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Abstract. The upper part of a probability distribution, usu-
ally known as the tail, governs both the magnitude and the
frequency of extreme events. The tail behaviour of all prob-
ability distributions may be, loosely speaking, categorized
into two families: heavy-tailed and light-tailed distributions,
with the latter generating “milder” and less frequent extremes
compared to the former. This emphasizes how important for
hydrological design it is to assess the tail behaviour correctly.
Traditionally, the wet-day daily rainfall has been described
by light-tailed distributions like the Gamma distribution, al-
though heavier-tailed distributions have also been proposed
and used, e.g., the Lognormal, the Pareto, the Kappa, and
other distributions. Here we investigate the distribution tails
for daily rainfall by comparing the upper part of empirical
distributions of thousands of records with four common the-
oretical tails: those of the Pareto, Lognormal, Weibull and
Gamma distributions. Specifically, we use 15 029 daily rain-
fall records from around the world with record lengths from
50 to 172 yr. The analysis shows that heavier-tailed distribu-
tions are in better agreement with the observed rainfall ex-
tremes than the more often used lighter tailed distributions.
This result has clear implications on extreme event modelling
and engineering design.

1 Introduction

Heavy rainfall may induce serious infrastructure failures and
may even result in loss of human lives. It is common then
to characterize such rainfall with adjectives like “abnormal”,
“rare” or “extreme”. But what can be considered “extreme”
rainfall? Behind any discussion on the subjective nature of

such pronouncements, there lies the fundamental issue of in-
frastructure design, and the crucial question of the threshold
beyond which events need not be taken into account as they
are considered too rare for practical purposes. This question
is all the more pertinent in view of the EU Flooding Direc-
tive’s requirement to consider “extreme (flood) event scenar-
ios” (European Commission, 2007).

Although short-term prediction of rainfall is possible to a
degree (and useful for operational purposes), long-term pre-
diction, on which infrastructure design is based, is infeasible
in deterministic terms. We thus treat rainfall in a probabilistic
manner, i.e., we consider rainfall as a random variable (RV)
governed by a distribution law. Such a distribution law en-
ables us to assign a return period to any rainfall amount, so
that we can then reasonably argue that a rainfall event, e.g.,
with return period 1000 yr or more, is indeed an extreme. Yet,
which distribution law we should choose is still a matter of
debate.

The typical procedure for selecting a distribution law for
rainfall is to (a) try some of many, a priori chosen, parametric
families of distributions, (b) estimate the parameters accord-
ing to one of many existing fitting methods, and (c) choose
the one best fitted according to some metric or fitting test.
Nevertheless, this procedure does not guarantee that the se-
lected distribution will model adequately the tail, which is
the upper part of the distribution that controls both the mag-
nitude and frequency of extreme events. On the contrary, as
only a very small portion of the empirical data belongs to the
tail (unless a very large sample is available), all fitting meth-
ods will be “biased” against the tail, since the estimated fit-
ting parameters will point towards the distribution that best
describes the largest portion of the data (by definition not
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belonging to the tail). Clearly, an ill-fitted tail may result
in serious errors in terms of extreme event modelling with
potentially severe consequences for hydrological design. For
example, in Fig. 1 where four different distributions are fitted
to the empirical distribution tail, it can be observed that the
predicted magnitude of the 1000-yr event varies significantly.

The distributions can be classified according to the asymp-
totic behaviour of their tail into two general classes: (a) the
subexponential class with tails tending to zero less rapidly
than an exponential tail (here the term “exponential tail” is
used to describe the tail of the exponential distribution), and
(b) the hyperexponential or the superexponential class, with
tails approaching zero more rapidly than an exponential tail
(Teugels, 1975; Kl̈uppelberg, 1988, 1989). Mathematically,
this “intuitive” definition of the subexponential class for a
distribution functionF is expressed as

lim
x→∞

1− F(x)

exp(−x/β)
= ∞ ∀β > 0, (1)

while several equivalent mathematical conditions, in order to
classify a distribution as subexponential, have been proposed
(see, e.g., Embrechts et al., 1997; Goldie and Klüppelberg,
1998). Furthermore, this is not the only classification, as sev-
eral other exist (see, e.g., El Adlouni et al., 2008, and refer-
ences therein). In addition, many different terms have been
used in the literature to refer to tails “heavier” than the expo-
nential, e.g., “heavy tails”, “fat tails”, “thick tails”, or, “long
tails”, that may lead to some ambiguity: see for example the
various definitions that exist for the class of heavy-tailed dis-
tributions discussed by Werner and Upper (2004). Here, we
use the term “heavy tail” in an intuitive and general way, i.e.,
to refer to tails approaching zero less rapidly than an expo-
nential tail.

The practical implication of a heavy tail is that it predicts
more frequent larger magnitude rainfall compared to light
tails. Hence, if heavy tails are more suitable for modelling
extreme events, the usual approach of adopting light-tailed
models (e.g., the Gamma distribution) and fitting them on
the whole sample of empirical data would result in a signif-
icant underestimation of risk with potential implications for
human lives. However, there are significant indications that
heavy tailed distributions may be more suitable. For exam-
ple, in a pioneering study Mielke (1973) proposed the use
of the Kappa distribution, a power-type distribution, to de-
scribe daily rainfall. Today there are large databases of rain-
fall records that allow us to investigate the appropriateness of
light or heavy tails for modelling extreme events. This is the
subject in which this paper aims to contribute.

2 The dataset

The data used in this study are daily rainfall records from
the Global Historical Climatology Network-Daily database
(version 2.60,www.ncdc.noaa.gov/oa/climate/ghcn-daily),

Fig. 1. Four different distribution tails fitted to an empirical tail (P,
LN, W and G stands for the Pareto, the Lognormal, the Weibull
and the Gamma distribution). A wrong choice may lead to severely
underestimated or overestimated rainfall for large return periods.

which includes over 40 000 stations worldwide. Many of the
records, however, are too short, have many missing data, or
contain data that are suspect in terms of quality (for details
regarding the quality flags refer to the Network’s website
above).

Thus, only records fulfilling the following criteria were se-
lected for the analysis: (a) record length greater or equal than
50 yr, (b) missing data less than 20 %, and (c) data assigned
with “quality flags” less than 0.1 %. Among the several dif-
ferent quality flags assigned to measurements, we screened
against two: values with quality flags “G” (failed gap check)
or “X” (failed bounds check). These were used to flag sus-
piciously large values, i.e., a sample value that is orders of
magnitude larger than the second larger value in the sample.
Whenever such a value existed in the records it was deleted
(this, however, occurred in only 594 records in total, and in
each of these records typically one or two values had to be
deleted). Screening with these criteria resulted in 15 137 sta-
tions. The locations of these stations as well as their record
lengths can be seen in Fig. 2, while Table 1 presents some ba-
sic summary statistics of the nonzero daily rainfall of those
records.

We note that we did not fill any missing values as we
deemed it meaningless for this study, focusing on extreme
rainfall, because any regression-type technique would under-
estimate the real values. Missing values only affect the effec-
tive record length and, given the relatively high lower limit of
record length we set (50 yr, while much smaller records are
often used in hydrology, e.g., 10–30 yr), the resulting prob-
lem was not serious. Additionally, the percentage 20 % of
missing daily values refers to the worst case and is actually
much smaller in the majority of the records; thus, missing
values would not alter or modify the conclusions drawn.

Finally, we note that the statistical procedure we describe
next failed in a few records, for reasons of algorithmic con-
vergence or time limits. Excluding these records, the total
number of records where the analysis was applied is 15 029.

Hydrol. Earth Syst. Sci., 17, 851–862, 2013 www.hydrol-earth-syst-sci.net/17/851/2013/
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Fig. 2.Locations of the stations studied (a total of 15 137 daily rainfall records with time series length greater than 50 yr). Note that there are
overlaps with points corresponding to high record lengths shadowing (being plotted in front of) points of lower record lengths.

3 Defining and fitting the tail

The marginal distribution of rainfall, particularly at small
time scales like the daily, belongs to the so-called mixed type
distributions, with a discrete part describing the probability
of zero rainfall, or the probability dry, and a continuous part
expressing the magnitude of the nonzero (wet-day) rainfall.
As suggested earlier, studying extreme rainfall requires fo-
cusing on the behaviour of the distribution’s right tail, which
governs the frequency and the magnitude of extremes.

If we denote the rainfall withX, and the nonzero rain-
fall with X|X > 0, then the exceedence probability function
(EPF; also known as survival function, complementary dis-
tribution function, or tail function) of the nonzero rainfall,
using common notation, is defined as

P (X > x|X > 0) = F̄X|X>0(x) = 1− FX|X>0(x), (2)

whereFX|X>0 (x) is any valid probability distribution func-
tion chosen to describe nonzero rainfall. It should be clear
that the unconditional EPF is easily derived if the probabil-
ity dry p0 is known:F̄X(x) = (1− p0) F̄X|X>0(x). Since we
focus on the continuous part of the distribution, and more
specifically on the right tail, from this point on, for notational
simplicity we omit the subscript in̄FX|X>0(x) denoting the
conditional EPF function simply as̄F(x). To avoid ambigu-
ity due to the term “tail function” for EPF, we clarify that we

Table 1. Some basic statistics of the 15 137 records of daily rain-
fall. Apart from probability dry (Pdry), these statistics are for the
nonzero daily rainfall.

No. of nonzero Median Mean SD
Pdry (%) values (mm) (mm) (mm) Skew

min 15.11 320 0.40 1.00 1.76 1.37
Q5 53.92 2121 1.70 3.61 5.01 2.36
Q25 68.55 4038 3.00 6.18 8.28 2.85
Q50 76.35 5973 4.80 9.27 12.08 3.28
(Median)
Q75 83.65 8497 6.90 12.65 16.42 3.94
Q95 91.36 13 060 10.20 17.75 24.25 5.38
max 98.25 27 867 25.70 83.96 158.02 26.31
Mean 75.13 6604 5.18 9.77 12.97 3.56
SD 11.46 3508 2.70 4.60 6.20 1.31
Skew −0.74 1.12 1.03 1.16 1.88 5.58

use the term “tail” to refer only to the upper part of the EPF,
i.e., the part that describes the extremes.

At this point, however, we need to define what we con-
sider as the upper part. A common practice is to set a lower
threshold valuexL (see, e.g., Cunnane, 1973; Tavares and
Da Silva, 1983; Ben-Zvi, 2009) and study the behaviour for
values greater thanxL . Yet, there is no universally accepted
method to choose this lower value. A commonly accepted
method (known as partial duration series method) is to de-
termine the threshold indirectly based on the empirical dis-
tribution, in such a way that the number of values above the
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threshold equals the number of yearsN of the record (see,
e.g., Cunnane, 1973). The resulting series, defined in this
way, is known in the literature as annual exceedance series
and is a standard method for studying extremes in hydrology
(see, e.g., Chow, 1964; Gupta, 2011).

This may look similar to another common method in
which theN annual maxima of theN years are extracted
and studied. However, the method of annual maxima, by se-
lecting the maximum value of each year, may distort the tail
behaviour (e.g., when the three largest daily values occur
within a single year, it only takes into account the largest
of them). For this reason, instead of studying theN daily an-
nual maxima, here we focus on theN largest daily values of
the record, assuming that these values are representative of
the distribution’s tail and can provide information for its be-
haviour. Thus, the method adopted here has the advantage of
better representing the exact tail of the parent distribution.

It is worth noting that a common method of studying se-
ries above a threshold value is based on the results obtained
by Balkema and de Haan (1974) and Pickands III (1975).
Loosely speaking, according to these results the conditional
distribution above the threshold converges to the General-
ized Pareto as the threshold tends to infinity. The latter in-
cludes, as a special case, the Exponential distribution. We
note, though, that these results are asymptotic results, i.e.,
valid (or providing a good approximation) if this threshold
value tends to infinity (or if it is very large). In the case
where the parent distribution is of power type or of expo-
nential type, the theory is applicable even for not so large
threshold values because the convergence of the tail is fast.
In other cases, e.g., Lognormal or Stretched Exponential dis-
tributions, the convergence is very slow. The same applies to
the classical extreme value theory (EVT), which predicts that
the distribution of maxima converges to one of the three ex-
treme value distributions. For some examples illustrating the
slow convergence to the asymptotic distributions of EVT (the
same philosophy applies for Balkema–de Haan–Pickands
theorem), see, e.g., Papalexiou and Koutsoyiannis (2013) and
Koutsoyiannis (2004a).

Given that each station has anN -year record of daily val-
ues and a total numbern of nonzero values, we define the
empirical EPFF̄N (xi), conditional on nonzero rainfall, as
the empirical probability of exceedence (according to the
Weibull plotting position):

F̄N (xi) = 1−
r(xi)

n + 1
, (3)

wherer(xi) is the rank of the valuexi , i.e., the position of
xi in the ordered samplex(1) ≤ ... ≤ x(n) of the nonzero val-
ues. Thus, the empirical tail is determined by theN largest
nonzero rainfall values of̄FN (xi) with n − N + 1 ≤ i ≤ n

(note thatxL = x(n−N+1)). Some basic summary statistics of
the series of theN largest nonzero rainfall values are pre-
sented in Table 2.

Obviously the number of nonzero daily rainfall values is
n = (1− p0)ndN wherend = 365.25 is the average number
of the days in a year. According to the Weibull plotting po-
sition given in Eq. (3), the exceedence probabilityp̄(xL) of
xL will be

p̄(xL) = 1−
n − N + 1

n + 1
=

N

(1− p0)ndN + 1
≈

1

(1− p0)nd.
(4)

This shows that the exceedence probability of the threshold
xL depends only on the probability dryp0. Interestingly, the
averagep0 of the records analysed in this study is approxi-
mately 0.75, which implies that the exceedence probability
of xL is on average as low as 0.01, while even forp0 = 0.95
its value is 0.055. We deem that values above this threshold
can be assumed to belong to the tail of the distribution. We
note that there are studies (see e.g., Beguerı́a et al., 2009)
in which the threshold value was chosen to correspond to
the 90th percentile, a value much smaller than the one cor-
responding to our choice of threshold. In Sect. 6 we discuss
further the selection of the threshold, also in comparison with
different methods of selection.

The fitting method we follow here is straightforward, i.e.,
we directly fit and compare the performance of different the-
oretical distribution tails to the empirical tails estimated from
the daily rainfall records previously described. The theoreti-
cal tails are fitted to the empirical ones by minimizing numer-
ically a modified mean square error (MSE) norm N1 defined
as

N1 =
1

N

n∑
i=n−N+1

(
F̄ (x(i))

F̄N (x(i))
− 1

)2

. (5)

A complete verification of the method and a comparison with
other norms is presented in Sect. 6. Here we only note that its
rationale (and advantage over classical square error norms)
is that it properly “weights” each point that contributes in
the sum. Namely, it considers the relative error between the
theoretical and the empirical values rather than using thex

values themselves. For example, if we consider the classical
square error, i.e.,(xi − xu)

2, with xu denoting the quantile
value for probabilityu equal to the empirical probability of
the valuexi , then large values would contribute much more
to the total error than the smaller ones. This may be a prob-
lem especially for rainfall records where the values usually
differ more than one order of magnitude, e.g., from 0.1 mm
to more than 100 mm. Obviously, the best fitted tail for a
specific record is considered to be the one with the smallest
MSE.

The proposed approach, which fits the theoretical distribu-
tion only to the largest points of each dataset, ensures that
the fitted distribution provides the best possible description
of the tail and is not affected by lower values. As an example
of the fitting method, Fig. 3 depicts the Weibull distribution
fitted to an empirical sample (the station was randomly se-
lected and has code IN00121070) by minimizing the norm
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Fig. 3. Explanatory diagram of the fitting approach followed. The
dashed line depicts a Weibull distribution fitted to the whole empir-
ical distribution points, while the solid red line depicts the distribu-
tion fitted only to the tail points.

given by Eq. (5) in two ways: (a) in all the points of the em-
pirical distribution, and (b) in only the largestN points. It is
clear that the first approach (dashed line) does not adequately
describe the tail.

It is well known that several other methods have been ex-
tensively used to estimate the parameters of candidate dis-
tributions, e.g., the lognormal maximum likelihood and the
log-probability plot regression (Kroll and Stedinger, 1996),
and more recently the log partial probability weighted mo-
ments and the partial L-moments (Wang, 1996; Bhattarai,
2004; Moisello, 2007). Yet, the advantage of the proposed
method is that any tail can be fitted in the same manner and
can be directly compared with other fitted tails since the re-
sulting MSE value can clearly indicate the best fitted; in the
aforementioned methods an additional measure has to be es-
timated in order to compare the performance of the fitted dis-
tributions.

4 The fitted distribution tails

It is clear from the previous section that any tail can be fitted
to the empirical ones. Nevertheless, in this study we fit and
compare the performance of four different and common dis-
tribution tails, i.e., the tails of the Pareto type II (PII) the Log-
normal (LN), the Weibull (W), and the Gamma (G) distribu-
tions. These distributions were chosen for their simplicity,
popularity, as well as for being tail-equivalent (or for having
similar asymptotic behaviour) with many other more compli-
cated distributions. It is reminded that two distribution func-
tionsF andG with support unbounded to the right are called
tail-equivalent if limx→∞ F̄ (x)/Ḡ(x) = c with 0 < c < ∞.

The Pareto and the Lognormal distributions belong to
the subexponential class and are considered heavy-tailed

Table 2.Some basic statistics of the 15 137 tail samples defined for
anN -year record as theN largest nonzero values.

No. of tail Median Mean SD Max
values (mm) (mm) (mm) (mm)

min 50 8.90 10.42 3.01 21.50
Q5 52 28.30 31.71 8.61 68.60
Q25 61 43.55 48.24 13.85 110.00
Q50 70 62.75 69.12 19.01 152.40
(Median)
Q75 97 85.30 93.72 27.59 218.40
Q95 122 130.30 144.70 47.48 357.60
max 172 977.00 1041.02 395.96 1750.00
Mean 79 68.78 76.01 22.50 175.06
SD 23 34.84 38.20 13.21 93.42
Skew 0.80 2.73 2.58 3.55 1.79

distributions; the Weibull can belong to both classes, depend-
ing on the values of its shape parameter, while the gamma
distribution has essentially an exponential tail but not pre-
cisely (see below). From a practical point of view, the or-
dering of these distributions, from heavier to lighter tail,
is Pareto, Lognormal, Weibull with shape parameter< 1,
Gamma and Weibull with shape parameter> 1 (see, e.g., El
Adlouni et al., 2008). Note that Pareto is the only power-type
distribution while the other three are of exponential form.

Specifically, the Pareto type II distribution is the simplest
power-type distribution defined in [0,∞). Its probability den-
sity function (PDF) and EPF are given, respectively, by

fPII(x) =
1

β

(
1+ γ

x

β

)−
1
γ

−1

(6)

F̄PII (x) =

(
1+ γ

x

β

)−
1
γ

,

(7)

and it is defined by the scale parameterβ > 0 and the shape
parameterγ ≥ 0 that controls the asymptotic behaviour of the
tail. Namely, as the value ofγ increases, the tail becomes
heavier and consequently extreme values occur more fre-
quently. Forγ = 0 it degenerates to the exponential tail while
for γ ≥ 0.5 the distribution has infinite variance. Many other
power-type distributions are tail-equivalent, i.e., exhibiting
asymptotic behaviour similar tox−1/γ with the Pareto type II
tail, e.g., the Burr type XII (Burr, 1942; Tadikamalla, 1980),
the two- and three-parameter Kappa (Mielke, 1973), the Log-
Logistic (e.g., Ahmad et al., 1988) and the Generalized Beta
of the second kind (Mielke Jr. and Johnson, 1974).

Another very common distribution used in hydrology is
the Lognormal with PDF and EPF, respectively,

fLN(x) =
1

√
πγ x

exp

(
− ln2

(
x

β

)1/γ
)

(8)

F̄LN(x) =
1

2
erfc

(
ln

(
x

β

)1/γ
)

(9)
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where erfc(x) = 2π−1/2
∫

∞

x
e−t2

dt . The distribution com-
prises the scale parameterβ > 0 and the parameterγ > 0 that
controls the shape and the behaviour of the tail. Lognormal
is also considered a heavy-tailed distribution (it belongs to
the subexponential family) and can approximate power-law
distributions for a large portion of the distribution’s body
(Mitzenmacher, 2004). Notice that the notation in Eqs. (8)
and (9) differs from the common one and illustrates more
clearly the kind of the two parameters (scale and shape).

The Weibull distribution, which can be considered as
a generalization of the exponential distribution, is another
common model in hydrology (Heo et al., 2001a, b) and its
PDF and EPF are given, respectively, by

fW(x) =
γ

β

(
x

β

)γ−1

exp

(
−

(
x

β

)γ)
(10)

F̄W(x) = exp

(
−

(
x

β

)γ)
. (11)

The parameterβ > 0 is a scale parameter, while the shape
parameterγ > 0 governs also the tail’s asymptotic behaviour.
Forγ < 1 the distribution belongs to the subexponential fam-
ily with a tail heavier than the exponential one, while for
γ > 1 the distribution is characterized as hyperexponential
with a tail thinner than the exponential. Many distributions
can be assumed tail-equivalent with the Weibull for a specific
value of the parameterγ , e.g., the Generalized Exponential,
the Logistic and the Normal.

Finally, one of the most popular models for describing
daily rainfall is the Gamma distribution (e.g., Buishand,
1978), which, like the Weibull distribution, belongs to the
exponential family. Its PDF and EPF are given, respectively,
by

fG(x) =
1

β0(γ )

(
x

β

)γ−1

exp

(
−

x

β

)
(12)

F̄G(x) = 0

(
γ,

x

β

)
/0(γ ) (13)

with 0(s,x) =
∫

∞

x
t s−1e−tdt and 0(s) =

∫
∞

0 t s−1e−tdt .
Generally, we can assume that the Gamma tail behaves
similar to the exponential tail. Yet, this is only approxi-
mately correct as the Gamma distribution belongs to a class
of distributions (denoted asS(γ ); see, e.g., Embrechts and
Goldie, 1982; Kl̈uppelberg, 1989; Alsmeyer and Sgibnev,
1998) that irrespective of its parameter values cannot be
classified as subexponential, while it is not tail-equivalent
with the exponential. This can be seen from the fact that
the limx→∞ F̄G(x)/Ḡ(x) is 0 forβ < βE and∞ for β > βE,
whereḠ(x) = exp(−x/βE) is the exponential tail. Yet it is
noted that if compared with an exponential tail withβ = βE,
then

lim
x→∞

F̄ (x)

Ḡ(x)
=

0 0< γ < 1
1 γ = 1
∞ γ > 1

. (14)

Therefore, in this case and practically speaking, for 0< γ <

1 the Gamma distribution has a “slightly lighter” tail than
the exponential tail as it decreases faster, while forγ > 1 it
exhibits a “slightly heavier” tail as it decreases more slowly
than the exponential tail.

All four distributions we compare here, and consequently
their tails, have similarities in their structure as all have
two parameters and specifically one scale parameter and one
shape parameter. Nevertheless, among the various distribu-
tions with the same parameter structure, inevitably some are
more flexible than others. One way to quantify this flexibil-
ity is by comparing them in terms of various shape mea-
sures (e.g., skewness, kurtosis, etc.). For example, the fea-
sible ranges of skewness for the Pareto, Lognormal, Weibull
and Gamma are, respectively, (2,∞), (0, ∞), (−1.14,∞)

and (0,∞). Therefore, the Weibull distribution seems to be
the most “flexible” distribution among them and the Pareto
the least. Yet this argument is not valid when we focus on the
tail because the general shape of the tail is basically similar
and what differs is the rate at which the tail approaches zero.

5 Results and discussion

The basic statistical results from fitting the four distribution
tails, following the methodology described, to the 15 029
daily rainfall records are given in Table 3. In order to assess
which tail has the best fit, the four tails were compared in
couples in terms of the resulting MSE, i.e., the tail with the
smaller MSE is considered better fitted. As shown in Fig. 4,
the Pareto tail, when compared with the other three distribu-
tions, was better fitted in about 60 % of the stations. Interest-
ingly, the distribution with the heavier tail of each couple, in
all cases, was better fitted in a higher percentage of the sta-
tions, which implies a rule of thumb of the type “the heavier,
the better”!

Another comparison revealing the overall performance of
the fitted tails was based on their average rank. That is, the fit-
ted tails in each record were ranked according to their MSE,
i.e., the tail with the smaller MSE was ranked as 1 and the
one with the largest as 4. Figure 5 depicts the average rank
of each tail for all stations. Again, the Pareto performed best,
while the most popular model for rainfall, the Gamma distri-
bution, performed the worst. The percentages of each distri-
bution tail that was best fitted are 30.7 % for Pareto, 29.8 %
for Lognormal, 13.6 % for Weibull and 25.8 % for Gamma.
Again, the Pareto distribution is best according to these per-
centages; interestingly, however, the Gamma distribution has
a relatively high percentage, higher than the Weibull. This
does not contradict the conclusion derived by the average
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Table 3.Summary statistics from the fitting of the four distribution
tails into the 15 029 tail-samples of daily rainfall (expressed in mm).

Pareto Lognormal

MSE β γ MSE β γ

Min 0.002 0.42 0.001 0.002 1.22 0.531
Mode∗ 0.011 7.54 0.134 0.012 8.78 1.060
Mean 0.017 8.80 0.140 0.018 9.46 1.087
Median 0.021 9.51 0.145 0.022 10.59 1.107
Max 0.336 54.79 0.797 0.322 76.74 2.284
SD 0.015 4.92 0.076 0.015 6.44 0.214
Skew 2.910 1.23 0.495 2.755 1.73 0.561

Weibull Gamma

MSE β γ MSE β γ

Min 0.002 0.02 0.230 0.002 3.79 0.010
Mode 0.013 4.33 0.661 0.015 17.50 0.092
Mean 0.019 5.91 0.678 0.023 23.15 0.219
Median 0.022 6.88 0.692 0.032 28.18 0.294
Max 0.298 52.72 1.491 0.482 120.00 2.433
SD 0.015 4.69 0.139 0.034 17.30 0.269
Skew 2.151 1.82 0.668 4.377 1.65 2.567

∗ The mode was estimated from the empirical density function (histogram) after
smoothing.

rank. The explanation is that the Gamma distribution was
ranked as best in some cases, but when it was not the best
fitted, it was probably the worst fitted.

Figure 6 depicts the empirical distributions of the shape
parameters of the fitted tails. It is well-known that the most
probable values are the ones around the mode, which for the
Pareto shape parameter is 0.134. Interestingly, this value is
close to the one determined in a different context by Kout-
soyiannis (1999) using Hershfield’s (1961) dataset. This im-
plies that power-type distributions, which asymptotically be-
have like the Pareto, will not have finite power moments of
order greater than 1/0.134≈ 7.5. Moreover, as the empirical
distribution of the Pareto shape parameter in Fig. 6 attests,
values around 0.2 are also common, implying non-existence
of moments greater than the fifth order. We should thus bear
in mind that sample moments of that or higher order (some-
times appearing in research papers) may not exist. Regarding
the Weibull tail, the estimated mode of its shape parameter
is 0.661, implying a much heavier tail compared to the ex-
ponential one. Finally, it is worth noting that the estimated
mode of the Gamma shape parameter is as low as 0.092. The
shape parameter of the Gamma distribution controls mainly
the behaviour of the left tail, resulting in J- or bell-shaped
densities (loosely speaking, the right tail is dominated by
the exponential function and thus behaves like an exponen-
tial tail). A value that low corresponds to an extraordinarily
J-shaped density, which would be unrealistic for describing
the whole distribution body of daily rainfall. In other words,
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Fig. 4. Comparison of the fitted tails in couples in terms of the re-
sulting MSE. The heavier tail of each couple is better fitted to the
empirical points in a higher percentage of the records.

a Gamma distribution fitted to the whole set of points would
most probably underestimate the behaviour of extremes.

We searched for the existence of any geographical pat-
terns, potentially defining climatic zones, in the best fitted
tails, i.e., the existence of zones in the world where the ma-
jority of the records were better described by one of the stud-
ied distribution tails. The maps in Fig. 7, which depict the
locations of the stations where each distribution tail was best
fitted, did not unveil any regular patterns in terms of the best
fitted distribution but rather seem to follow a random varia-
tion.

Another way to investigate for geographical patterns, as
the previous map did not reveal any useful information, is
to study the fitted tails grouped into two coarser groups: the
subexponential group and the exponential-hyperexponential
group. The former includes the Pareto, the Lognormal and
the Weibull with γ < 1 tails, while the latter includes the
Gamma and the Weibull withγ ≥ 1 tails. Among the 15 029
records, subexponential tails were best fitted in 10 911 cases
or in 72.6 % while exponential-hyperexponential tails were
best fitted in 4 118 or in 27.4 %. Further, in order to get a
clearer picture instead of constructing maps with the loca-
tions where the first-group or the second-group tails were
best fitted, we studied the percentage of subexponential tails
that were best fitted in large regions. Specifically, we con-
structed a grid covering the entire earth using a latitude
difference1ϕ = 2.5◦ and longitude difference1λ = 5◦. In
each grid cell we estimated the percentage of the best fitted
subexponential tails simply by counting the number of the
best fitted subexponential tails divided by the total number
of records within the cell. We present these percentages in
the form of a map in Fig. 8, using a colour scale as shown
in the map’s legend. The cells plotted in the map are those
containing at least two records, so that the calculation of per-
centages have some meaning.

www.hydrol-earth-syst-sci.net/17/851/2013/ Hydrol. Earth Syst. Sci., 17, 851–862, 2013



858 S. M. Papalexiou et al.: How extreme is extreme?

Fig. 5. Mean ranks of the tails for all records. The best-fitted tail
is ranked as 1 while the worst-fitted as 4. A lower average rank
indicates a better performance.

The map of Fig. 8 clearly shows that in the vast majority
of cells subexponential tails dominate (percentage> 60 %).
Particularly, out of 532 cells having at least two records, 255
and 163 have percentages of subexponential tails 60–80 %
and> 80 %, respectively. In contrast, in only 35 and 79 cells
are the percentage values in the ranges 0–40 % and 40–60 %,
respectively.

6 Verification of the fitting method

The use of a different norm for fitting the tail into the em-
pirical data could potentially modify the conclusions drawn.
Nevertheless, this argument is pointless in the sense that the
main concern should be the efficiency of the norm used, i.e.,
if it possesses desired properties, e.g., if it is unbiased and has
lower variance in comparison to other candidates. Usually,
the error is expressed in terms of random variable values,
e.g., rainfall values, and not in terms of probability. However,
a literature search did not reveal or verify that the commonly
used norms, e.g., the classical MSE norm, are better than the
norm N1 used here (see Eq. 5).

For this reason, we implemented a Monte Carlo scheme,
which actually replicates the method we followed, where we
evaluate the performance of the norm N1 and also compare
it with the more common norms N2 and N3 defined as

N2 =
1

N

n∑
i=n−N+1

(
xu

x(i)

− 1

)2

(15)

N3 =
1

N

n∑
i=n−N+1

(
xu − x(i)

)2
. (16)

Here,xu = Q(u) is the value predicted by the quantile func-
tion Q of the distribution under study foru equal to the em-
pirical probability ofx(i) (the ith element the sample ranked

Fig. 6.Histograms of the shape parameters of the fitted tails.

in ascending order) according to the Weibull plotting posi-
tion. The norm N2 has the same rationale as the one we used
but the error is estimated in terms of rainfall values, rather
than in terms of probability, while the norm N3 is the classi-
cal and most commonly used MSE norm.

The Monte Carlo scheme we performed can be summa-
rized in the following steps: (a) we generated 1000 random
samples from each one of the four distributions we studied
with sample size equal to 6600 values, which is approxi-
mately the average number of nonzero daily rainfall values
per record; (b) we selected the scale and the shape parameter
values to be approximately equal with the median values re-
sulted from the analysis of the real world dataset (see Table 3)
in order for the generated random samples to be representa-
tive of the real data; and (c) we fitted each distribution to
its corresponding random sample and estimated the parame-
ters by applying our method for each one of the three norms,
while we setN equal to 80 yr, which is approximately the
average record length.

The results are presented in Fig. 9. The whiskers of the
box plots express the 95 % Monte Carlo confidence interval
of the parameters while the dashed lines show the true param-
eter values. It is clear that the norm N1 we used results in al-
most unbiased estimation of the parameters while, especially
for the Pareto and the Lognormal distributions, it results in
markedly smaller variance compared to the classical norm
N3. The norm N2 seems to perform very well for the Pareto,
Lognormal and Weibull distributions (although somewhat bi-
ased) but the results are poor for the Gamma distribution.
The classical and the most commonly used norm N3 is by far
the worst in term of bias except for the Gamma distribution,
for which it performs equally well as N1. In particular, for
the subexponential distributions of this simulation, i.e., the
Pareto, the Lognormal and the Weibull, the classical norm
N3 fails to provide good results. This may point to a more
general conclusion, i.e., that the classical MSE, which is in-
spired based on properties of the normal distribution, is not
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Fig. 7. Geographical depiction of the 15 029 stations where the best fitted tail is(a) Pareto in 4621,(b) Lognormal in 4486,(c) Weibull in
2051, and(d) Gamma in 3871.

Fig. 8. Geographical variation of the percentage of best fitted subexponential tails in cells defined by latitude difference1ϕ = 2.5◦ and
longitude difference1λ = 5◦. In total, in 72.6 % of the 15 029 records analysed, the subexponential tails were the best fitted.
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Fig. 9. Results of a Monte Carlo scheme implemented to evaluate
the performance of the norm N1 used in fitting of tails in this study,
in comparison to commonly used ones (N2, N3).

a good choice for subexponential distributions. This needs to
be further investigated; however, we deem that there is a ra-
tionale supporting the following conclusion: subexponential
distributions can generate “extremely” extreme values com-
pared to the main “body” of values, and thus, in the classical
norm these values will contribute “extremely” to the total er-
ror heavily affecting the fitting results.

Another issue of potential concern for the validity of the
conclusions drawn is the impact of the sample size, i.e., the
number of the largest eventsN , or equivalently the threshold
xL , for which the four distribution tails are fitted. As men-
tioned before, we used the annual exceedance series, a stan-
dard method in hydrology in whichN equals the number of
the record’s years. Obviously,N can be defined in many dif-
ferent ways, either with reference to record length or as a
fixed number for every record studied.

In order to assess the impact of number of events in the
performance of the four fitted distribution tails, we selected
randomly 2000 records among the 15 029 analysed and we
fitted the four distribution tails using six different meth-
ods for definingN . The first method (M1) is the one we
used for all above analyses, in whichN equals the number
of the record’s years. In the second (M2) and third (M3)

Fig. 10.Performance results of the four fitted tails in 2000 randomly
selected records using six different methods for selecting the sample
size: (top panel) percentage of records in which each distribution
tail was best fitted; (bottom panel) average ranks of the fitted tails
(lower average rank indicates better performance).

methods we defined the thresholdxL as the 90th- and the
95th-percentiles, respectively, so thatNequals the number
of events included in the upper 10 % and 5 %, respectively,
of the nonzero values. Obviously, in these two methodsN

varies from record to record depending on the total number
of nonzero values, and on the average it equals 667 and 333
values for M2 and M3, respectively. In the rest three methods
(M4, M5 and M6)N is defined as a fixed number for every
record, i.e., 50, 100 and 200 values, respectively.

The performance results comparing the six methods are
summarized in Fig. 10, which depicts (a) the percentage of
cases in which each distribution was best fitted and (b) the
average rank of each distribution tail. Again the Pareto II
tail was best fitted in a higher percentage of records in all
cases (M1–M6) with the percentage values varying in a nar-
row range. The results are essentially the same with those
obtained from the analysis of the whole database. The only
noticeable difference regards the method M2, in which the
Weibull tail sometimes seems to “gain ground” over the
Gamma and the Lognormal tails. In general it seems that
the Weibull tail improves its performance asN increases.
Thus, in M4 whereN has the lowest value, i.e., 50 values,
it performs the worst, while in M2 whereN is maximum
(667 values on the average), it performs the best. The average

Hydrol. Earth Syst. Sci., 17, 851–862, 2013 www.hydrol-earth-syst-sci.net/17/851/2013/



S. M. Papalexiou et al.: How extreme is extreme? 861

rank, which is a better measure of the overall performance of
the distribution tails, remains essentially the same for each
distribution in all methods. An exception is observed again
in M2 where the Weibull tail performs better than the Log-
normal tail. Apart from this exception the general conclusion
is again that the Pareto II performs the best, followed by the
Lognormal and the Weibull tails, while the Gamma tail per-
forms the worst in all cases.

7 Summary and conclusions

Daily rainfall records from 15 029 stations are used to inves-
tigate the performance of four common tails that correspond
to the Pareto, the Weibull, the Lognormal and the Gamma
distributions. These theoretical tails were fitted to the empir-
ical tails of the records and their ability to adequately capture
the behaviour of extreme events was quantified by comparing
the resulting MSE. The ranking from best to worst in terms
of their performance is (a) the Pareto, (b) the Lognormal,
(c) the Weibull, and (d) the Gamma distributions. The anal-
ysis suggests that heavier-tailed distributions in general per-
formed better than their lighter-tailed counterparts. Particu-
larly, in 72.6 % of the records subexponential tails were better
fitted while the exponential-hyperexponential tails were bet-
ter fitted is only 27.4 %. It is instructive that the most popular
model used in practice, the Gamma distribution, performed
the worst, revealing that the use of this distribution under-
estimates in general the frequency and the magnitude of ex-
treme events. Nevertheless, we must not neglect the fact that
the Gamma distribution was the best fitted in 25.8 % of the
records.

Additionally, we note that heavy tails tend to be hidden
(see, e.g., Koutsoyiannis, 2004a, b; Papalexiou and Kout-
soyiannis, 2013), especially when the sample size is small.
Thus, we believe that even in the cases where the Gamma tail
performed well, the true underlying distribution tail may be
heavier. This leads to the recommendation that heavy-tailed
distributions are preferable as a means to model extreme rain-
fall events worldwide. We also note that the tails studied
here are as simple as possible, i.e., only one shape parame-
ter controls their asymptotic behaviour. Yet there are many
distributions with more than one shape parameters which
may affect their tail behaviour. Particularly, the Generalized
Gamma (Stacy, 1962) and the Burr type XII distributions
were compared as candidates for the daily rainfall (based on
L-moments) in anonther study, using thousands of empirical
daily records and the former performed better (Papalexiou
and Koutsoyiannis, 2012).

The key implication of this analysis is that the frequency
and the magnitude of extreme events have generally been un-
derestimated in the past. Engineering practice needs to ac-
knowledge that extreme events are not as rare as previously
thought and to shift toward more heavy-tailed probability dis-
tributions.
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