας, από όπου δίνει τη σχετική εντολή. Συγκεκριμένα:

Ο από τη φόρμα των υπολεκανών δημιουργούνται οι χρονοσειρές επιφανειακής
βροχόπτωσης και δυνητικής εξατμοδιαπνοής

- από τις φόρμες των κόμβων του υδρογραφικού δικτύου, των απλών κόμβωων, των αρδευτικών κόμβων και των ομάδων γεωτρήσεων δημιουργούνται οι χρονοσειρές εισροών από εξωτερικά υδροσυστήματα
- από τη φόρμα των στόχων δημιουργούνται οι χρονοσειρές ζήτησης
- από τις φόρμες των κόμβων του υδρογραφικού δικτύου, των υπολεκανών και των πηγών δημιουργούνται οι χρονοσειρές παρατηρημένης παροχής
- από τη φόρμα των υπόγειων κυττάρων δημιουργούνται οι χρονοσειρές παρατηρημένης στάθμης

Οι δύο τελευταίες κατηγορίες χρονοσειρών χρησιμοποιούνται για τον έλεγχο της προσαρμογής του μοντέλου στα ιστορικά δεδομένα, με σύγκριση των προσομοιωμένων και παρατηρημένων χρονοσειρών απόκρισης.

Open			? 🛛
Look in:	🗁 monthly_1984_1994	S d) 📂 🛄 •
Pecent Desktop	 agparaskevi_disch.txt bralos_disch.txt davleia_disch.txt demand_akontio.txt demand_ano_rous.txt demand_distomo.txt demand_kastro.txt 	 mavroneri_disch.txt melas_disch.txt orxomenos_disch.txt polygyra_disch.txt potevap_1 potevap_2 potevap_3 	potevap_12 potevap_13 rain_1 rain_2 rain_3 rain_4 rain_5
My Documents	 demand_kato_rous.txt demand_kopais.txt demand_leivadia.txt demand_mesos_rous.txt erkyna_disch.txt erkyna_maxflow.txt 	potevap_4 potevap_5 potevap_6 potevap_7 potevap_8 potevap 9	ा rain_6 ति rain_7 ति rain_8 ति rain_9 ति rain_10 ति rain_11
My Computer	karditsa_disch.txt iilaia_disch.txt	potevap_10 potevap_11	rain_12 rain_13
S	File name:		Open
My Network	Files of type: All files - Text	files (*.*, *.txt)	Cancel

Με την υποβολή της εντολής δημιουργίας χρονοσειράς από τη φόρμα της αντίστοιχης συνιστώσας, εμφανίζεται στο προσκήνιο η φόρμα των χρονοσειρών με τις αναγκαίες διαχειριστικές πληροφορίες. Η ανάκτηση του αρχείου δεδομένων γίνεται με την εντολή Get data file. Τα αρχεία είναι είτε τύπου Plain text format (αρχείο txt, με τις τιμές της χρονοσειράς σε μορφή στήλης) είτε στην τυποποιημενη μορφή που είναι προσπελάσιμο από το λογισμικό Υδρογνώμων. Στην πρώτη περίπτωση, το μήκος του αρχείου πρέπει να συμπίπτει με το μήκος της περιόδου προσομοίωσης, ενώ στη δεύτερη περίπτωση δεν υπάρχει τέτοιος περιορισμός, καθώς το ζητούμενο δείγμα αναγνωρίζεται από τις ημερομηνίες αρχής και πέρατος.

Για αρχεία τύπου Plain text format, εφόσον ενεργοποιηθεί η επιλογή Constant annual pattern, ανακτώνται μόνο τα δεδομένα του πρώτου υδρολογικού έτους, τα οποία επαναλαμβάνονται για όλη την περίποδο προσομοίωσης. Η επιλογή αυτή έχει νόημα για χρονοσειρές που παρουσιάζουν αμελητέα ή πολύ μικρή υπερετήσια διακύμανση, όπως χρονοσειρές ζήτησης και (σε μικρότερο βαθμό) δυνητικής εξατμοδιαπνοής.

Με την επιλογή διαγραφής (Delete series), η χρονοσειρά που βρίσκεται στο προσκήνιο διαγράφεται από τη μνήμη του προγράμματος.

Υπενθυμίζεται ότι κατά την αποθήκευση του σεναρίου, δημιουργούνται αντίγραφα των χρονοσειρών εισόδου στο φάκελο του έργου.

5.3 Στόχοι

Από το μενού Scenario data → Targets εμφανίζεται στο προσκήνιο η φόρμα των στόχων του σεναρίου, στην οποία κάθε στόχος απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Target i, όπου i ο αντίστοιχος κωδικός. Αριστερά στην καρτέλα απεικονίζονται η ονομασία (Name), η περιγραφή (Description), ο τύπος του στόχου (Target type), η συνιστώσα του μοντέλου στην οποία αναφέρεται (Model component) και το επίπεδο προτεραιότητας στο οποίο εντάσσεται (Priority level).

Στο δεξιό μέρος της καρτέλας δίνονται η χρονοσειρά ζήτησης που ορίζει ο χρήστης και η αντίστοιχη προσομοιωμένη χρονοσειρά προσφοράς, οι οποίες απεικονίζονται και στο διάγραμμα που βρίσκεται στο κάτω μέρος (όταν δεν υπάρχει έλλειμμα, οι δύο χρονοσειρές ταυτίζονται). Στο εν λόγω διάγραμμα δίνεται ακόμη η πιθανότητα αστοχίας (Failure probability), που προκύπτει ως ποσοστό των χρονικών βημάτων στα οποία παρατηρήθηκε έλλειμμα.

Για να δημιουργηθεί ένας νέος στόχος, ο χρήστης μεταβαίνει στη φόρμα της σχετικής συνιστώσας, από όπου δίνει τη σχετική εντολή. Συγκεκριμένα:

- από τη φόρμα των αρδευτικών κόμβων δημιουργούνται οι στόχοι ζήτησης νερού για άρδευση (Irrigation)
- από τις φόρμες των κόμβων του υδρογραφικού δικτύου, των απλών κόμβωων, των αρδευτικών κόμβων και των ομάδων γεωτρήσεων δημιουργούνται οι στόχοι ζήτησης νερού για ύδρευση ή άλλη καταναλωτική χρήση, εκτός της άρδευσης (Water supply)
- από τη φόρμα των κλάδων του υδρογραφικού δικτύου δημιουργούνται οι περιβαλλοντικοί στόχοι (περιορισμοί) διατήρησης της παροχής πάνω από ένα ελάχιστο όριο (Minimum river flow preservation)
- από τη φόρμα των υδραγωγείων δημιουργούνται οι περιορισμοί διατήρησης της παροχής μεταξύ ενός ελάχιστου επιθυμητού (Minimum pipe flow preservation) και ενός μέγιστου επιτρεπτού (Maximum allowable pipe flow) ορίου
- από τη φόρμα των ομάδων γεωτρήσεων δημιουργούνται οι περιορισμοί διατήρησης της παροχής άντλησης μεταξύ ενός ελάχιστου επιθυμητού (Minimum desirable pumping) και ενός μέγιστου επιτρεπτού (Maximum allowable pumping) ορίου

Οι καταναλωτικοί στόχοι (ύδρευση, άρδευση) δίνονται σε μονάδες όγκου, ενώ οι υπόλοιποι στόχοι, οι οποίοι εκφράζουν περιορισμούς ροής, δίνονται σε μονάδες παροχής.

Για την ιεράρχηση των κατανομών των εκροών, ο χρήστης μπορεί να εντάξει τους στόχους σε δέκα διαφορετικά επίπεδα προτεραιότητας. Αν η προσοφρά νερού υπολείπεται της ζήτησης, οι στόχοι που ανήκουν σε υψηλότερο επίπεδο ικανοποιούνται κατά προτεραιότητα.

Στο κάτω μέρος της φόρμας υπάρχουν τρία πλήκτρα. Με το πλήκτρο Demand data, καλείται η φόρμα των χρονοσειρών, με την οποία εισάγονται οι τιμές του στόχου για όλη την περίοδο προσομοίωσης. Με το πλήκτρο Delete target, ο στόχος που βρίσκεται στο προσκήνιο διαγράφεται από τη μνήμη του προγράμματος. Τέλος, με το πλήκτρο Copy table, ο χρονοσειρές προσφοράς και ζήτησης αντιγράφονται στο πρόχειρο (Clipboard) των Windows.

Targets													×
-General info	rmatio	n					_	Den	nand /	supply	series	: (m3)	
Name	Αρδει	ιση Κωπα	αδας					Dati	е	Demar	nd	Supply	~
								Οκτ	-84	0		0	
Description							Νοε	-84	0		0		
· ·								Δεк	-84	0		0	
								Ιαν-	85	0		0	
								Φεί	3-85	0		0	
Properties								Μαρ	o-85	0		0	
Topences								Апр	-85	54460	98	5446098	
Target type		Irrigation					~	Μαϊ	-85	12693	913	12693913	
	L.							louv	-85	20826;	208	20826208	
Model compon	ient	Αρδ. Κωτ	ιαίδας					loui	-85	26968	424	26968424	
	L							Αυγ	-85	24495	156	24495156	
Priority level	[1 🗸						Σεπ	-85	13570	202	13570202	
	L							Οκτ	-85	0		0	~
Targe 25 000 000 - 20 000 000 - 15 000 000 - 10 000 000 - 5 000 000 - 0 - Failure probat	et vs	actus	al vo	lume:	s (r wdb, wdb, wdb, wdb, wdb, wdb, wdb, wdb,	n3)	or 06 E 37 5 %	flo	Map-92	3/s)	мар-94	- Target flo - Actual flo	
\Target 0 \Targ	et 1/T	arget 2 <u>(</u> 1	Target 3	<u>(Targe</u>	<u>et 4 (</u> `	Targe	<u>et 5 (</u>	Targel	t 6 <u>(</u> Targ	get 7 /			

5.4 Αρχικές συνθήκες

Οι αρχικές συνθήκες, δηλαδή οι τιμές εκκίνησης της διαδικασίας προσομοίωσης, αναφέρονται στους αποθηκευμένους όγκους νερού στις εννοιολογικές δεξαμενές του εδάφους και του υδροφορέα. Ο ορισμός τους γίνεται με επιλογή του μενού Scenario data → Initial conditions, με το οποίο εμφανίζεται η σχετική φόρμα. Η φόρμα περιέχει δύο καρτέλες, για τον ορισμό των αρχικών συνθηκών εδαφικής υγρασίας (Soil moisture depth) και στάθμης υπόγειων νερών (Groundwater level).

Αρχικές συνθήκες εδαφικής υγρασίας

Στην καρτέλα φαίνονται, σε μορφή πίνακα, όλες οι διαμερίσεις των υπολεκανών που προκύπτουν από την ένωσή τους με τις μονάδες υδρολογικής απόκρισης. Στον πίνακα αναγράφονται:

- ο κωδικός της ένωσης (id)
- η ονομασία της υπολεκάνης (Name)
- ο κωδικός της υπολεκάνης (id)
- η ονομασία της μονάδας υδρολογικής απόκρισης (Name)
- ο κωδικός της μονάδας υδρολογικής απόκρισης (id)
- η αρχική τιμή του ύψους νερού στη δεξαμενή εδαφικής υγρασίας (Init. soil storage)
- η αρχική τιμή του ύψους νερού στη δεξαμενή ημερήσιας εξατμοδιαπνοής (Init. evap. storage)

Ο χρήστης μπορεί να τροποποιήσει τις τιμές μόνο των δύο τελευταίων στηλών, που απεικονίζονται σε λευκό φόντο. Όσον αφορά στην αρχική τιμή του ύψους εδαφικής υγρασίας, με δεδομένο ότι η προσομοίωση ξεκινά στην αρχή του υδρολογικού έτους, δηλαδή σε συνθήκες ξηρότητας του εδάφους, η εν λόγω τιμή μπορεί να θεωρηθεί μηδενική. Από την άλλη πλευρά, η αντίστοιχη τιμή στη δεξαμενή ημερήσιας εξατμοδιαπνοής (η οποία έχει νόημα μόνο για ημερήσια προσομοίωση) εξαρτάται από τις συνθήκες βροχόπτωσης των προηγούμενων ημερών.

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

Initial c	ondition	Initial conditions							
Soil mois	ture depth:	Groundwater level							
Initial	Initial soil moisture depth assigned to sub-basin partitions (mm)								
id	Sub-basin		id	HRU	id	Init, soil storage	Init evap, storage	~	
1			0	Low perm., low slope	17	10.000	-		
2			1	Low perm., low slope	17	10.000	-		
3			2	Low perm., low slope	17	10.000	-		
4			3	Low perm., low slope	17	10.000	-		
5			4	Low perm., low slope	17	10.000	-	1	
6			5	Low perm., low slope	17	10.000	-		
7			7	Low perm., low slope	17	10.000	-		
8			8	Low perm., low slope	17	10.000	-	1	
9			10	Low perm., low slope	17	10.000	-	1	
10			11	Low perm., low slope	17	10.000	-		
11			13	Low perm., low slope	17	10.000	-		
12			14	Low perm., low slope	17	10.000	-	1	
13			0	Alluvial, low slope	33	10.000	-	1	
14			1	Alluvial, low slope	33	10.000	-		
15			2	Alluvial, low slope	33	10.000	-		
16			3	Alluvial, low slope	33	10.000	-	1	
17			4	Alluvial, low slope	33	10.000	-	1	
18			5	Alluvial, low slope	33	10.000	-	1	
19			6	Alluvial, low slope	33	10.000	-	1	
20			7	Alluvial, low slope	33	10.000	-	1	
21			8	Alluvial, low slope	33	10.000	-	1	
22			9	Alluvial, low slope	33	10.000	-		
23			10	Alluvial, low slope	33	10.000	-		
24			11	Alluvial, low slope	33	10.000	-		
25			12	Alluvial, low slope	33	10.000	-		
26			13	Alluvial, low slope	33	10.000	-		
27			14	Alluvial, low slope	33	10.000	-		
28			0	Karst, low slope	49	10.000	-	~	

Αρχικές συνθήκες υδροφορέα

Με επιλογή της καρτέλας Groundwater level εμφανίζονται, σε μορφή πίνακα, όλα τα κύτταρα του μοντέλου υπόγειας υδρολογίας. Ο πίνακας έχει πέντε στήλες, στις οποίες αναγράφονται κατά σειρά:

- ο κωδικός του κυττάρου (id)
- η ονομασία του κυττάρου (Name)
- η κατώτερη στάθμη της δεξαμενής (Bottom level)
- η ανώτερη στάθμη της δεξαμενής (Top level)
- η αρχική στάθμη της δεξαμενής (Initial level)

Ο χρήστης μπορεί να τροποποιήσει τις τιμές μόνο της τελευταίας στήλης, που απεικονίζονται σε λευκό φόντο. Επισημαίνεται ότι στις εννοιολογικές δεξαμενές υπόγειου νερού, η αρχική στάθμη κυμαίνεται πάντοτε μεταξύ της κατώτερης και ανώτερης τιμής της. Αν ο χρήστης επιλέξει μια στάθμη εκτός των συγκεκριμένων ορίων, το πρόγραμμα εμφανίζει μήνυμα σφάλματος και επαναφέρει την προηγούμενη τιμή.

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

nitial	conditions				
ioil moi	isture depth Groundwater level				
Initial	absolute level assigned to gro	oundwater tanks (m)			
id	Cell	Bottom level (m)	Top level (m)	Initial level (m)	<u>~</u>
1		300.000	365.000	310.000	
2		270.000	335.000	280.000	
3		300.000	365.000	310.000	
4		250.000	315.000	260.000	
5	Erkyna	200.000	265.000	210.000	
6	Paraskeui	130.000	195.000	140.000	
7	Melanas	100.000	165.000	110.000	
8	Polygyra	95.000	160.000	105.000	
9	Mauroneri	120.000	185.000	130.000	
10	Lilea	300.000	365.000	310.000	
11		280.000	345.000	290.000	
12		200.000	265.000	210.000	
13		150.000	215.000	160.000	
14		205.000	270.000	215.000	
15		110.000	175.000	120.000	
16		140.000	205.000	150.000	
17		95.000	160.000	105.000	
18		230.000	295.000	240.000	
19		100.000	165.000	110.000	
20		140.000	205.000	150.000	
21		140.000	205.000	150.000	
22		95.000	160.000	105.000	
23	Kopais	80.000	145.000	90.000	
24		95.000	160.000	105.000	
25		80.000	145.000	90.000	
26		90.000	155.000	100.000	
27		260.000	325.000	270.000	
28		230.000	295.000	240.000	~

6 Διατύπωση προβλήματος βαθμονόμησης

Από το μενού Calibration data της κεντρικής οθόνης γίνεται η απεικόνιση και διαχείριαση των δεδομένων του προβλήματος βαθμονόμησης, τα οποία εντάσσονται στις ακόλουθες κατηγορίες:

- Μεταβλητές ελέγχου: όρια παραμέτρων, ομαδοποίηση παραμέτρων, επιλογή μεταβλητών προς βελτιστοποίηση
- Αποκρίσεις ελέγχου: χρονοσειρές παρατηρημένων αποκρίσεων, κριτήρια προσαρμογής, συντελεστές βάρους

Πολυκριτηριακές συναρτήσεις: συνιστώσες πολυκριτηριακού προβλήματος

Για όλα τα παραπάνω στοιχεία του προβλήματος μπορούν να διαμορφωθούν διαφορετικά σενάρια, στα πλαίσια του ίδιου έργου. Με το κλείσιμο της κάθε φόρμας, όλες οι αλλαγές αποθηκεύονται τοπικά (δηλαδή στη μνήμη του προγράμματος), όχι όμως στη βάση δεδομένων. Για αποθήκευση στους πίνακες της βάσης, ο χρήστης πρέπει να επιλέξει την αντίστοιχη λειτουργία, από το μενού Project → Save.

🌱 Hyd	rogeios 2	2.0			
Project	Geodata	Scenario data	Calibration data	Run Result	s Help
			Control variab	les	
			Control respon	nses	
Ready		F(cal	Multiobjective	runctions ~	7.160

6.1 Μεταβλητές ελέγχου

Οι παράμετροι του μοντέλου είτε εισάγονται από τον χρήστη, μεταβαίνοντας στις σχετικές φόρμες, είτε εκτιμώνται μέσω βαθμονόμησης. Στην τελευταία περίπτωση, οι παράμετροι αντιστοιχούν στις μεταβλητές ελέγχου (control variables) ενός προβλήματος μη γραμμικής βελτιστοποίησης. Η διαχείρισή τους γίνεται από το μενού Calibration data -> Control variables, με την επιλογή του οποίου εμφανίζεται η φόρμα ομαδοποιεί τις μεταβλητές ελέγχου με βάση τον τύπο της παραμέτρου, δημιουργώντας σχετικές καρτέλες. Οι τύποι των παραμέτρων και οι ονομασίες των καρτελών (σε παρένθεση) είναι:

- Συντελεστές διήθησης υδατορευμάτων (Infiltr. coef.)
- Συντελεστές άμεσης απορροής μονάδων (Runoff coef.)
- Χωρητικότητες δεξαμενών εδαφικής υγρασίας (Soil cap.)
- Κατώφλια παραγωγής υποδερμικής ροής (Interflow thres.)
- Συντελεστής στείρευσης υποδερμικής ροής (Interflow rate)
- Συντελεστές στείρευσης κατείσδυσης (Percol. rate)
- Χωρητικότητες κατακράτησης βροχής (Intercept. cap.)
- Πορώδες κυττάρων (Porosity)

- Υδραυλική αγωγιμότητα κυττάρων (Conductivity)
- Χωρητικότητες δεξαμενών εξατμοδιαπνοής (Daily evap. cap.)

Η πρώτη κατηγορία παραμέτρων αφορά στους κλάδους του υδρογραφικού δικτύου, οι επόμενες έξι στις μονάδες υδρολογικής απόκρισης (MYA), οι επόμενες δύο στα κύτταρα του μοντέλου υπόγειων νερών (στα οποία περιλαμβάνονται τα εικονικά κύταρα που αναπαριστούν διαφυγές και εκροές πηγών), ενώ η τελευταία κατηγορία αφορά επίσης στις MYA, και έχει νόημα μόνο στην περίπτωση ημερήσιας προσομοίωσης

Model control variables								
Infiltr.coe	Infiltr.coef. Runoff coef. Soil cap. Interfow thres. Interflow rate Percol. rate Intercept. cap. Porosity Conductivity Daily evap.cap.							
Soil m	oisture capacity assignet to hydr	ological resp	onse units	(in mm)				
id	Name	Low limit	Upper limit	Min. value	Max. value	Actual value	Rigid bounds	Control group
1	Low perm., low slope	0.000	1000.000	0.000	600.000	523.000	Yes	1
2	Alluvial, low slope	0.000	1000.000	0.000	600.000	443.000	Yes	2
3	Karst, low slope	0.000	1000.000	0.000	600.000	588.000	Yes	3
4	Low perm., mountain	0.000	1000.000	0.000	400.000	227.000	Yes	0
5	Alluvial, mountain	0.000	1000.000	0.000	400.000	263.000	Yes	0
6	Karst, mountain	0.000	1000.000	0.000	400.000	242.000	Yes	0

Σε κάθε καρτέλα εμφανίζεται ένας συγκεντρωτικός πίνακας, όπου αναγράφονταιμε τα ακόλουθα χαρακτηριστικά των παραμέτρων:

ο κωδικός της συνιστώσας στην οποία αναφέρεται η παράμετρος (id)

- η ονομασία της εν λόγω συνιστώσας (Name)
- η κατώτερη εφικτή τιμή της παραμέτρου (Low limit)
- η ανώτερη εφικτή τιμή της παραμέτρου (Upper limit)
- η ελάχιστη επιθυμητή τιμή της παραμέτρου (Min. value)
- η μέγιστη επιθυμητή τιμή της παραμέτρου (Max. value)

- η τρέχουσα τιμή της παραμέτρου (Actual value)
- η επιλογή αναζήτησης τιμών εκτός των επιθυμητών ορίων (Rigid bounds)
- η ομάδα μεταβλητών ελέγχου στην οποία εντάσσεται η παράμετρος (Control group)

Οι δύο τύποι ορίων απαιτούνται από τον αλγόριθμο εξελικτικός αλγόριθμο ανόπτησης-απλόκου, που δημιουργεί δύο πεδία αναζήτησης, ένα εξωτερικό (εφικτός χώρος) και ένα εσωτερικό (επιθυμητός χώρος). Ο εφικτός χώρος, ο οποίος ορίζεται μεταξύ των τιμών "Low limit" και "Upper limit", είναι ευρύτερος του επιθυμητού, καθώς υποδηλώνει μαθηματικά ή φυσικά όρια των παραμέτρων (π.χ. οι αδιάστατοι συντελεστές λαμβάνουν τιμές από 0 έως 1). Κατά κανόνα, τόσο για εξοικονόμηση υπολογιστικού φόρτου στη βελτιστοποίηση όσο και για λόγους διατήρησης της συνέπειας των τιμών των παραμέτρων με τα χαρακτηριστικά του φυσικού συστήματος, η αναζήτηση περιορίζεται σε έναν μικρότερο χώρο, μεταξύ των τιμών "Min. value" και "Max. value". Ειδικότερα, αν η τιμή του πεδίου "Rigid bounds" είναι αληθής, αναγράφεται δηλαδή η έκφραση "Yes", τότε η αναζήτηση γίνεται αποκλειστικά εντός του επιθυμητού πεδίου. Αντίθετα, αν η τιμή είναι ψευδής, αναγράφεται δηλαδή η έκφραση "No", η αναζήτηση μπορεί να ξεφύγει από τα όρια του πεδίου αυτού, χωρίς ωστόσο να παραβιάσει τους περιορισμούς εφικτότητας.

Ο χρήστης επιλέγει ποιες παράμετροι θα υπολογιστούν μέσω βελτιστοποίησης, εισάγοντας έναν αύξοντα αριθμό στο πεδίο ομάδας ελέγχου ("Control group"). Η τιμή του πεδίου αντιστοιχεί σε μια μεταβλητή ελέγχου του προβλήματος βελτιστοποίησης. Δύο ή περισσότερες παράμετροι του ίδιου, προφανώς, τύπου μπορούν να αντιστοιχιστούν στην ίδια ομάδα, που σημαίνει ότι αντιμετωπίζονται ενιαία από τη διαδικασία βελτιστοποίησης και θα λάβουν, τελικά, μία κοινή τιμή. Η μηδενική ομάδα αναφέρεται στις παραμέτρους που δεν αντιστοιχούν σε μεταβλητές ελέγχου, και συνεπώς δεν έχουν συμμετοχή στη διαδικασία βαθμονόμησης (οι τιμές τους διατηρούνται σταθερές).

6.2 Αποκρίσεις ελέγχου

Η στοχική συνάρτηση του προβλήματος βελτιστοποίησης (που στην περίπτωση πολυκριτηριακής βαθμονόμησης είναι διανυσματική) διαμορφώνεται ως σταθμισμένο άθροισμα πολλαπλών κριτηρίων προσαρμογής, που αναφέρονται σε πολλαπλές αποκρίσεις ελέγχου (control responses) του μοντέλου. Ο ορισμός των αποκρίσεων και η τροποποίηση των χαρακτηριστικών τους γίνεται από το μενού Calibration data → Control responses.

Στη φόρμα εμφανίζονται, σε μορφή πίνακα, οι αποκρίσεις ελέγχου του προβλήματος βαθμονόμησης, που αναφέρονται στους εξής τύπους μεταβλητών:

- παροχή κατάντη κόμβου υδρογραφικού δικτύου (River discharge)
- παροχή στην έξοδο υπολεκάνης (Basin discharge)
- = παροχή πηγής (Spring discharge)
- στάθμη κυττάρου υδροφορέα (Groundwater level)

Mode	Model control responses							
Mod	Aodel responses and weighting coefficients assigned to performance criteria							
id	Response type	Model component	Efficiency	Average bias	St. dev. bias	Coeff. var. bias	Interm. penalty	Trend penalty
0	River discharge	Έξοδος προς Υλίκη	4.000	0.000	0.000	0.000	0.000	0.000
1	Spring discharge	Lilea	2.000	0.000	0.000	0.000	0.000	0.000
2	Spring discharge	Mauroneri	2.000	0.000	0.000	0.000	1.000	0.000
3	Spring discharge	Ag. Paraskeui	1.000	0.000	0.000	0.000	0.000	0.000
4	Spring discharge	Erkyna	1.000	0.000	0.000	0.000	0.000	0.000
5	Spring discharge	Melanas	2.000	0.000	0.000	0.000	0.000	0.000
6	Spring discharge	Polygyra	1.000	0.000	0.000	0.000	0.000	0.000

Για κάθε απόκριση, εισάγονται έξι αριθμητικοί δείκτες, οι οποίοι σταθμίζονται με κατάλληλους συντελεστές βάρους και αποτυπώνουν διαφορετικά χαρακτηριστικά της χρονοσειράς. Συγκεκριμένα:

αποτελεσματικότητα (Efficiency)

- μεροληψία ως προς την παρατηρημένη μέση τιμή (Average bias)
- μεροληψία ως προς την παρατηρημένη τυπική απόκλιση (St. dev. bias)
- μεροληψία ως προς τον παρατηρημένο συντελεστή μεταβλητότητας (Coeff. var. bias)
- μέτρο ποινής για την αναπαραγωγή μηδενικών παροχών (Interm. penalty)
- μέτρο ποινής για την αναπαραγωγή τάσης (Trend penalty)

Οι πληροφορίες που αφορούν στα χαρακτηριστικά κάθε απόκρισης δίνονται στις στήλες του πίνακα με την ακόλουθη σειρά:

- κωδικός απόκρισης (id)
- τύπος απόκρισης (Response type)
- συνιστώσα μοντέλου στην οποία αναφέρεται η απόκριση (Model component)
- συντελεστής βάρους για τον δείκτη αποτελεσματικότητας (Efficiency)
- συντελεστής βάρους για τη μεροληψία της μέσης τιμής (Average bias)
- Ουντελεστής βάρους για τη μεροληψία της τυπικής απόκλισης (St. dev. bias)

- συντελεστής βάρους για τη μεροληψία του συντελεστή μεταβλητότητας (Coeff. var. bias)
- συντελεστής βάρους για την ποινή αναπαραγωγής μηδενικών παροχών (Interm. penalty)
- Ουντελεστής βάρους για την ποινή αναπαραγωγής τάσης (Trend penalty)

Καθώς ο χρήστης μετακινείται στις γραμμές του πίνακα, επιλέγεται η αντίστοιχη απόκριση, η οποία επισημαίνεται με μπλε φόντο.

Πάνω δεξιά του πίνακα υπάρχουν τέσσερα πλήκτρα, που επιτελούν τις εξής λειτουργίες:

- τροποποίηση συντελεστών βάρους επιλεγμένης απόκρισης.
- εισαγωγή νέας απόκρισης.
- διαγραφή επιλεγμένης απόκρισης.
- αντιγραφή πίνακα στο πρόχειρο (Clipboard) των Windows

Οι λειτουργίες των τριών πρώτων πλήκτρων εξηγούνται στη συνέχεια.

Τροποποίηση συντελεστών βάρους

Με πάτημα του πρώτου πλήκτρου, εμφανίζεται στο προσκήνιο η φόρμα με τα χαρακτηριστικά της επιλεγμένης απόκρισης. Ο χρήστης μπορεί να τροποποιήσει τις τιμές των έξι συντελεστών βάρους, οι οποίες απεικονίζονται σε λευκό φόντο, όχι όμως και τις ιδιότητες της απόκρισης, δηλαδή τον τύπο (Model response type) και τη συνιστώσα (Model component), που είναι απενεργοποιημένες.

Με το κλείσιμο επαναφέρεται στο προσκήνιο η φόρμα των αποκρίσεων ελέγχου, στην οποία έχουν επικαιροποιηθεί οι τιμές των συντελεστών βάρους των κριτηρίων της επιλεγμένης απόκρισης.

Modify performance criteria weights of respon 🔀						
Properties]					
Model response type	River discharge 🗸 🗸					
Model component	Έξοδος προς Υλίκη (15) 💉					
Weighting coefficients for	various measures					
Efficiency 4.000	Coef. var. bias 0.000					
Average bias 1	Interm. penalty 1					
St. dev. bias 0.000	Trend penalty 0.000					

Εισαγωγή νέας απόκρισης

Με πάτημα του δεύτερου πλήκτρου εμφανίζεται στο προσκήνιο η φόρμα εισαγωγής νέας απόκριση ελέγχου του προβλήματος βαθμονόμησης. Στον τίτλο της φόρμας εμφανίζεται το μήνυμα "Insert new control response n + 1", όπου n το πλήθος των υφιστάμενων αποκρίσεων. Αρχικά, ο χρήστης εισάγει τον τύπο της απόκρισης, από το μενού "Model response type". Ανάλογα με τον τύπο που έχει επιλεγεί, διαμορφώνεται η λίστα με όλες τις συνιστώσες του μοντέλου που αναφέρονται στον συγκεκριμένο τύπο, οι οποίες απεικονίζονται στο μενού "Model component". Συγκεκριμένα:

- οι κόμβοι του υδρογραφικού δικτύου, εφόσον έχει επιλεγεί ο τύπος απόκρισης River discharge.
- Οι υπολεκάνες, εφόσον έχει επιλεγεί ο τύπος απόκρισης Basin discharge
- Οι πηγές, εφόσον έχει επιλεγεί ο τύπος απόκρισης Spring discharge
- τα κύτταρα του υδροφορέα, εφόσον έχει επιλεγεί ο τύπος απόκρισης Groundwater level

Για κάθε συνιστώσα αναγράφονται η ονομασία και ο κωδικός της, σε παρένθεση. Μετά την επιλογή της απόκρισης, ενημερώνονται τα πεδία που αναφέρονται στις τιμές των συντελεστών βάρους, για τα έξι κριτήρια προσαρμογής. Με το κλείσιμο επαναφέρεται στο προσκήνιο η φόρμα των αποκρίσεων ελέγχου, στην οποία η νέα απόκριση έχει προστεθεί στο τέλος του πίνακα.

Insert new control response	7	×
Properties		
Model response type	Groundwater level	*
Model component	(0)	*
Weighting coefficients for v	(18) (19) (20) (21) Konaie (22)	
Average bias 0.000	(23) (24) (25)	~
St. dev. bias 0.000	Trend penalty 0.000	

Διαγραφή επιλεγμένης απόκρισης

Με πάτημα του τρίτου κατά σειρά πλήκτρου διαγράφεται η επιλεγμένη απόκριση από τον πίνακα, οπότε αλλάζει η αρίθμηση των κωδικών όλων των επόμενων αποκρίσεων ελέγχου.

6.3 Πολυκριτηριακές συναρτήσεις

Ο ορισμός των συναρτήσεων που χρησιμοποιούνται στην πολυκριτηριακή βαθμονόμηση και η τροποποίηση των χαρακτηριστικών τους γίνεται από το μενού Calibration data → Multiobjective functions. Στη φόρμα που εμφανίζεται στο προσκήνιο απεικονίζονται, σε μορφή πίνακα, τα γενικά χαρακτηριστικά των στοχικών συναρτήσεων του πολυκριτηριακού προβλήματος, και συγκεκριμένα:

ο κωδικός της συνάρτησης (id)

- η ονομασία (Name)
- Το πλήθος των κριτηρίων που περιλαμβάνονται στη συνάρτηση (Criteria)
- η ύπαρξη ή μη περιορισμού στο πεδίο τιμών (Bounded)
- η οριακή τιμή (Bound value)

Η οριακή τιμή εισάγεται στη διαδικασία πολυκριτηριακής βελτιστοποίησης ως περιορισμός εφικτότητας, ώστε να εμποδίσει την παραγωγή βέλτιστων Pareto λύσεων εκτός του χώρου που ορίζει ο χρήστης. Επειδή ζητείται, εξ ορισμού, η ελαχιστοποίηση των συναρτήσεων, το σχετικό όριο είναι πάντοτε θετικό. Στην περίπτωση απεριόριστης αναζήτησης, τότε συμβατικά τίθεται μια πολύ μεγάλη τιμή.

N	Multiobjective functions							
I	List of	f multiobjective functions		(
	id	Name	Criteria	Bounded	Bound value			
	1	Outlet discharge efficiency	1	Yes	1.000			
	2	All spring efficiency	6	Yes	4.000			

Πάνω δεξιά του πίνακα υπάρχουν τέσσερα πλήκτρα, που επιτελούν τις εξής λειτουργίες:

- τροποποίηση συνάρτησης
- εισαγωγή νέας συνάρτησης
- διαγραφή επιλεγμένης συνάρτησης
- αντιγραφή στο πρόχειρο (Clipboard) των Windows

Οι λειτουργίες των τριών πρώτων πλήκτρων εξηγούνται στη συνέχεια.

Τροποποίηση συνάρτησης

Με πάτημα του πρώτου πλήκτρου, εμφανίζεται στο προσκήνιο η σχετική φόρμα, στην οποία δίνονται τα χαρακτηριστικά της επιλεγμένης απόκρισης. Ο χρήστης

μπορεί να τροποποιήσει την ονομασία και την οριακή τιμή, και να ενεργοποιήσει ή ακυρώσει τον περιορισμό εφικτότητας (στην τελευταία περίπτωση τίθεται αυτόματα η οριακή τιμή 1000000).

Στο κάτω μέρος της οθόνης απεικονίζονται, σε μορφή πίνακα, οι συνιστώσες της συνάρτησης, δηλαδή τα κριτήρια προσαρμογής που περιλαμβάνει, με τους αντίστοιχους συντελεστές βάρους. Πάνω δεξιά του πίνακα υπάρχουν τέσσερα πλήκτρα, που επιτελούν τις εξής λειτουργίες:

- τροποποίηση συνιστώσας
- εισαγωγή νέας συνιστώσας
- διαγραφή επιλεγμένης συνιστώσας
- αντιγραφή στο πρόχειρο (Clipboard) των Windows

Modify properties of function 1							
Properties							
Nam	e All spring efficiency			🗹 Upp	ber bound	4	
	-						
Funct	tion components (co	ntrol responses and crite	ria)				
id	Response type	Model component	Crit	erio type	Weight	ing coef.	
1	Spring discharge	Lilea	Effi	ciency	1.000		
2	Spring discharge	Mauroneri	Effi	ciency	1.000		
3	Spring discharge	Ag. Paraskeui	Effi	ciency	1.000		
4	Spring discharge	Erkyna	Effi	ciency	1.000		
5	Spring discharge	Melanas	Effi	ciency	1.000		
6	Spring discharge	Polygyra	Effi	ciency	1.000		

New component	of function 1	×
Control response	Spring discharge: Melanas (4)	<
Criterio type	Efficiency Veighting coef. 1	

Οι δύο πρώτες εντολές καλούν τη φόρμα με την οποία ορίζονται ο τύπος της απόκρισης ελέγχου και η συνιστώσα του μοντέλου στην οποία αντιστοιχεί (Control response), ο τύπος του κριτηρίου (Criterio type) και η τιμή του συντελεστή βάρους (Weighting coef.). Ο χρήστης μπορεί να επιλέξει αποκλειστικά από τη λίστα των διαθέσιμων αποκρίσεων του μοντέλου. Οι τύποι των κριτηρίων είναι οι έξι αριθμητικοί δείκτες που υποστηρίζονται στο μοντέλο βελτιστοποίησης, δηλαδή η

αποτελεσματικότητα, η μεροληψία ως προς τη μέση τιμή, την τυπική απόκλιση και τον συντελεστή μεταβλητότητας και οι δύο όροι ποινής, για την αναπαραγωγή των μηδενικών παροχών και της τάσης.

Τέλος, με επιλογή του πλήκτρου διαγραφής, διαγράφεται η επιλεγμένη συνιστώσα της συνάρτησης.

Εισαγωγή νέας συνάρτησης

Με πάτημα του δεύτερου πλήκτρου, εμφανίζεται στο προσκήνιο η φόρμα των ιδιοτήτων της συνάρτησης, με κενό τον πίνακα των κριτηρίων. Χρησιμοποιώντας το σχετικό εργαλείο προσθήκης κριτηρίων, εισάγονται οι επιμέρους συνιστώσες της νέας συνάρτησης.

Διαγραφή συνάρτησης

Με πάτημα του τρίτου πλήκτρου διαγράφεται η επιλεγμένη συνάρτηση από τον πίνακα, οπότε αλλάζει η αρίθμηση των κωδικών όλων των επόμενων στοχικών συναρτήσεων του μοντέλου. Επισημαίνεται ότι η πολυκριτηριακή βαθμονόμηση εκτελείται μόνο εφόσον διατίθενται δύο τουλάχιστον στοχικές συναρτήσεις.

7 Εκτέλεση λειτουργιών

Από το μενού Run της κεντρικής οθόνης εκτελούνται οι δύο κύριες λειτουργίες του μοντέλου, δηλαδή η προσομοίωση και η βελτιστοποίηση. Ακόμη, μέσω του συγκεκριμένου μενού, ελέγχεται η ακεραιότητα του μοντέλου, ώστε να εντοπιστούν θεμελιώδη σφάλματα ή απλές παραλείψεις.

🌱 Hyd	rogeios 2	2.0					
Project	Geodata	Scenario data	Calibration data	Run	Results	Help	
				Va	lidate net	work	
				Sir	nulation		
Ready		C:\U	sers\Andreas\Proje	Ot	otimization		if;

7.1 Έλεγχος εγκυρότητας δικτύου

Από το μενού Run → Validate network ελέγχεται η εγκυρότητα των δεδομένων και η ακεραιότητα του δικτύου. Αν εντοπιστεί κάποιο θεμελιώδες σφάλμα, τότε εμφανίζεται μήνυμα λάθους και δεν επιτρέπεται η εκτέλεση των λειτουργιών προσομοίωσης και βελτιστοποίησης.

7.2 Προσομοίωση

Από το μενού Run → Simulation εκτελείται μια πλήρης προσομοίωση του μοντέλου, για όλο τον χρονικό ορίζοντα ελέγχου. Η καθολική τιμή του μέτρου επίδοσης (στοχική συνάρτηση) για τις περιόδους βαθμονόμησης, F(calibration) και επαλήθευσης, F (validation), του μοντέλου αναγράφονται στο κάτω τμλημα της κεντρικής οθόνης της εφαρμογής.

Μετά το πέρας της προσομοίωσης, επικαιροποιούνται τα αποτελέσματα του μοντέλου, δηλαδή οι χρονοσειρές εξόδου καθώς και οι τιμές των κριτηρίων προσαρμογής, που αναφέρονται στις αποκρίσεις ελέγχου του προβλήματος βελτιστοποίησης.

7.3 Βελτιστοποίηση

Από το μενού Run → Calibration καλείται η σχετική φόρμα, μέσω της οποίας ο χρήστης παρακολουθεί τη διαδικασία βαθμονόμησης. Στη φόρμα απεικονίζονται, με τη μορφή πίνακα, οι μεταβλητές ελέγχου του προβλήματος βελτιστοποίησης και τα χαρακτηριατικά του μεγέθη, δηλαδή:

- ο αύξων αριθμός της μεταβλητής, δηλαδή η ομάδα στην οποία εντάσσεται η παράμετρος (Group)
- Ο τύπος της παραμέτρου στην οποία αντιστοιχεί η μεταβλητή (Parameter type)
- οι κωδικοί των συνιστωσών των οποίων η παράμετρος βαθμονομείται (Assigned objects)
- η ελάχιστη επιθυμητή τιμή της μεταβλητής (Min)
- η μέγιστη επιθυμητή τιμή της μεταβλητής (Max desirable)
- η τρέχουσα τιμή της μεταβλητής (Actual value)
- η βέλτιστη τιμή της μεταβλητής (Optimal value)

Πάνω αριστερά του πίνακα υπάρχουν τέσσερα πλήκτρα, που επιτελούν τις εξής λειτουργίες:

- έναρξη ολικής βελτιστοποίησης
- έναρξη πολυκριτηριακής βελτιστοποίησης
- διακοπή βελτιστοποίησης
- αντιγραφή στο πρόχειρο (Clipboard) των Windows

Ολική βελτιστοποίηση

Στην ολική βελτιστοποίηση εντοπίζονται οι τιμές των μεταβλητών ελέγχου ως προς το καθολικό μέτρο επίδοσης του μοντέλου, που προκύπτει σταθμίζοντας όλες τις αποκρίσεις ελέγχου και όλα τα κριτήρια, και με βάση τους αντίστοιχους συντελεστές βάρους, σε μια ενιαία αριθμητική έκφραση, η οποία ταυτίζεται με τη βαθμωτή στοχική συνάρτηση του προβλήματος.

Πατώντας το πρώτο πλήκτρο, καλείται ο αλγόριθμος ολικής βελτιστοποίησης και ξεκινά η διαδικασία αναζήτησης. Κάθε φορά που ο αλγόριθμος ελέγχει μια νέα λύση, δηλαδή ένα νέο σύνολο τιμών των μεταβλητών, εκτελείται μια μεμονωμένη προσομοίωση του μοντέλου για την περίοδο βαθμονόμησης και επικαιροποιούνται οι τιμές των κριτηρίων προσαρμογής. Μετά το πέρας της προσομοίωσης, απεικονίζεται στη στήλη Actual value η τρέχουσα τιμή των μεταβλητών και, σε περίπτωση που η λύση που εξετάστηκε είναι καλύτερη σε σχέση με την έως τώρα βέλτιστη, επικαιροποιείται και η τελευταία στήλη του πίνακα.

Στο κάτω μέρος της φόρμας δίνονται πληροφορίες κατάστασης της διαδικασίας, και συγκεκριμένα:

- ο αύξων αριθμός της τρέχουσας λύσης (Trial set)
- η τρέχουσα τιμή της στοχικής συνάρτησης (Obj. function value)
- η βέλτιστη τιμή της στοχικής συνάρτησης (Optimal value)

Επειδή ζητούμενο του προβλήματος είναι η ελαχιστοποίηση της στοχικής συνάρτησης, η εκάστοτε βέλτιστη τιμή είναι μικρότερη από κάθε προηγούμενη. Η αναζήτηση συνεχίζεται μέχρι να ικανοποιηθούν τα κριτήρια τερματισμού του αλγορίθμου. Κατά κανόνα, το κριτήριο που ικανοποιείται πρώτο είναι αυτό του μέγιστου αριθμού δοκιμών. Αν κατά τη διάρκεια της διαδικασίας ο χρήστης πατήσει το πλήκτρο διακοπής, τότε η διαδικασία σταματά μετά από ελάχιστο χρόνο (ώσπου να ολοκληρωθούν οι υπολογισμοί της τρέχουσας γενιάς λύσεων), και επιστρέφονται η έως τώρα βέλτιστες τιμές των παραμέτρων.

	Aodel c	alibration							X
(0	A A A A							
	Evolutio	on of control variables value	22						
	Group	Parameter type	Assigned objects	Initial value	Min desirable	Max desirable	Actual value	Optimal value	
	1	Groundwater cell porosity	4, 5, 6, 7, 8, 9,	0.048021	0.010000	0.200000	0.055048	0.040663	
L	2	Groundwater cell conductivity	0, 1, 2, 10, 11, 13, 1	-4.960820	-10.000000	0.000000	-3.533090	-3.552770	
	3	Groundwater cell conductivity	3, 12, 14, 18, 22, 24,	-6.952500	-10.000000	0.000000	-7.047080	-6.917030	
L	4	Groundwater cell conductivity	4, 5, 6, 7, 8, 9,	-3.430370	-10.000000	0.000000	-4.536550	-4.621480	
L	5	Groundwater cell conductivity	42,	-4.206610	-10.000000	0.000000	-5.774900	-5.461670	
L	6	Groundwater cell conductivity	43,	-6.432500	-10.000000	0.000000	-4.852860	-5.712800	
Т	rial s <mark>et =</mark>	138 Obj. function value =	17.857 Optim	al value = 10.14	14				

Πολυκριτηριακή βελτιστοποίηση

Στην πολυκριτηριακή βαθμονόμηση βελτιστοποιούνται οι μεταβλητές ελέγχου ως προς τις επιμέρους στοχικές συναρτήσεις του προβλήματος. Στην περίπτωση αυτή, και με το πάτημα του δεύτερου πλήκτρου, καλείται ο σχετικός αλγόριθμος, που αναζητά όχι μία ολική λύση αλλά έναν προεπιλεγμένο αριθμό συμβιβαστικών λύσεων. Οι λύσεις αυτές καλούνται μη κυριαρχούμενες (non-dominated) ή Pareto βέλτιστες, και θεωρούνται μαθηματικά ισοδύναμες. Επιπλέον, οφείλουν να ικανοποιούν τους περιορισμούς εφικτότητας στο πεδίο τιμών, δηλαδή να δίνουν τιμές συναρτήσεων μικρότερες από τα αποδεκτά όρια που θέτει ο χρήστης.

Κατά τη διάρκεια της διαδικασίας, ο χρήστης ενημερώνεται, στο κάτω δεξιά μέρος της φόρμας, σχετικά με το πλήθος των λύσεων, δηλαδή των συνδυασμών παραμέτρων, που είναι εφικτές (Feasible sets) και μη κατώτερες (Non-dominated sets). Η αναζήτηση τερματίζεται μόνο αν ολοκληρωθεί ο προβλεπόμενος αριθμός δοκιμών, και με την προϋπόθεση ότι το σύνολο του πληθυσμού αποτελείται από μη κυριαρχούμενες λύσεις.

8 Αποτελέσματα μοντέλου

Από το μενού Results της κεντρικής οθόνης απεικονίζονται τα αποτελέσματα του μοντέλου, στα οποία περιλαμβάνονται:

- το υδατικό ισοζύγιο του υδροσυστήματος
- Ο οι τιμές των κριτηρίων του προβλήματος βαθμονόμησης
- οι χρονοσειρές και τα στατιστικά χαρακτηριστικά των προσομοιωμλενων και παρατηρημλένων αποκρίσεων ελέγχου
- Οι τιμές του συνόλου και μετώπου μη κατωτέρων λύσεων (εφόσον έχει υλοποιηθεί πολυκριτηριακή βελτιστοποίηση)

Τα αποτελέσματα αναφέρονται στις παραμέτρους του μοντέλου της πλέον πρόσφατης προσομοίωσης ή, σε περίπτωση που έχει προηγηθεί βαθμονόμηση, στις παραμέτρους της βέλτιστης λύσης.

8.1 Υδατικό ισοζύγιο λεκάνης

Από το μενού Results → Water balance εμφανίζεται στο προσκήνιο η σχετική φόρμα, στην οποία απεικονίζονται, σε μορφή πίνακα, οι τιμές των χρονοσειρών του συνολικού υδατικού ισοζυγίου της λεκάνης. Οι χρονοσειρές δίνονται σε ισοδύναμα ύψη νερού και περιλαμβάνουν τις εξής συνιστώσες:

- Βροχόπτωση (Precipitation)
- Ξ Εξωτερικές εισροές (Ext. inflow)
- Πραγματική εξατμοδιαπνοή (Evaporation)
- Κατείσδυση (Percolation)
- Απώλειες λόγω διήθησης (Infiltration)
- Ξ Επιφανειακή απορροή (Surf. runoff)
- Aπορροή πηγών (Spring runoff)
- Κατανάλωση νερού (Withdrawal)
- Aντλήσεις (Pumping)
- Υπόγειες διαφυγές (Under. losses)
- Μεταβολή αποθήκευσης εδαφικής υγρασίας (Soil stor. dif.)
- Μεταβολή αποθήκευσης υπόγειου νερού (Ground. stor. dif.)

Απορροή εξόδου (Outlet runoff)

Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

River ba	isin water bala	ance												X
Water	balance timese	ries (values	expressed i	in mm)									(Ð
Date	Precipitation	Ext. inflow	Evaporation	Percolation	Infiltration	Surf. runoff	Spring runoff	Withdrawal	Pumping	Under, losses	Soil stor. dif.	Ground. stor.	Outlet runoff	~
Οκτ-84	10.027	0.000	15.188	0.963	0.753	0.000	9.679	0.000	0.000	90.365	-6.129	-88.667	8.926	
Noc-84	108.993	0.000	32.199	19.726	0.673	1.484	11.393	0.000	0.000	14.615	55.520	-4.192	12.205	
∆єк-84	89.131	0.000	23.656	27.204	0.631	3.070	11.853	0.000	0.000	11.768	35.156	4.354	14.292	
Ιαν-85	295.883	0.000	27.755	79.455	3.362	39.296	13.272	0.000	0.000	14.105	149.212	55.795	49.206	
Φεβ-85	73.650	0.000	33.817	52.677	0.987	12.798	12.916	0.000	0.000	10.340	-25.684	29.440	24.726	
Μαρ-85	93.883	0.000	56.058	42.513	1.036	12.038	14.307	0.000	0.000	12.447	-16.776	17.756	25.309	
Апр-85	51.303	1.175	79.463	23.366	0.802	6.039	13.239	6.293	0.000	6.343	-57.596	2.038	14.640	
Μαϊ-85	30.196	0.824	88.462	7.850	0.540	1.520	12.617	13.995	0.000	4.214	-67.648	-11.421	2.743	
louv-85	6.508	3.553	51.998	2.224	0.298	0.000	11.034	21.746	0.000	2.660	-47.717	-20.087	0.000	
C8-fiuol	4.401	11.709	23.992	0.598	0.242	0.000	10.416	27.603	0.000	3.514	-20.191	-19.428	0.000	
Αυγ-85	0.367	9.816	6.278	0.152	0.195	0.000	9.665	25.327	0.000	3.188	-6.063	-19.296	0.000	
Σεп-85	22.055	0.000	22.759	0.092	0.161	0.000	8.761	14.810	0.000	2.679	-0.808	-18.160	0.000	
Οκτ-85	110.990	0.000	52.217	14.812	0.222	1.365	9.139	0.000	0.000	5.122	42.529	0.980	10.282	
Noc-85	141.124	0.000	33.975	34.374	0.515	4.690	9.772	0.000	0.000	5.894	68.010	19.446	13.947	
∆ек-85	86.172	0.000	24.957	34.865	0.516	4.396	10.968	0.000	0.000	6.858	21.903	18.321	14.847	
lαv-86	60.330	0.000	27.356	30.076	0.645	4.365	11.384	0.000	0.000	5.567	-1.496	13.853	15.104	
Φεβ-86	120.140	0.000	36.144	39.633	1.044	10.166	10.799	0.000	0.000	5.639	34.131	23.190	19.920	
Μαρ-86	65.782	0.000	53.321	29.194	0.855	5.801	12.246	0.000	0.000	6.987	-22.566	11.978	17.192	
Апр-86	12.393	0.000	63.041	10.836	0.568	1.457	11.319	6.293	0.000	3.092	-62.949	-5.299	7.199	
Μαϊ-86	68.393	0.000	84.137	6.576	0.419	0.780	10.896	13.995	0.000	3.292	-23.141	-10.294	0.000	
louv-86	26.339	4.351	56.398	2.189	0.242	0.087	9.685	21.350	0.000	2.172	-32.347	-17.970	0.000	
1001-86	20.636	9.700	35.930	0.715	0.179	0.000	9.198	26.424	0.000	2.903	-16.019	-19.259	0.000	
Αυγ-86	7.809	9.642	13.451	0.246	0.141	0.000	8.556	25.232	0.000	2.669	-5.892	-18.511	0.000	
Σεπ-86	4.666	0.000	6.101	0.131	0.114	0.000	7.772	14.529	0.000	2.391	-1.568	-17.425	0.000	
Οκτ-86	154.739	0.000	55.224	22.743	0.237	4.069	8.479	0.000	0.000	5.170	72.624	9.832	12.311	
Noc-86	113.666	0.000	30.829	33.163	0.377	5.127	9.191	0.000	0.000	6.558	44.490	18.163	13.941	~

8.2 Τιμές κριτηρίων προσαρμογής

Από το μενού Results → Criteria values εμφανίζεται στο προσκήνιο η σχετική φόρμα, στην οποία δίνονται, σε μορφή πίνακα, οι τιμές των κριτηρίων προσαρμογής για όλες τις αποκρίσεις ελέγχου του μοντέλου. Αναλυτικότερες πληροφορίες (γραφήματα, στατιστικά χαρακτηριστικά) δίνονται στις επιμέρους φόρμες, που είναι διαθέσιμες από το μενού Results → Response time series.

Η συνοπτική φόρμα των κριτηρίων περιέχει δύο καρτέλες, όπου η πρώτη αναφέρεται στην περίοδο βαθμονόμησης (Calibration period) και η δεύτερη στην περίοδο επαλήθευσης (Validation period). Τα δεδομένα κάθε απόκρισης απεικονίζονται στις στήλες του πίνακα με την ακόλουθη σειρά:

κωδικός απόκρισης (id)

τύπος απόκρισης (Response type)

συνιστώσα μοντέλου στην οποία αναφέρεται η απόκριση (Model component)

συντελεστής βάρους για τον δείκτη αποτελεσματικότητας (Efficiency)

συντελεστής βάρους για τη μεροληψία της μέσης τιμής (Average bias)

συντελεστής βάρους για τη μεροληψία της τυπικής απόκλισης (St. dev. bias)

συντελεστής βάρους για τη μεροληψία του συντελεστή μεταβλητότητας (Coeff. var. bias)

• συντελεστής βάρους για την ποινή αναπαραγωγής μηδενικών παροχών (Interm.

penalty)

συντελεστής βάρους για την ποινή αναπαραγωγής τάσης (Trend penalty)

σταθμισμένο άθροισμα (RESULT)

Το σταθμισμένο άθροισμα υπολογίζεται πολλαπλασιάζοντας την τιμή των επιμέρους κριτηρίων επί τους αντίστοιχους συντελεστές βάρους.

Στο κάτω μέρος της καρτέλας απεικονίζεται η τιμή της στοχικής συνάρτησης (Objective function value) της αντίστοιχης περιόδου ελέγχου, η οποία προκύπτει προσθέτοντας όλα τα σταθμισμένα αθροίσματα.

_	Persona tune	Model component	Efficiency	Average bias	St day hise	Coof yer biss	Interm penaltu	Trend penaltu	Іргення
	River discharge	Έξοδος πορς Χζίκη	0.820	-0.086	-0.133	-0.051	1 414		0.718
	Spring discharge	Lilea	0.626	-0.152	-0.384	-0.274	-1E012	2 782	1.033
	Spring discharge	Mauroneri	0.001	-0.095	-0.819	-0.800	1 291	0.000	1.998
	Spring discharge	Aq. Paraskeui	-0.034	-0.165	-0.423	-0.309	-1E012	3.770	1.034
	Spring discharge	Erkyna	0.543	0.051	-0.046	-0.092	-1E012	0.000	0.457
	Spring discharge	Melanas	-0.024	0.009	-0.188	-0.196	-1E012	0.000	2.048
	Spring discharge	Polygyra	-0.057	-0.044	-0.517	-0.495	-1E012	0.000	1.057

8.3 Χρονοσειρές αποκρίσεων ελέγχου

Από το μενού Results → Response time series εμφανίζεται στο προσκήνιο η σχετική φόρμα, στην οποία κάθε απόκριση ελέγχου απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Response i, όπου i ο αντίστοιχος κωδικός. Στο πάνω μέρος της καρτέλας απεικονίζονται ο τύπος της απόκρισης (Response type) και η συνιστώσα μοντέλου στην οποία αναφέρεται (Model component). Αριστερά απεικονίζονται δύο πίνακες, στους οποίους δίνονται διάφορα στατιστικά μεγέθη (Statistics) καθώς και μεγέθη που αναφέρονται στα κριτήρια προσαρμογής, που αποτιμούν την επίδοση του μοντέλου (Performance criteria).

Calibrated model response	es					×
Properties			Discharg	a sarias (m3/s)		
Topenes			Discharg	e senes (muss)		
Response type Riv	ver discharge		Date	Simulated	Observed	^
	C		Οκτ-84	6.174	4.400	
Model component Esc	οδος προς Υπικη (Τ	5)	Noε-84	8.724	7.700	
			∆єк-84	9.886	10.200	
Statistics			Ιαν-85	34.038	38.600	
Charles and an annual	le-share	Iv-ra-e I	Φεβ-85	18.937	18.500	
Statistical measure	Lalibration	Validation	Μαρ-85	17.507	24.500	
Average of observed series	7.437	5.502	Апр-85	10.465	19.800	
Average of simulated series	6.796	6.675	Μαϊ-85	1.898	6.600	
St. deviation of observed series	8.360	6.683	louv-85	0.000	2.800	
St. deviation of simulated series	7.249	8.526	loui-85	0.000	0.000	
Loef, of variation of observed se	eries 1.124	1.215	Αυγ-85	0.000	0.200	
Loef, of variation of simulated se	eries 1.067	1.277	Σεπ-85	0.000	2.400	
			Οκτ-85	7.113	6.700	
Performance criteria			Noc-85	9.969	10.200	
Performance measure Calib	pration Validation	Weight	∆єк-85	10.271	11.600	
Model efficiency 0.82	0 0.649	4.000	Ιαν-86	10.448	10.300	
Average bias -0.08	36 0.213	0.000	Φεβ-86	15.256	16.700	
St. deviation bias -0.13	33 0.276	0.000	Μαρ-86	11.893	15.700	
Coef. of variation bias -0.05	51 0.052	0.000	Апр-86	5.146	7.300	
Interminent flow error 1.41	4 0.977	0.000	Μαϊ-86	0.000	3.800	
Trend penalty 0.00	0 0.000	0.000	louv-86	0.000	0.800	
Value in obj. function 0.71	8 1.404		100 <u>9</u> -86	0.000	0.000	~
			·	10.000	0.000	
	Discharc	re (m3/s)				
						ed 🛛
40					Observe	ed
35		d L d L 1 1 1 1 1 1 1 1 1		!	1	_
30		4	++-	!	-1-	
25	••••••	· · · · · · · · · · · · · · · · · · ·	NETTE		-1-	
20	Arright	•	tt			
15 + + + + + + + + + + + + + + + + + + +	71 - A - A	.	•			
10 1 7 1 7	' i - <i>i f</i> i - <i>f</i> '	t di Kirriti		···· Δ··· (* †		
5		$\{ f \} $				
0		- <u>Ind</u>		1	20 \$	
-85 -85 -86 -86 -86 -86 -86 -86 -186 -186 -186	-8- -82 -82 -82 -82 -82 -82 -82 -82 -82	x & 6 6 6	-9- -92	-92 -93 -94	-94	
	Мар Ген Мар Ген	тэд Цам Цам	мар Пад		Σεπ	
Response 0 (Response 1 (Res	sponse 2 <u>(</u> Respons	<u>e 3 (Response</u>	4 (Respons	e 5 (Response 6 /		

Τα στατιστικά μεγέθη, που υπολογίζονται χωριστά για τις περιόδους βαθμονόμησης (Calibration) και επαλήθευσης (Validation), τόσο στην παρατηρημένη (εφόσον υπάρχει) όσο και στην προσομοιωμένη χρονοσειρά απόκρισης, είναι:

- η μέση τιμή της παρατηρημένης χρονοσειράς (Average of observed series)
- η μέση τιμή της προσομοιωμένης χρονοσειράς (Average of simulated series)
- η τυπική απόκλιση της παρατηρημένης χρονοσειράς (St. deviation of observed)

series)

- η τυπική απόκλιση της προσομοιωμένης χρονοσειράς (St. deviation of simulated series)
- ο συντελεστής μεταβλητότητας της παρατηρημένης χρονοσειράς (Coef. of variation of observed series)
- ο συντελεστής μεταβλητότητας της προσομοιωμένης χρονοσειράς (Coef. of variation of simulated series)

Επισημαίνεται ότι τα παρατηρημένα δείγματα μπορεί να περιέχουν κενά, οπότε δεν καλύπτουν το σύνολο της περιόδου ελέγχου. Στην περίπτωση αυτή, τα στατιστικά χαρακτηριστικά τους δεν είναι άμεσα συγκρίσιμα με αυτά των προσομοιωμένων αποκρίσεων. Βεβαίως, κατά τον υπολογισμό των μέτρων προσαρμογής και τους δείκτες μεροληψίας, οι δύο χρονοσειρές (παρατηρημένη και προσομοιωμένη) συγκρίνονται μόνο ως προς την κοινή τους περίοδο.

Ο πίνακας των κριτηρίων επίδοσης περιέχει τις τιμές που υπολογίζονται κατά τη βαθμονόμηση και επαλήθευση, καθώς και τους αντίστοιχους συντελεστές βάρους. Στην τελευταία γραμμή του πίνακα δίνεται το σταθμισμένο άθροισμα, που αποτελεί συνιστώσα της στοχικής συνάρτησης.

Στο δεξιό μέρος της καρτέλας δίνονται η προσομοιωμένη και παρατηρημένη (εφόσον υπάρχει) χρονοσειρά απόκρισης, οι οποίες απεικονίζονται στο διάγραμμα που βρίσκεται στο κάτω μέρος. Με πάτημα του πλήκτρου πάνω δεξιά, οι χρονοσειρές αντιγράφονται στο πρόχειρο (Clipboard) των Windows.

8.4 Σύνολο λύσεων Pareto

Από το μενού Results → Pareto set εμφανίζεται στο προσκήνιο η σχετική φόρμα, στην οποία δίνονται οι τιμές των μεταβλητών ελέγχου (παραμέτρων) του τελικού πληθυσμού, που προκύπτουν από τη διαδικασία πολυκριτηριακής βαθμονόμησης. Κάθε μεταβλητή απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Parameter i, όπου i ο αντίστοιχος κωδικός. Στα αριστερά της καρτέλας αναγράφονται ο τύπος της μεταβλητής, οι συνιστώσες του μοντέλου στις οποίες αντιστοιχεί η εν λόγω μεταβλητή και ορισμένα χαρακτηριστικά μεγέθη του πληθυσμού. Συγκεκριμένα:

- το κατώτερο όριο του πεδίου αναζήτησης (Lower bound)
- το ανώτερο όριο του πεδίου αναζήτησης (Upper bound)
- η μέση τιμή (Average)
- η τυπική απόκλιση (St. deviation)
- η ελάχιστη τιμή (Minimum value)
- η μέγιστη τιμή (Maximum value)
- η τιμή που αντιστοιχεί στην πλέον συμβιβαστική λύση (Best-compromise value)

Στο δεξιό μέρος της καρτέλας δίνονται οι τιμές του πληθυσμού (Values), δηλαδή το σύνολο λύσεων (Set), και επισημαίνεται αν είναι Pareto βέλτιστες ή όχι. Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

🌱 Par	eto set							
Туре	Groundwa	ater porosity			Parame	ter values		
Assian	ad compa	nonto			Set	Value	Pareto	^
Assign	eu compo	ments			1	0.043439	Yes	
Туре		Name			2	0.043349	Yes	
Ground	dwater cell	Erkyna (id = 4)		3	0.041238	Yes	
Ground	dwater cell	Paraskeui (id	= 5)		4	0.041868	Yes	
Ground	dwater cell	Melanas (id =	6)		5	0.042271	Yes	
Ground	dwater cell	Polygyra (id =	7)		6	0.044188	Yes	
Ground	dwater cell	Mauroneri (id	= 8)		7	0.042622	Yes	
Ground	dwater cell	Lilea (id = 9)			8	0.043528	Yes	
					9	0.045646	Yes	
					10	0.041651	Yes	
Statist	ics				11	0.042611	Yes	
Statisti	cal measure	9			12	0.041052	Yes	
Lower	bound		0.010000		13	0.043176	Yes	
Upper	bound		0.200000		14	0.041028	Yes	
Averac	le		0.042501		15	0.041862	Yes	
St. dev	,- riation		0.000089		16	0.042757	Yes	
Minimu	m value		0.029147		17	0.040952	Yes	
Maxim	um value		0.045820		18	0.043754	Yes	
Best-co	ompromise v	value	0.043602		19	0.042813	Yes	
					20	0.044599	Yes	~
Param	eter 1 (Par	ameter 2 (Para	meter 3 (Parameter	A (Parar	neter 5 / P	Parameter 6 (Para	ameter 7 /	
(r aram			meter o'Ar arameter		noter o Ar	arameter o Ar ar		

8.5 Μέτωπο Pareto

Από το μενού Results → Pareto front εμφανίζεται στο προσκήνιο η σχετική φόρμα, στην οποία δίνονται οι τιμές των επιμέρους συναρτήσεων που αντιστοιχούν στο σύνολο Pareto, οι οποίες προκύπτουν από τη διαδικασία πολυκριτηριακής βαθμονόμησης. Κάθε συνάρτηση απεικονίζεται σε ξεχωριστή καρτέλα με την ονομασία Function i, όπου i ο αντίστοιχος κωδικός. Αριστερά της καρτέλας δίνονται οι ιδιότητες της συνάρτησης (ονομασία, οριακή τιμή) και τα χαρακτηριστικά των συνιστωσών της, δηλαδή των κριτηρίων προσαρμογής από τα οποία έχει προκύψει.

Στο δεξιό μέρος της καρτέλας δίνονται οι τιμές της πολυκριτηριακής συνάρτησης για τις περιόδους βαθμονόμησης και επαλήθευσης. Με πάτημα του πλήκτρου πάνω δεξιά, ο πίνακας αντιγράφεται στο πρόχειρο (Clipboard) των Windows.

Στο κάτω μέρος απεικονίζεται, με τη μορφή διαγράμματος, η τομή του μετώπου Pareto που προκύπτει με βάση τις τιμές της συνάρτησης που επιλέγει ο χρήστης από τη σχετική λίστα στο κάτω μέρος του οριζόντιου άξονα και τις τιμές της τρέχουσας συνάρτησης, που δίνονται στον κατακόρυφο άξονα. Δεδομένου ότι όλες οι συναρτήσεις διατυπώνονται με ζητούμενο την ελαχιστοποίησή τους, τα σημεία του μετώπου απεικονίζονται, εξ ορισμού, στο κάτω αριστερά άκρο του διαγράμματος.

areto front											
Properties									Pareto	front values	
Name All sp	oring efficiency					Upper bo	ound 10.0	00	Set	Calibration	Validation
									1	5 413	4 212
									2	8 733	4 981
unction com	ponents (co	ntrol respon	ises and	criteria	3)				3	13 109	9 507
Response type	Model	component	Crite	rio type		lw	eighting coe	ef.	4	6.079	4 279
Spring discharg	je Lilea		Effic	iency		1./	000		5	7 296	5177
Spring discharg	je Mauroi	neri	Effic	iency		1.9	000		6	114,909	19.098
Spring discharg	je Ag. Pa	raskeui	Effic	iency		1.9	000		7	5 725	4 118
Spring discharg	je Erkyna	1	Effic	iency		1.9	000		8	6.971	4.851
Spring discharg	je Melana	as	Effic	iency		1.9	000		9	6.451	4.845
Spring discharg	je Polygyi	ra	Effic	iency		1.0	000		10	5.913	4,446
									11	5.792	4.242
itatistics									12	6.089	4.383
	Average	St. dev	ЬM	in value	. Ім	av value	Besty	alue	13	5.672	4.314
Calibration	12.628	59 791	5	011	; IM 11	4 909	5.011	aiue	14	5.805	4.114
Validation	5.819	2 233	3	289	25	156	3.289		15	5.396	4.232
	0.010	2.200		205	2.	.150	0.200		16	6.199	4.732
									17	6.347	4.634
			Pareto	front					18	5.996	4.317
		i				;			19	6.095	4.524
0.26									20	5.158	3.772
_ 0.24									21	6.337	4.527
									22	5.821	4.136
G 0.22		1							23	7.118	5.237
$\frac{2}{2}$ 0.2									24	6.064	4.678
∯ 0.18 					+				25	7.762	5.077
ĕ ₀₁₆		•••••·····							26	7.114	4.848
0.10		A DESCRIPTION OF THE OWNER OF THE			-				27	5.918	4.401
0.14									28	5.831	4.565
L	+ 10								29	5.669	4.316
		w and a second s	.~		0,	Ę	÷	÷	30	101.911	25.156
									31	5.526	4.054
			E and the								