varBLRPM {HyetosMinute}R Documentation

Variance for the non-random Bartlett-Lewis rectangular pulse model

Description

The function varBLRPM is the modelled variance of rainfall using the equation of original Bartlett-Lewis rectangular pulse model. The model supports exponential, gamma and Weibul distribution for cell intensity.

Usage

varBLRPM(l,g,b,n,mx,h,sxmx,weibTF)   

Arguments

l

Parameter of Bartlett-Lewis rectangular pulse model which determines the storm arrivals according to a Poisson process.

b

Parameter of Bartlett-Lewis rectangular pulse model which determines the cell arrivals according to a Poisson process.

g

Parameter of Bartlett-Lewis rectangular pulse model which determines the entire length of the storm according to an exponential distribution.

n

Parameter of Bartlett-Lewis rectangular pulse model which determines the individual cell lengths according to an exponential distribution.

mx

A positive number that specifies the mean of cell intensities.

h

Time scale (e.g. 1/60, 1/30, 1/12, 1, 6, 12, 24 hour etc.).

sxmx

A positive number that specifies the ratio of standard deviation to mean cell intensity.

weibTF

Logical value that specifies if the intensities follow the Weibull distribution.

Value

var

Variance of rainfall depths.

Author(s)

Kossieris Panagiotis pankoss@hotmail.com

References

Rodriguez-Iturbe I., D. R. Cox, and V. Isham, Some models for rainfall based on stochastic point processes, Proc. R. Soc. Lond., A 410, 269-288, 1987.


[Package HyetosMinute version 2.2 Index]