1 The battle of extreme value distributions: A global survey on the extreme

2 daily rainfall

3 Simon Michael Papalexiou and Demetris Koutsoyiannis

4 Department of Water Resources, Faculty of Civil Engineering, National Technical University of
5 Athens, Heroon Polytechneiou 5, GR-157 80 Zographou, Greece (smp@itia.ntua.gr)

6 Abstract

7 Theoretically, if the distribution of daily rainfall is known or justifiably assumed, then one could 8 argue, based on extreme value theory, that the distribution of the annual maxima of daily rainfall 9 would resemble one of the three limiting types: (a) type I, known as Gumbel, type II, known as 10 Fréchet and, type III, known as reversed Weibull. Yet, the parent distribution usually is not 11 known and often only records of annual maxima are available. Thus, the question that naturally 12 arises is which one of the three types better describes the annual maxima of daily rainfall. The 13 question is of great importance as the naïve adoption of a particular type may lead to serious 14 underestimation or overestimation of the return period assigned to specific rainfall amounts. To 15 answer this question, we analyze the annual maximum daily rainfall of 15 137 records from all 16 over the world, with lengths varying from 40 to 163 years. We fit the Generalized Extreme Value 17 (GEV) distribution, which comprises the three limiting types as special cases for specific values 18 of its shape parameter, and analyze the fitting results focusing on the behavior of the shape 19 parameter. The analysis reveals that: (a) the record length strongly affects the estimate of the 20 GEV shape parameter and long records are needed for reliable estimates, (b) when the effect of 21 the record length is corrected the shape parameter varies in a narrow range, (c) the geographical

- location of the globe may affect the value of the shape parameter, and (d) the winner of thisbattle is the Fréchet law.
- 24 Keywords: Generalized Extreme Value distribution, Gumbel distribution, extreme rainfall,
- 25 annual maximum daily rainfall

- 26 **1. Introduction**
- 27

"Φύσις κρύπτεσθαι φιλεί"— Heraclitus of Ephesus

Arguably, the statistical behavior of the annual maximum daily rainfall has been the cornerstone 28 29 of statistical hydrology, as it is directly related to the design of hydraulic infrastructures and to 30 extreme floods. In hydrology, the study of rainfall or flood extremes has been an active research 31 field and a matter of debate for more than half a century dating back to the works of E. J. 32 Gumbel in 1940s; however, the field of extreme value theory seems to have originated more than 33 three centuries ago in the works of Nicolaus Bernoulli [see e.g. Gumbel, 1958]. Yet, it was 34 during the 20th century when the theory was rapidly evolved and found applications in 35 astronomy, hydrology and engineering in general.

36 A detailed historical survey on the subject would be out of the scope of this study. 37 Nevertheless, we mention here some of the milestones of this fascinating field [for a more 38 complete historical note see e.g. Kotz and Nadarajah, 2000]. It seems that the first methodical 39 approach was due to von Bortkiewicz [1922] regarding the range of random samples. In the 40 sequel, Fréchet [1927] identified one of the asymptotic distributions of maxima, and, soon after, 41 Fisher and Tippett [1928] showed that there are only three possible limiting distributions for 42 extremes. These findings were strengthened by von Mises [1936] who identified some sufficient 43 conditions for convergence to the three limiting laws. Yet, it was Gnedenko [1943] who set the 44 solid foundations of the asymptotic theory of extremes providing the precise conditions for the 45 weak convergence to the limiting laws. All these initial theoretical results were refined and 46 generalized later in the works of Juncosa [1949], Smirnov [1949], Watson [1954], Jenkinson 47 [1955], Barndorff-Nielsen [1963], Berman [1964], de Haan [1971], Balkema and de Haan 48 [1972], Galambos [1972] and Pickands III [1975] to mention some of them. Numerous realworld applications followed this theoretical progress not only in flood and rainfall analysis. It is
worth noting in this respect Gumbel's [1958] celebrated book who was one of the pioneers
promoting and applying the formal theory into engineering practice.

52 Accordingly, the central question in extreme rainfall analysis is: which one of the three 53 extreme value distributions, i.e., the Gumbel, the Fréchet or the reversed Weibull, should we 54 choose to describe extreme rainfall? Its answer is not only of academic interest, but mainly 55 constitutes a practical matter of eminent significance as the wrong choice may severely 56 underestimate the design rainfall of hydraulic infrastructures leading thus to infrastructure 57 failures and other negative consequences. Overestimation can also be a possibility, which again 58 has negative consequences in terms of the infrastructure cost. During the last decades, 59 accumulation of observations and advances in computers facilitated the analysis of extreme 60 rainfall and literally thousands of studies or technical reports have been published using, or 61 arguing for or against, a particular extreme value distribution. Yet, most of these studies are of 62 "local" character, e.g., case studies analyzing extreme rainfall in particular areas. As an 63 exception, the study by Koutsoyiannis [2004a,b] used records from several sites in the globe but 64 the number of records was small (169 rainfall records worldwide each having 100-154 years of data). Here, we aim to investigate the behavior of the annual maximum daily rainfall at a global 65 66 scale, using more than 15 000 rainfall records distributed across the globe, and to provide a better 67 answer to the question we address.

68 2. Theoretical issues of extreme analysis

69 **2.1** The three limiting laws

It is well known that if a random variable (RV) *X* follows the distribution $F_X(x)$ then according to the classical extreme value theory the distribution function of the maximum of *n* independent and identically distributed (iid) RV's, i.e., $Y_n = \max(X_1, \dots, X_n)$ is given by

73
$$G_Y(x) = \left(F_X(x)\right)^n \tag{1}$$

Now, loosely speaking, if $n \to \infty$ three limiting laws can emerge from Eq. (1). Actually, as $\lim_{n\to\infty} (F(x))^n$ results in a degenerate distribution, the limiting laws are obtained from $\lim_{n\to\infty} (F(a_nx+b_n))^n$ for appropriate constants $a_n > 0$ and b_n [*Fisher and Tippett*, 1928]. In addition, these limiting laws emerge not only for iid RV's as Juncosa [1949] extended these results to the case of non-iid random variables and Leadbetter [1974] proved that the limiting distributions hold also for dependent random variables, given that there is no long range dependence of high level exceedences.

81 The three limiting laws are the type I or Gumbel (G), the type II or Fréchet (F) and the type
82 III or reversed Weibull (RW) with distribution functions respectively given by

83
$$G_{G}(x) = \exp\left(-\exp\left(-\frac{x-\alpha}{\beta}\right)\right) \qquad x \in \mathbb{R}$$
 (2)

84
$$G_{\rm F}(x) = \exp\left(-\left(\frac{x-\alpha}{\beta}\right)^{-1/\gamma}\right) \qquad x \ge \alpha \tag{3}$$

85
$$G_{\rm RW}(x) = \exp\left(-\left(-\frac{x-\alpha}{\beta}\right)^{1/\gamma}\right) \qquad x \le \alpha$$
(4)

86 All three distributions comprise a location parameter $\alpha \in \mathbb{R}$ and a scale parameter $\beta > 0$, with 87 the Fréchet and the reversed Weibull distributions having the additional shape parameter $\gamma > 0$. 88 Although the expressions of the Fréchet and the reversed Weibull distributions look very similar, 89 i.e., they differ in a couple of signs, the distributions behave completely differently as the first is 90 bounded from below while the second is bounded from above. Noteworthy, the exponential form 91 of the Fréchet distribution does not imply an exponential right tail, i.e., the Fréchet distribution behaves like a power-type distribution as it can be easily proved that for $\gamma > 0$ the function 92 $1 - \exp(-x^{-1/\gamma})$ is asymptotically equivalent to $x^{-1/\gamma}$ (it is reminded that two functions f(x) and g(x)93 are asymptotically equivalent if $\lim_{x\to\infty} f(x)/g(x) = 1$). Likewise, the double exponential form 94 95 of the Gumbel distribution does not imply a double exponential tail, as its right tail is 96 asymptotically equivalent with the exponential tail, i.e., exp(-x).

97 Now, any specific parent distribution $F_{X}(x)$ belongs to the domain of attraction of one the 98 aforementioned limiting laws. To which one depends mainly on the form of its right tail. Several 99 formal mathematical conditions determine the distribution's domain of attraction (formed 100 originally by von Mises [1936] and Gnedenko [1943] and extended by several other authors [for 101 a complete account see e.g. Embrechts et al., 1997; Reiss and Thomas, 2007]). Generally 102 speaking, distributions with right tail regularly varying in infinity or, equivalently, not having all 103 of their moments finite, belong to the domain of attraction of the Fréchet law. These include 104 power-type distributions like the Pareto, the Burr type XII and III, the Log-Gamma, the Cauchy 105 and others. In contrast, in the domain of attraction of the Gumbel law belong all distributions 106 with right tail tending to zero faster than any power-type tail, or equivalently distributions having 107 all of their moments finite, e.g., Normal, Lognormal, Gamma, Weibull and others. Finally, in the

domain of attraction of the reversed Weibull law belong distributions bounded from above [see
e.g. *Kotz and Nadarajah*, 2000].

The afore mentioned three limiting distribution laws can be unified into a single expression known as the Generalized Extreme Value (GEV) distribution (also known as the Fisher-Tippet) with probability distribution function given by

113
$$G_{\text{GEV}}(x) = \exp\left(-\left(1 + \gamma \frac{x - \alpha}{\beta}\right)^{-1/\gamma}\right) \qquad 1 + \gamma \frac{x - \alpha}{\beta} \ge 0$$
(5)

114 This parameterization was proposed by von Mises [1936], although it is commonly attributed to 115 Jenkinson [1955]. The distribution comprises the location parameter $\alpha \in \mathbb{R}$ the scale parameter $\beta > 0$ and the shape parameter $\gamma \in \mathbb{R}$. It can be easily seen that for $\gamma > 0$ it is bounded from 116 below, $(x \ge \alpha - \beta / \gamma)$ while for $\gamma < 0$ it is bounded from above $(x \le \alpha - \beta / \gamma)$ (notice that here 117 positive γ means a GEV bounded from below, while some texts use opposite sign convention). 118 119 Essentially, the GEV distribution formula can be seen as a simple reparameterization of the 120 Fréchet formula as the Fréchet parameters (indexed with F in Eq. (3)) are related with the GEV parameters, i.e., $\alpha_{\rm F} = \alpha - \beta / \gamma$, $\beta_{\rm F} = \beta / \gamma$ and $\gamma_{\rm F} = \gamma$. This simple reparameterization exploits the 121 limiting definition of the exponential function, i.e., $\lim_{\gamma \to 0} (1+\gamma x)^{-1/\gamma} = \exp(-x)$ so that the 122 123 Gumbel distribution emerges for $\gamma \rightarrow 0$.

124 **2.2** Convergence to the limiting laws

The distribution of the maximum value, given in Eq. (1), converges to one of the three liming laws (depending on the parent distribution) given that the maximum value is selected from a number of variables which tends to infinity. In real world, convergence practically holds if this number is very large. However, in daily rainfall it seems that this number is not even large as in the best case it would equal the number of the year's days, i.e., 365 or 366 values. Actually, the number of rainy days $N_{\rm R}$ that depends on the probability dry is always smaller than the number of year's days and varies from year to year. Thus, whether or not the annual maximum can actually be modeled by one the three limiting laws should not be taken for granted [see also *Koutsoyiannis*, 2004a].

To demonstrate this issue, we use results from a previous study [*Papalexiou and Koutsoyiannis*, 2012] where we analyzed more than ten thousand daily rainfall records and we found that the Burr type XII distribution (BrXII) and the Generalized Gamma distribution (GG), are both very good models for describing the non-zero daily rainfall. Their probability density functions are given, respectively, by

139
$$f_{\text{BrXII}}(x) = \frac{1}{\beta} \left(\frac{x}{\beta}\right)^{\gamma_1 - 1} \left(1 + \gamma_2 \left(\frac{x}{\beta}\right)^{\gamma_1}\right)^{-\frac{1}{\gamma_1 \gamma_2} - 1} \qquad x \ge 0$$
(6)

140
$$f_{GG}(x) = \frac{\gamma_2}{\beta \Gamma(\gamma_1 / \gamma_2)} \left(\frac{x}{\beta}\right)^{\gamma_1 - 1} \exp\left(-\left(\frac{x}{\beta}\right)^{\gamma_2}\right) \quad x \ge 0$$
(7)

Hence, if we assume that both of these distributions can serve as parent distributions, then for a constant number of rainy days $N_{\rm R}$ we could form the exact distribution of the annual maximum that would respectively be $G_{\rm BrXII}(x) = (F_{\rm BrXII}(x))^{N_{\rm R}}$ and $G_{\rm GG}(x) = (F_{\rm GG}(x))^{N_{\rm R}}$. It is noted that the BrXII distribution as a power type distribution belongs to the domain of attraction of the Fréchet law; in contrast, the GG distribution is of exponential type, having all of its moments finite and thus belonging to the domain of attraction of the Gumbel law. So, theoretically speaking the first is expected to converge to the Fréchet law and the second to the Gumbel law.

148 The different daily rainfall records analyzed in the aforementioned study had different 149 statistical characteristics, yet, in order to illustrate the convergence rate based on real world 150 evidence we proceed as follows. First we consider as representative statistics of the nonzero 151 daily rainfall the median (closer to the mode than the mean value) of the sample estimates of the 152 first L-moment λ_1 (mean), of L-variation τ_2 and of L-skewness τ_3 ; their numerical estimates are 153 $\lambda_1 = 9.86$, $\tau_2 = 0.58$, $\tau_3 = 0.45$ (all parameters with dimensions, e.g., λ_1 or scale parameters, are 154 expressed in mm). Additionally, the median of probability dry was 76.3% corresponding approximately to $N_{\rm R} = 87$ rainy days. These statistics can be reproduced by a BrXII distribution 155 with parameters $\beta = 8.47$, $\gamma_1 = 0.91$, $\gamma_2 = 0.18$, and a GG distribution with parameters $\beta = 1.83$, 156 $\gamma_1 = 1.16$, $\gamma_2 = 0.54$. For these parent distributions and for $N_R = 87$ we calculated (numerically) 157 158 the parameters of the exact distribution of the annual maximum for each case. Namely, the G_{BrXII} would have $\lambda_1 = 77.62$, $\tau_2 = 0.23$, $\tau_3 = 0.30$ and the G_{GG} would have $\lambda_1 = 73.71$, $\tau_2 = 0.20$, 159 160 $\tau_3 = 0.24$. Next we found the corresponding GEV and Gumbel distributions to these parameters, 161 i.e., for the G_{BrXII} parameters the GEV will have $\alpha = 60.71$, $\beta = 20.85$, $\gamma = 0.19$, and the Gumbel 162 will have $\alpha = 62.72$, $\beta = 25.80$. Likewise, for the G_{GG} parameters the GEV will have $\alpha = 60.48$, $\beta = 19.15$, $\gamma = 0.10$, and the Gumbel will have $\alpha = 61.43$, $\beta = 21.28$. 163

This analysis is graphically depicted in Figure 1 where the fitted distributions are formed in a Rainfall *vs*. Return period plot. It can be easily shown that the exact annual maximum laws, i.e., the G_{BrXII} and the G_{GG} are given by the relationship $x(T) = Q_{X|X>0} \left(\left(1 - 1/T \right)^{1/N_{\text{R}}} \right)$, where *T* denotes the return period in years and $Q_{X|X>0}$ the quantile function of the representative BrXII or GG distribution describing the nonzero daily rainfall. The graph reveals that the exact annual maximum law, assuming as a parent distribution the BrXII, quickly converges to the anticipated Fréchet law or GEV with positive γ . Noteworthy, the tail index of the representative BrXII, 171 expressed by the shape parameter γ_2 , and the shape parameter γ of the GEV distribution, 172 theoretically should be the same. In reality, while they are not exactly the same, they are very 173 close, i.e., $\gamma_2 = 0.19$ and $\gamma = 0.18$, verifying thus a satisfactory convergence. On the other hand, 174 assuming the GG as a parent distribution, we see that not only does the exact law G_{GG} not 175 converge to the Gumbel law as theoretically expected, but it is better described by the Fréchet 176 law. In this case the GEV overestimates the rainfall for large return periods, yet, it is on the safe 177 side, whereas it is clear that the Gumbel distribution severely underestimates it.

178 This analysis indicates that even if the parent distribution of daily rainfall is of exponential 179 type, belonging thus theoretically to the domain of attraction of the Gumbel law, the annual 180 maximum is better described by the Fréchet law [see also Koutsoviannis, 2004a]. Is this a 181 paradox? The answer is no. The reason is that the convergence to the Gumbel law is very slow; actually, it does not converge satisfactorily even for $n = 10^7$ as our tests showed. On the contrary, 182 183 the additional shape parameter of the Fréchet law or of the GEV distribution, adds the required 184 flexibility to this distribution to "imitate" the shape characteristics annual maxima even if the 185 parent distribution does not belong to its domain of attraction. Thus, although the Fréchet law 186 has a power type tail, its flexibility enables it to better describe, compared to Gumbel law, other 187 heavy-type tails like the stretched exponential or the lognormal. Noteworthy, a recent study 188 [Papalexiou et al., 2012] where more than 15 000 daily records were analyzed focusing on the 189 tail behavior of the parent distribution, revealed that the daily rainfall tail is better described by 190 heavy tails. This offers a theoretical argument favoring the use of the Fréchet law in any case 191 instead of Gumbel.

192 **3.** The original dataset

In this study we use more than 15 000 rainfall records distributed across the globe. The original data were daily rainfall records obtained from the Global Historical Climatology Network-Daily database (version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily) which includes thousands of records worldwide. We mention though, that many records of this database have a large percentage of missing values, are short in length, e.g., just a few years, or, contain suspicious values in terms of quality (for the quality flags used refer to the aforementioned website).

199 Thus, among the several thousands of records we studied only those satisfying the 200 following criteria: (a) record length greater or equal than 50 years, (b) percentage of missing 201 values per record less than 20%, and (c) percentage of values assigned with "quality flags" per 202 record less than 0.1%. Special attention was given to values assigned with quality flags "G" 203 (failed gap check) or "X" (failed bounds check) as these values are suspiciously large, e.g., could 204 be orders of magnitude larger compared to the record's second larger value. These extremely 205 large values (probably resulting from recording or registering errors), could alter the record's 206 statistics, and thus we had to identify and delete them (yet, only 594 records contained such 207 values and typically one or two values at each record had to be deleted). The resulted number of 208 records after screening with these criteria is 15 137. The locations of those records are depicted 209 in the map given in Figure 2.

210 **4. A method for extracting the maxima**

211 **4.1 Selection procedure**

The original dataset comprises daily rainfall records, thus, in order to study the annual maximum daily rainfall we must form the time series of annual maxima. If the original records did not contain any missing-values then forming the annual maximum time series would be trivial. Yet,

215 missing-values occur commonly, and specifically, in the dataset analyzed here records may 216 contain up to 20% of missing-values. Usually, within a record only some years are incomplete, 217 (contain missing-values); hence, the problem is how we can extract the maximum value of 218 incomplete years. Evidently, the recorded maximum value of an incomplete year may not be the 219 real one, as it is likely for a larger value to have occurred in days of missing data. Moreover, as 220 the percentage of missing values gets higher the more probable it becomes that the real 221 maximum has been recorded. Thus, years with missing values, if not treated appropriately, could 222 result in significant errors that may affect the conclusions drawn from the data analysis.

223 Basically, one could think of three different methods to extract the annual maxima from a 224 daily time series containing missing values: (a) in the first method (M1), specific criteria are used 225 to assess the validity of the annual maxima, e.g., the annual maximum value could be considered 226 valid only if the missing-values percentage is small, (b) in the second method (M2), only the 227 maxima of complete years are accepted as valid while those of incomplete years are assumed 228 unknown, and (c), in the third method (M3), the annual maxima are extracted irrespective of the 229 years' missing-values percentage. Clearly, the method M3 is not safe because, if the missing-230 values percentage is high, it will result in underestimated maxima. Method M2 is safe and we 231 could be sure that the extracted maxima are the real ones, yet it does not fully utilize the 232 available information. For example, a record may contain many years with just a few missing 233 values per year; according to method M2 all these years would be excluded, thus leading to an 234 unjustifiably small sample. So, it is clear that the most reasonable choice is to set some criteria 235 that need to be fulfilled in order to accept an extracted annual maximum as valid.

It is reasonable to assume that it is safe to extract the annual maximum of those years with small missing-values percentage. Nevertheless, two problems arise. First, the definition of

"small" would be subjective, e.g., 1% or 10% could be considered small, and second and most 238 239 important, maxima of incomplete years may be much greater compared to those of complete 240 years. For example, a year with 90% of missing values may contain the record's maximum; 241 would it be rational to exclude this value? Of course, larger values may have occurred within an 242 incomplete year but this would be unlikely. For these reasons we deem that the acceptance or not 243 of a value extracted from an incomplete year, as the annual maximum, should be based on two 244 criteria; first, on the missing-values percentage, and second, on the value's rank, i.e., its relative 245 position in the extracted sample of maxima after it has been sorted in ascending order (the 246 smallest rank is given to the smallest value).

247 Accordingly, the annual maxima time series are formed in two steps: (a) the maximum of 248 each year is extracted irrespective of the year's missing-values percentage and, (b) the values of 249 this initial series are tested according to the criteria set and those not fulfilling them are deleted 250 from the time series, i.e., they are assumed unknown. Namely, two criteria, whose validity is 251 justified in section 4.3, were set to justify deletion of a value whenever both hold: (a) the rank is 252 smaller or equal than $40\% \times N$ (where N is the sample size) which means that the particular value 253 belongs to the 40% of the lowest values, and (b) the missing-values percentage within a year is 254 larger than or equal to 1/3 which means that in the particular year approximately the values of 255 more than four months are missing. The method is graphically explained in Figure 3 which 256 depicts along with the annual maxima time series the corresponding percentages and ranks of 257 missing values. Essentially, the method's rationale is simple; if an incomplete year has a high 258 percentage of missing values and its maximum is small compared to the maxima of the other 259 years, then there is a high probability for larger values to have occurred within this year and thus 260 this value should not be accepted as the real annual maximum.

261 **4.2 Validation of the method**

262 One could argue that the criteria defined previously are subjective and different values could be 263 set as thresholds both for the rank and percentage of the missing values. Yet, these thresholds 264 where not selected unjustifiably, but rather emerged after extended Monte Carlo simulations. 265 Particularly, a Monte Carlo scheme was planned and performed in order to validate the method 266 performance and specify the appropriate criteria values. The Monte Carlo scheme could be 267 summarized in four basic steps: (a) a subset of complete daily records is selected and the annual 268 maxima series are created, (b) this daily-records subset is modified to contain missing values, (c) 269 annual maxima series are extracted from the modified daily-records subset by utilizing the 270 maxima extraction method for various criteria values, and (d) the real maxima series created in 271 step (a) are compared with those created in step (c). In other words, the basic idea is to find, if 272 possible, those threshold values resulting in maxima series with statistical characteristics similar 273 to the real ones.

Obviously, to validate the method we need daily time series that are complete. Yet, only few records of the dataset are totally complete, hence, for start we selected those with very small missing-values percentage, i.e., less than 0.1%, and we deleted, if existed, the few incomplete years per record in order to be absolutely certain for the resulting annual maxima series. The result was 1 003 daily rainfall records with lengths varying from 38 to 155 years.

Now, the records of the dataset analyzed here contain missing-values up to 20%, and these values are distributed among some of the record's years, i.e., only a percentage of the record's years are incomplete. To identify how the percentage of incomplete years per record is distributed we studied all 15 137 records. The empirical distribution is presented in Figure 4, as well as a fitted Beta(α,β) distribution, that will be valuable in the sequel, with estimated parameters $\alpha = 1.32$ and $\beta = 2.41$.

285 In order to construct time series with missing values distributed similar to the real ones we 286 modified each one of the aforementioned daily records by the following procedure: (a) we 287 generated a random number $p_{\rm MV}$ less than 20% that represents the missing-values percentage of 288 the record, (b) we set the record's total missing-values number then as $n_{\rm MV} = p_{\rm MV} \times 365 \times N$, 289 where N is the record's length in years, (c) we distributed the $n_{\rm MV}$ missing values to 290 $N_{\rm MV} = p_{\rm Y} \times N \ge n_{\rm MV} / 365$ years, where $p_{\rm Y}$ is the percentage of incomplete years and is randomly 291 generated from the fitted Beta distribution depicted in Figure 4, (d) we randomly split the number $n_{\rm MV}$ into $N_{\rm MV}$ parts in order to define the number of missing values for each incomplete year, and 292 293 (e) we selected $N_{\rm MV}$ years randomly from the record and we deleted the number of values 294 previously defined randomly from each year.

295 Finally, the annual maxima series extracted by the modified records were compared to the 296 corresponding real ones based on four basic statistics, i.e., the mean as a measure of central 297 tendency, the L-variation as a measure of dispersion, and the L-skewness and L-kurtosis as 298 measures of shape characteristics. We applied the maxima extraction method (M1) repeatedly by 299 altering the criteria values until the resulting series were statistically similar to the real ones; this 300 led to the aforementioned threshold values. We also compared the maxima series extracted by 301 methods M2 and M3 to the real ones. Figure 5 presents the box plots formed by the 1003 302 differences between the statistics of the real annual maxima series and the ones extracted from 303 the daily series modified to contain missing values.

304 As expected, method M3 (the one in which maxima are extracted irrespective of the 305 percentage of missing-values) is inappropriate because it significantly alters the statistical

306 character of the extracted maxima series while method M2 does not. Interestingly, not only does 307 method M1 preserve the statistical characteristics (the median is zero and approximately equals 308 the mean as the box plots are almost symmetric) but performs better than method M2. The 309 explanation is that method M1 generates time series with larger length, compared to those of 310 method M2, as fewer values are deleted. Apparently, larger time series means more information 311 and thus more accurate sample estimates. Finally, it is worth noting that the overall range of the 312 differences, taking into account that sample estimates of shape characteristics are usually very 313 uncertain, is very small.

314 **5.** Analysis and results

315 5.1 Fitting results

316 The application of the maxima extraction method (it is noted that the annual maximum value is 317 determined per calendar year, which is a more appropriate time basis for a study of global 318 rainfall) produced 15 137 annual maximum daily rainfall time series with length varying from 40 319 to 163 years. To obtain a general idea of the statistical behavior of the annual maximum daily 320 rainfall we calculated basic summary statistics for all records of maxima. The results are given in 321 Table 1. Noteworthy, all statistical characteristics (mean, standard deviation, skewness, L-322 skewness, L-kurtosis) vary significantly; for example, the mean ranges, from 9.1 mm to 323 863.7 mm and the standard deviation from 3.9 mm to 430.7 mm. In particular, the large variation 324 of shape characteristics, indicates that any distribution with fixed shape will be inadequate for 325 describing the annual maximum daily rainfall. Consequently, this portends the Gumbel 326 distribution's inability as a universal model as its shape characteristics are fixed.

We can expect that in some cases the Gumbel distribution suits better, while in other cases the Fréchet, or, even the reversed Weibull are more appropriate; in fact all three distributions

329 have been used in the literature. Theoretically, the estimated shape parameter of a fitted GEV 330 distribution reveals which one of the three distributions performs better, as all of them emerge for specific values of y. Yet, the Gumbel distribution arises for $y \rightarrow 0$, and thus, even if the 331 332 sample is indeed drawn from a Gumbel distribution the estimated GEV shape parameter 333 (irrespective of the fitting method used) will never be exactly zero. In the literature more than 334 thirteen tests can be found for testing whether the estimated GEV shape parameter can be 335 assumed zero [Hosking, 1984]. Nevertheless, all these tests examine whether the null hypothesis 336 H_0 : $\gamma = 0$ can be rejected or not. Clearly, a sample not rejecting the null hypothesis does not 337 imply that $\gamma = 0$, or equally, that the underlying distribution is the Gumbel. It is highly probable 338 for a null hypothesis with small values of γ , e.g., $H_0: \gamma = -0$.01, or, $H_0: \gamma = 0.01$, not to be 339 rejected. Hence, we deem that it is not possible to conclude with certainty applying statistical 340 tests whether the underlying distribution is Gumbel or GEV with γ close to zero.

341 Nevertheless, apart from the aforementioned tests, graphical tools exist that are especially 342 useful when dealing with a large number of records, which can help to make inference about the 343 underlying distribution. A graphical tool that has gained popularity over the last decade, 344 introduced by Hosking [1990], is provided by the L-moments ratio diagrams. L-ratio plots have 345 superseded classical moments ratio plots as they are superior in many aspects [see e.g., Hosking 346 and Wallis, 1993; Hosking, 1992; Peel et al., 2001; Vogel and Fennessey, 1993]. Essentially, this 347 tool provides a graphical comparison between observed L-ratio values and points or lines or even 348 areas formed by the theoretical formulas of parametric distributions. Figure 6 depicts in an L-349 kurtosis vs. L-skewness plot the 15 137 observed points as well as the theoretical point and line 350 corresponding to the Gumbel and the GEV distributions, respectively. Interestingly, only 20% of 351 points lie on the left of the Gumbel distribution (corresponding to a GEV distribution with $\gamma < 0$;

reversed Weibull law), while 80% of points lie on the right (corresponding to a GEV distribution with $\gamma > 0$; Fréchet law). Also it is worth noting that the average point lies almost exactly on the GEV line and corresponds to $\gamma \approx 0.1$. Figure 6 may not reveal the percentage of points that could be described by a Gumbel distribution, yet, it offers a clear indication that the Fréchet law prevails.

357 As mentioned before, the GEV shape parameter value indicates the type of the limiting 358 law, a fact that emphasizes the importance to study in depth the behavior of this parameter. To 359 this aim, we fitted the GEV distribution to all available records, and for the completeness of the 360 analysis we also fitted the Gumbel distribution. Both distributions were fitted using the method 361 of L-moments [see e.g., *Hosking*, 1990], as especially for the GEV distribution it has been shown 362 [Hosking et al., 1985] that L-moments estimators are even better than maximum likelihood 363 estimators in terms of bias and variance for samples up to 100 values. The fitting results are 364 shown in Table 2 where various summary statistics of the estimated parameters are given. The 365 table shows the large variation of the estimated GEV shape parameter, which ranges from -0.59366 to 0.76 with mean value 0.093; the 90% empirical confidence interval is evidently much smaller, 367 i.e., form -0.11 to 0.28. The empirical distribution of the GEV shape parameter is depicted on 368 Figure 7 along with a fitted normal distribution with mean 0.093 and standard deviation 0.12.

369 5.2 GEV shape parameter vs. record length

Larger samples offer more accurate estimates because, obviously, the variance of an estimator decreases as the sample size gets larger. Unambiguously thus, the estimate of the GEV shape parameter is expected to be more accurate if based for example on a 100-year record rather than on a ten-year record. In this respect, we study the estimated GEV shape parameter in relationship with the record length as our records vary in length from 40 to 163 years. First, we grouped the

15 137 estimated shape parameter values into nine groups based on the length of the record that 375 376 were estimated; and second, we estimated various statistics for each group. The summary 377 statistics of each group are given in Table 3, while the mean value and the percentage of records 378 with positive shape parameter in each group are depicted in Figure 8. Clearly, Figure 8 indicates 379 an upward "trend" in the mean shape parameter value over record length, e.g., for the 40-50 380 years group the mean value of γ is 0.077 while for the last group (with ≥ 121 years) it is 381 markedly larger, i.e., 0.116. Additionally, as the values of Table 3 attest, the standard deviation, 382 as expected, decreases over the record length, e.g., for the 40-50 years group it is 0.141 while for 383 the one with ≥ 121 years it is 0.088. Obviously the smaller the standard deviation the smaller the 384 parameter range, yet we note the drastic decrease, e.g., in the 90% empirical confidence interval 385 (ECI) of γ , which for the 40-50 years group is [-0.152, 0.312] while for the one with ≥ 121 years 386 it is [-0.029, 0.263]. Another key issue to emphasize is the upward "trend" of the percentage of 387 positive γ over record length. This percentage is large (71.8%) even in the 40-50 years and for 388 the group with ≥ 121 years it gets as high as 91.0%, providing a clear indication that the Fréchet 389 law prevails.

390 The previous analysis gave a clear indication that a relationship between the estimated 391 GEV shape parameter and the record length exists, yet, this relationship is not exactly revealed 392 as the variation in the mean value, as shown in Figure 8, does not suggest a precise law. 393 Nevertheless, if such a law exists, we should conclude that the previous grouping technique fails 394 to reveal its exact form because the record length is not uniformly distributed within the groups 395 (e.g., the 51-60 years group contains 3610 records but this does not imply that there are 361 396 records of 51 years, 361 records of 52 years, etc.). Thus, in order to create records with exactly 397 the same length, we modified the existing ones by partitioning or cutting off a number of values.

398 Specifically, we selected records with length greater or equal than 80 years (5049 records; it 399 would be extremely laborious to use all records), and we partitioned each one into lengths 400 ranging from ten to 115 years increased by a step of five years. The 115-year "upper limit" 401 emerged by demanding at least 1000 records at each record length, a number we deem is large 402 enough to offer a robust analysis (there are 1046 records with length \geq 115 years and only 540 403 with length \geq 120 years). For instance, applying this technique, a 112-year record is partitioned 404 into eleven 10-year records or yields only one 90-year record and obviously none 115-year record. In total the 5 049 selected records generated, for example, 49 270 ten-year records and 405 406 1046 115-year records. For all these records at each record length we estimated the GEV shape 407 parameter using the L-moments method.

408 Figure 9a depicts the observed mean and the 95% confidence interval (CI) values of the 409 GEV shape parameter for the various record lengths as well as the corresponding fitted theoretical functions. The fitted curves have the form $g(L) = a + b L^{-c}$, with c > 0, L denoting the 410 411 record length and a, b, c parameters estimated here with a least square error fitting. This formula 412 was figured out so as to have two desiderata: The first stems from the fact that the observed 413 values indicate clearly that the mean and the CI values do not increase or decrease linearly over 414 the record length. Rather, it is reasonable to assume that they tend asymptotically to a fixed 415 value. Clearly, as $L \to \infty$ the function $g(x) \to a$ with a thus expressing the limiting value. The 416 second desideratum is this function to be simple and flexible. Indeed, for b < 0 it is concave and 417 for b > 0 it is convex, thus being suitable to describe both upward and downward "trends" that 418 converge to a liming value. The estimated parameters for the fitted curves are as follows: (a) for the lower CI curve, a = 0.021, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = -3.90, c = 0.80, 419 420 -0.69, c = 0.98, and (c) for the upper CI curve, a = 0.195, b = 1.29, c = 0.55. Undoubtedly,

Figure 9a indicates a perfect match of the fitted functions to the observed values, unveiling thus the underlying laws. Noteworthy, the 95% limiting CI is very narrow (0.021, 0.195) with the lower bound positive, while the mean value of γ converges to $\mu_{\gamma} \simeq 0.114$.

424 In order to identify the true underlying distribution of the GEV shape parameter (assuming 425 it is well approximated by a normal distribution), apart from the limiting mean value estimated 426 before, we need to estimate the limiting value of the standard deviation. Figure 9b depicts the 427 estimated standard deviation values versus record length and a fitted curve of the same form used for the mean. The estimated parameters of the fitted curve are a = 0.045, b = 1.27 and c = 0.70, 428 429 indicating thus that the true standard deviation of γ is $\sigma_{\gamma} \simeq 0.045$, a value significantly smaller 430 than the smallest observed. Interestingly, assuming that the shape parameter follows the estimated normal distribution, i.e., $\gamma \sim N(\mu_{\gamma}, \sigma_{\gamma}^2)$, the 95% CI of γ would be (0.03, 0.21) which is 431 432 very close to the limiting CI estimated and depicted in Figure 9a. Furthermore the 99% CI 433 (rounded at the second decimal digit) is estimated at (0, 0.23), and apparently the probability for 434 a negative shape parameter to occur is only 0.005.

435 Additionally, Figure 9c depicts the percentage of records with negative γ over record 436 length. Evidently, the observed points suggest a quickly non-linear decreasing "trend". The fitted 437 curve has the same simple form as above but with c < 0. With estimated parameters a = 221.3, b = -154.1, c = -0.067 it crosses the horizontal axis at $L = (-a/b)^{-1/c} \approx 226$ years, implying that 438 439 for record length greater than 226 years the percentage of records with negative γ would be zero. 440 Indeed, none of the 16 records available with length greater than 140 years resulted in negative γ . 441 This indicates a deviation from the fitted curve; yet, the number of stations for this record length is very small to take it into account but this is additional evidence that the Fréchet law prevails. 442

Finally, based on the previous findings, it is possible to create an "unbiased" or recordlength-free estimator for the GEV shape parameter that incorporates its relation with the record length. Given that the true distribution of γ is the N(μ_{γ} , σ_{γ}^2) while for specific record length *n* is the N($\mu_{\gamma}(n)$, $\sigma_{\gamma}^2(n)$), with $\mu_{\gamma}(n) = \mu_{\gamma} - 0.69 n^{-0.98}$ and $\sigma_{\gamma}(n) = \sigma_{\gamma} + 1.27 n^{-0.70}$ being the functions fitted previously for the mean and the standard deviation, it can be easily proved that an "unbiased" estimator $\tilde{\gamma}(n)$ is the

449
$$\tilde{\gamma}(n) = \frac{\sigma_{\gamma}}{\sigma_{\gamma}(n)} \left(\hat{\gamma} - \mu_{\gamma}(n) \right) + \mu_{\gamma}$$
(8)

450 where *n* is sample size (number of years), $\hat{\gamma}$ is the L-moments estimate of γ , whereas $\mu_{\gamma} \simeq 0.114$ 451 and $\sigma_{\gamma} \simeq 0.045$ are the limiting mean and standard deviation values estimated previously.

452 **5.3** Monte Carlo validation of the results

453 In order to validate our results regarding the underlying distribution of the GEV shape parameter 454 we performed a Monte Carlo simulation. Specifically, we generated 15 137 random samples, 455 with sizes precisely equal with the original records lengths, from a GEV distribution with the 456 shape parameter being randomly generated from the anticipated normal distribution, i.e., the $N(\mu_{\gamma}, \sigma_{\gamma}^2)$, and with the location and scale parameter fixed to their mean values given in Table 2 457 458 as they do not affect the shape parameter estimates. In sequel, we estimated the shape parameter 459 values of those samples and we formed the empirical distribution shown in Figure 10. We can see that while the prior distribution of γ was the N($\mu_{\gamma}, \sigma_{\gamma}^2$) the estimated posterior is almost 460 461 identical with the empirical distribution emerged from the real records given in Figure 7. The 462 comparison of the two distributions reveals a very close match, i.e., the empirical distribution 463 emerged from the real records has mean and the standard deviation, respectively, equal to 0.092

and 0.12 while the corresponding values for the empirical distribution emerged from thesynthetic records are, respectively, 0.104 and 0.11.

466 This minor deviation is probably justified by the fact that the L-skewness and the L-467 kurtosis of the empirical distribution of γ , which are -0.017 and 0.158, respectively, deviate 468 slightly from the theoretical values of a normal distribution which are 0 and 0.123. The small 469 negative skewness may have caused the slight decrease in the mean value while the higher L-470 kurtosis implies more extremes γ values, both negative and positive, and this obviously leads to 471 higher variance. The fact is that both the empirical evidence and the Monte Carlo simulation 472 suggest that the distribution of the GEV shape parameter is very well approximated by the normal distribution N($\mu_{\gamma}, \sigma_{\gamma}^2$). Even if the shape characteristics between the empirical and the 473 474 Monte Carlo distributions do not match exactly (mainly the L-kurtosis) this is something 475 anticipated; when a set of 15137 real-world records is analyzed we should expect that some 476 records may either contain incorrectly recorded values or some extraordinary events occurred, 477 leading thus to unrealistically small or large shape parameter estimates. For example a couple or 478 even one "extremely" extreme event in a relatively small sample, e.g., 40-60 years may alter 479 significantly the value of L-skewness and consequently the estimate of the shape parameter γ 480 resulting thus in a distribution that may not describe realistically the behavior of the rainfall in 481 general. "Errors" of this kind are unavoidable as it is possible for a small sample to contain, e.g., 482 the 1000-year event.

The previous analysis also indicated that the true mean value of the underlying distribution of the GEV shape parameter is $\mu_{\gamma} = 0.114$, markedly larger than zero, i.e. the value specifying the Gumbel distribution. This consequently leads us to assume that the Gumbel distribution is not a good model in general for annual maximum daily rainfall. Nevertheless, it does not reveal how bad or good the Gumbel model is if compared to the GEV model or more specifically to the Fréchet law. Obviously the GEV and the Gumbel distributions cannot be compared directly in the sense that the first one is a three-parameter model while the second one is a two-parameter model and a special case of the first one. For this reason we compare here the Gumbel distribution with a representative fixed-shape-parameter GEV distribution, i.e., a GEV with shape parameter equal to $\mu_{\gamma} = 0.114$.

493 Specifically, we generated 15 137 random samples, with sizes equal to those of the original 494 records using: (a) a Gumbel distribution, and (b) a GEV distribution with $\gamma = 0.114$ (the location 495 and scale parameters were fixed in both distributions as their values do not affect the shape 496 characteristics). Next, we estimated the Monte Carlo (MC) L-kurtosis *vs*. L-skewness points and 497 depicted them in comparison with the observed ones already presented in Figure 6. The idea is to 498 compare the extent of the area formed by the MC points with the area formed by the points of the 499 real records.

500 The results of this Monte Carlo simulation are presented in Figure 11. For the Gumbel case 501 (upper graph) we note that indeed there is a spread around the theoretical Gumbel point, yet, the 502 area covered by the MC points is significantly smaller than the one formed by the observed 503 points and the cloud of points are placed toward the left. Clearly, the Gumbel distribution fails to 504 generate points with high values of L-skewness. In the GEV case with fixed γ (lower graph) we 505 observe not only the expected shift of the cloud of the MC points toward the right, but also the 506 expansion of this cloud, so that the area formed is much larger compared to that of the Gumbel 507 case. In addition, the MC area better fits the one formed by the empirical points. This reveals that 508 the GEV distribution with fixed γ performs in general much better compared with the Gumbel 509 distribution.

510 **5.4 Geographical variation of the GEV shape parameter**

511 The previous analysis reveals that the GEV shape parameter estimates depend on the record 512 length and that essentially the parameter varies in the interval (0, 0.23). Thus, the question that 513 naturally arises is how the parameter varies over geographical location, as it is reasonable to 514 expect that different areas of the world exhibit different behavior not only in the mean annual 515 rainfall but also the in the shape of distribution of the annual extremes. Yet, we should bear in 516 mind that even if the behavior of extreme rainfall is the same in a big area, in practice the 517 estimated GEV shape parameters in different locations within the area will differ due to sampling 518 effects. As a consequence, the different estimates may lead to false conclusions.

519 Thus, in order to reduce the sampling effect and to investigate the geographical distribution 520 of the GEV shape parameter seeking to reveal any kind of geographical pattern, we divided the 521 earth's surface into cells and studied the mean value of the GEV shape parameter within the cell; 522 obviously the mean value offers a simple and rational smoothing. Each cell is defined by a latitude difference of $\Delta \varphi = 2.5^{\circ}$ and longitude difference of $\Delta \lambda = 5^{\circ}$; as latitude φ ranges from 523 524 -90° to 90° and longitude λ from -180° to 180° , a total of 5 184 cells emerged. The mean value 525 of the GEV shape parameter of each cell is simply estimated as the average of those shape 526 parameter estimates that correspond to stations lying within the cell, given that the cell contains 527 at least two records, Clearly, the number of stations within each cell is not constant, and most of 528 the cells (notably those in the oceans) do not contain any stations while there are 258 cells 529 containing only one record. Specifically, from the 5184 cells formed, only 792 cells had 530 available records and only 534 had at least two records, while there are 46 cells with more than 531 100 records each. The results using the typical (record-length dependent) estimates of the GEV 532 shape parameter are depicted in the world map given in Figure 12 where the cell's mean value is

533 expressed by coloring the cell according to the map's legend. It is noted that the values defining the bins in the map's legend are defined by the minimum value, the Q_{10} , Q_{25} , Q_{50} , Q_{75} , and Q_{90} 534 535 empirical quantile (or percentile) points and the maximum value of the 534 mean shape 536 parameter values after rounding off to the second decimal, e.g., the central 50% of values or the 537 interguartile range is approximately form 0.06 to 0.14. The numbers of cells with mean values at 538 each successive bin (from low to high values) are: 57, 76, 146, 115, 89 and 51, while the number 539 of cells with negative mean values is 52. Clearly, the map reveals that large and discrete areas 540 exist with the same behavior in extreme rainfall manifested by the approximately equal GEV 541 shape parameter values.

542 Nevertheless, the analysis of the previous section unveiled the clear relationship of the 543 estimated GEV shape parameters with the record length. Consequently, a more accurate map 544 should incorporate these findings as a region contains records of variable length leading thus to a 545 record-length depended estimate of the mean value. Additionally, we showed that the GEV 546 shape parameter estimates can be corrected by Eq. (8) to be record-length free and follow the normal distribution N($\mu_{\gamma}, \sigma_{\gamma}^2$) which constitutes a very good approximation of the true 547 548 distribution of the GEV shape parameter. For these reasons, we reconstructed the map by using 549 the unbiased (free of record-length dependence) estimate of the shape parameter values 550 according to Eq. (8). The results are presented in Figure 13. As in the previous map, the bins are 551 defined the same way but obviously the values differ as the range of variation is much smaller. 552 The numbers of cells with values spotted in each successive bin are different from the previous 553 map, i.e., 59, 88, 105, 143, 93 and 46 (due to rounding of the quantile values), while the number 554 of points representing negative values is now zero. Comparing the two maps we note that they 555 look almost the same but in fact they differ. Finally, it is notable that large areas or zones are formed by points representing shape parameter values belonging in a very narrow range. For example, in the US there are two large zones where the shape parameter ranges from 0.10 to 0.11 in the one (green color) and from 0.11 to 0.13 in the other (yellow-green color); additionally, in the entire Atlantic coasts of South America a zone of low values is formed while a large area of high values can be spotted in South-West Australia.

561 Obviously, the accuracy in the estimation of the shape parameter mean values is not the 562 same for every cell as the number of records per cell is not constant. Thus, in order to provide a 563 measure of uncertainty or a measure of estimation error, we constructed the map given in Figure 564 14 that presents each cell's standard error (SE) values with respect to the mean values given in the map Figure 13 (unbiased estimates). The SE is defined as $SE = \sigma / \sqrt{n}$ and in this case σ is 565 566 the sample standard deviation of the shape parameter values of the cell and *n* the number of those 567 values. In order for the estimates of SE to be relatively accurate we selected only those cells that 568 contain at least six records (a total of 281 cells), as it is well-known that the estimation of the 569 standard deviation is markedly biased for very small samples. A cell's SE expresses the standard 570 deviation of the cell's shape parameter mean value, and can be used directly to calculate the 95% 571 CI of this estimate as it is well-known that the 95% CI is given by $\overline{\gamma} \pm 1.96$ SE, where $\overline{\gamma}$ is the 572 cell's shape parameter mean value. The values defining the bins of SE in the map's legend 573 (Figure 14) are defined by the minimum value, the Q_{25} , Q_{50} , Q_{75} empirical quantile (or 574 percentile) points and the maximum value of the 281 SE values after rounding off to the third 575 decimal, e.g., the 50% of SE values are less than 0.008. The numbers of cells with SE values at 576 each successive bin (from lower to higher values) are: 67, 75, 68, and 71. As expected, areas 577 with high density of stations and large records have very low values of SE.

578 **6.** Summary and conclusions

579 Extreme value distributions have been extensively used in hydrology for more than half a 580 century as a basic tool for estimating the design rainfall of infrastructures or assessing flood 581 risks; however, selecting the appropriate law is usually based on small samples without 582 guaranteeing the correct choice or the accurate estimate of the law's parameters. Here, we 583 analyze 15 137 rainfall records from all over the world aiming to assess which one of the three 584 limiting distributions better describes the annual maximum daily rainfall. Initially, we formed a 585 method comprising two simple criteria, in order to treat the very common problem of extracting 586 annual maxima of daily rainfall from records containing missing values. The method was 587 successfully validated and applied to form the annual maximum daily rainfall records.

588 The question, which of the three limiting extreme value distributions to use, is the focus of 589 this study. Starting from the reversed Weibull distribution, we may note that it implies a parent 590 distribution for daily rainfall with an upper bound; we contend that this is physically inconsistent 591 and moreover, to our knowledge distributions bounded from above have never been used for 592 daily rainfall in competent studies. With reference to the Fréchet vs. Gumbel "battle", we showed 593 that, as strange it may seem, annual maxima extracted from a parent distribution that belongs to 594 the domain of attraction of the Gumbel law, are better described by the Fréchet law. This occurs 595 for two reasons: first, the convergence rate to the Gumbel law is extremely slow, and second, the 596 shape parameter of the Fréchet law enables the distribution to approximate quite well not only 597 distributions with power-type tails but also other heavy-tailed distributions.

598 The empirical investigation using 15 137 records started with an L-moments ratio plot 599 which reveals that 80% of observed points are located on the right of the "Gumbel point" 600 providing clear evidence that the Fréchet law prevails. Additionally, the analysis of the estimated

601 GEV shape parameters unveils a clear relationship between the shape parameter value over the 602 record length, implying that only very large samples can reveal its true distribution or the true 603 behavior of the extreme rainfall. The "asymptotic" analysis performed, based on the fitted 604 functions to the mean and standard deviation of the GEV shape parameter over record length, 605 suggests that the distribution of the GEV shape parameter that would emerge if extremely large 606 samples were available is approximately normal with mean value 0.114 and standard deviation 607 0.045. The meaning of this finding is that the GEV shape parameter is expected to belong in a 608 narrow range, approximately from 0 to 0.23 with confidence 99%. Essentially, the analysis 609 shows that we cannot trust blindly the data, as small samples may distort the true picture. In this 610 direction, we propose the use of Eq. (8) that corrects the L-moments estimate of the GEV shape 611 parameter removing the bias due to limited sample size.

612 While originally a small percentage of records have negative shape parameter (reversed 613 Weibull law), the analysis reveals that this percentage rapidly decreases over sample size, while 614 the fitted function indicates that for record length greater than 226 years this percentage would 615 be zero. Interestingly, none of the 16 records available with length greater than 140 years 616 resulted in negative γ . Moreover, the probability for a negative shape parameter to occur, 617 according to the distribution fitted, is only 0.005, and combined with the previous findings 618 suggests that a GEV distribution with negative shape parameter (bounded from above) is 619 completely inappropriate for rainfall. Concerning the geographical distribution of the GEV shape 620 parameter, the constructed maps show that large areas of the world share approximately the same 621 GEV shape parameter, yet different areas of the world exhibit different behavior in extremes.

We believe the "verdict" is clear: the Fréchet law, or else the GEV law with positive shape parameter, should prevail over the Gumbel law and a fortiori over the reversed Weibull law, with

624 latter suggesting a dangerous choice. If we had to form a rule of thumb, we would propose that in 625 the case where data suggest a GEV distribution with negative shape parameter, this should not be 626 used. Instead it is more reasonable to use a Gumbel or, for additional safety, a GEV distribution 627 with a shape parameter value equal to 0.114. The prevailing practice of the past that favored the 628 use of the Gumbel distribution does not suggest a proof of its outperformance over the Fréchet 629 law, as it seems it takes a long time to reveal Nature's "secrets" and its true behavior. As 630 Heraclitus of Ephesus stated more than 2500 years ago in the aphorism given in the introduction 631 (loosely translated) "Nature loves to hide".

632

633 Acknowledgment We wish to thank the Editor Praveen Kumar and the Associate Editor Alberto

634 Montanari for the positive evaluation of the paper, as well as the eponymous reviewer Salvatore

635 Grimaldi and two anonymous reviewers for their detailed comments which helped us to improve

636 the presentation of the study.

637 **References**

- Balkema, A. A., and L. D. Haan (1972), On R. Von Mises' Condition for the Domain of
 Attraction of exp(-e-x)1, *The Annals of Mathematical Statistics*, 43(4), 1352–1354.
- Barndorff-Nielsen, O. (1963), On the Limit Behaviour of Extreme Order Statistics, *The Annals of Mathematical Statistics*, *34*(3), 992–1002.
- Berman, S. M. (1964), Limit Theorems for the Maximum Term in Stationary Sequences, *The Annals of Mathematical Statistics*, 35(2), 502–516.
- von Bortkiewicz, L. (1922), Variationsbreite und mittlerer Fehler, *Sitzungsber. Berli. Math. Ges.*,
 (21), 3–11.
- Embrechts, P., C. Klüppelberg, and T. Mikosch (1997), *Modelling extremal events for insurance and finance*, Springer Verlag, Berlin Heidelberg.
- Fisher, R. A., and L. H. C. Tippett (1928), Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample, *Mathematical Proceedings of the Cambridge Philosophical Society*, 24(02), 180–190, doi:10.1017/S0305004100015681.

- Fréchet, M. (1927), Sur la loi de probabilité de l'écart maximum, Ann. soc. polon. math, 6, 93.
- Galambos, J. (1972), On the Distribution of the Maximum of Random Variables, *The Annals of Mathematical Statistics*, 43(2), 516–521.
- 654 Gnedenko, B. (1943), Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire, 655 *The Annals of Mathematics*, 44(3), 423–453, doi:10.2307/1968974.
- 656 Gumbel, E. J. (1958), *Statistics of Extremes*, Columbia University Press.
- De Haan, L. (1971), A form of regular variation and its application to the domain of attraction of
 the double exponential, Z. Wahrsch. Geb., (17), 241–258.
- Hosking, J. R. M. (1984), Testing Whether the Shape Parameter is Zero in the Generalized
 Extreme- Value Distribution, *Biometrika*, 71(2), 367–374, doi:10.2307/2336254.
- Hosking, J. R. M. (1990), L-Moments: Analysis and Estimation of Distributions Using Linear
 Combinations of Order Statistics, *Journal of the Royal Statistical Society. Series B*(Methodological), 52(1), 105–124.
- Hosking, J. R. M. (1992), Moments or L Moments? An Example Comparing Two Measures of
 Distributional Shape, *The American Statistician*, 46(3), 186–189, doi:10.2307/2685210.
- Hosking, J. R. M., and J. R. Wallis (1993), Some statistics useful in regional frequency analysis,
 Water Resour. Res., 29(2), PP. 271–281, doi:199310.1029/92WR01980.
- Hosking, J. R. M., J. R. Wallis, and E. F. Wood (1985), Estimation of the Generalized ExtremeValue Distribution by the Method of Probability-Weighted Moments, *Technometrics*,
 27(3), 251–261, doi:10.2307/1269706.
- Jenkinson, A. F. (1955), The frequency distribution of the annual maximum (or minimum)
 values of meteorological elements, *Quarterly Journal of the Royal Meteorological Society*, *81*(348), 158–171, doi:10.1002/qj.49708134804.
- Juncosa, M. L. (1949), The asymptotic behavior of the minimum in a sequence of random
 variables, *Duke Mathematical Journal*, 16(4), 609–618, doi:10.1215/S0012-7094-4901658-0.
- Kotz, S., and S. Nadarajah (2000), *Extreme value distributions: theory and applications*,
 Imperial College Press.
- Koutsoyiannis, D. (2004a), Statistics of extremes and estimation of extreme rainfall, 1,
 Theoretical investigation, *Hydrological Sciences Journal*, 49(4), 575–590.
- Koutsoyiannis, D. (2004b), Statistics of extremes and estimation of extreme rainfall, 2, Empirical
 investigation of long rainfall records, *Hydrological Sciences Journal*, 49(4), 591–610.

- Leadbetter, M. R. (1974), On extreme values in stationary sequences, *Probability theory and related fields*, 28(4), 289–303.
- von Mises, R. (1936), La distribution de la plus grande de n valeurs, *Rev. math. Union interbalcanique*, 1(1).
- Papalexiou, S. M., and D. Koutsoyiannis (2012), Entropy based derivation of probability
 distributions: A case study to daily rainfall, *Advances in Water Resources*, 45, 51–57,
 doi:10.1016/j.advwatres.2011.11.007.
- Papalexiou, S. M., D. Koutsoyiannis, and C. Makropoulos (2012), How extreme is extreme? An
 assessment of daily rainfall distribution tails, *Hydrology and Earth System Sciences Discussions*, 9(5), 5757–5778, doi:10.5194/hessd-9-5757-2012.
- Peel, M. C., Q. Wang, R. M. Vogel, and T. A. McMahon (2001), The utility of L-moment ratio
 diagrams for selecting a regional probability distribution, *Hydrological sciences journal*,
 46(1), 147–156.
- Pickands III, J. (1975), Statistical Inference Using Extreme Order Statistics, *The Annals of Statistics*, 3(1), 119–131.
- Reiss, R. D., and M. Thomas (2007), Statistical analysis of extreme values: with applications to
 insurance, finance, hydrology and other fields, Birkhauser.
- Smirnov, N. V. (1949), Limit distributions for the terms of a variational series, *Trudy Matematicheskogo Instituta im. VA Steklova*, 25, 3–60.
- Vogel, R. M., and N. M. Fennessey (1993), L moment diagrams should replace product moment diagrams, *Water Resources Research*, 29(6), 1745–1752.
- Watson, G. S. (1954), Extreme Values in Samples from m-Dependent Stationary Stochastic
 Processes, *The Annals of Mathematical Statistics*, 25(4), 798–800.
- 706

707 Tables

Table 1. Basic summary statistics of the 15 137 records; *Q* indicates the empirical quantile.

	Record Length	Median	Mean	SD	Skew	L-scale λ_2	L-skew τ_3	L-kurtosis τ_4
min	40	7.40	9.10	3.94	-0.71	2.15	-0.16	-0.06
Q_5	49	25.60	28.51	11.00	0.53	5.80	0.10	0.09
Q_{25}	58	39.20	43.13	17.41	0.98	9.06	0.18	0.14
Q_{50} (Median)	68	57.20	62.24	23.73	1.35	12.35	0.23	0.18
Q_{75}	91	77.50	83.96	33.84	1.84	17.43	0.28	0.22
\widetilde{Q}_{95}	117	114.80	126.23	57.81	3.03	29.86	0.37	0.30
max	163	864.50	863.69	430.69	9.87	244.66	0.76	0.73

Mean	74.85	61.97	67.73	27.72	1.51	14.40	0.23	0.18
SD	21.84	30.71	33.16	15.38	0.85	7.98	0.08	0.06
Skew	0.80	2.68	2.37	2.72	2.06	3.16	0.15	0.85
L-scale λ_2	12.07	15.97	17.35	7.80	0.43	4.01	0.04	0.03
L-skew τ_3	0.22	0.19	0.20	0.27	0.23	0.28	0.02	0.10

Table 2. Summary statistics of the estimated parameter of the fitted Gumbel and GEV
distributions to the 15 137 annual maximum daily rainfall records; the fitting was done by the
method of L-moments.

	Gumbel pa	arameters	GE	GEV parameters			
	α	β	α	β	γ		
min	6.81	3.10	6.00	2.66	-0.587		
Q_5	23.21	8.37	22.59	7.36	-0.107		
Q_{25}	35.26	13.07	34.67	11.71	0.020		
Q_{50} (Median)	51.54	17.82	50.82	16.16	0.093		
Q_{75}	70.07	25.15	69.24	22.69	0.169		
Q_{95}	102.54	43.09	101.14	38.53	0.283		
max	659.96	352.97	688.17	401.68	0.760		
Mean	55.74	20.77	54.95	18.71	0.092		
SD	27.21	11.51	27.08	10.68	0.120		
Skew	2.23	3.16	2.38	4.67	-0.130		
L-scale λ_2	14.30	5.78	14.17	5.25	0.067		
L-skew τ_3	0.18	0.28	0.18	0.27	-0.017		
L-kurt τ_4	0.13	0.18	0.14	0.18	0.158		

- 714 **Table 3.** Summary statistics of the estimated GEV shape parameter for various record length
- 715 categories.

Record length (years)	40 - 50	51 - 60	61 - 70	71 - 80	81 - 90	91 - 100	101 - 110	110 - 120	≥121
Records No.	1161	3610	3972	1467	1134	1164	1132	1017	480
Records % ($\gamma > 0$)	71.8	72.9	77.8	83.6	85.0	86.8	88.1	91.1	91.0
Records % ($\gamma \le 0$)	28.2	27.1	22.2	16.4	15.0	13.2	11.9	8.9	9.0
	GEV shape parameter γ								
min	-0.461	-0.587	-0.493	-0.307	-0.287	-0.283	-0.188	-0.193	-0.204
Q_5	-0.152	-0.156	-0.112	-0.086	-0.068	-0.048	-0.046	-0.035	-0.029
Q_{25}	-0.014	-0.009	0.011	0.030	0.036	0.042	0.049	0.047	0.060
Q_{50} (Median)	0.079	0.082	0.086	0.102	0.100	0.106	0.108	0.102	0.118
Q_{75}	0.172	0.166	0.166	0.176	0.169	0.175	0.169	0.158	0.170
\tilde{Q}_{95}	0.312	0.290	0.291	0.285	0.268	0.271	0.271	0.247	0.263
max	0.541	0.706	0.760	0.567	0.539	0.573	0.750	0.471	0.345
Mean	0.077	0.077	0.089	0.103	0.101	0.108	0.110	0.105	0.116
SD	0.141	0.138	0.124	0.112	0.102	0.100	0.096	0.088	0.088

Skew	-0.135	-0.253	0.120	0.096	-0.029	0.171	0.367	0.220	-0.137
L-scale λ_2	0.079	0.077	0.069	0.063	0.057	0.056	0.053	0.048	0.049
L-skew τ_3	-0.012	-0.034	0.015	0.006	0.002	0.014	0.023	0.024	-0.011
L-kurt τ_4	0.142	0.149	0.153	0.134	0.135	0.137	0.144	0.166	0.156

717 Figures

719 Figure 1. Demonstration of the convergence of the true distribution of maxima to the limiting

720 laws.

Figure 2. Locations of the 15137 stations with annual maximum records of daily rainfall analyzed with number of values ranging from 40 to 163 years. Note that there are overlaps with points corresponding to high record lengths shadowing (being plotted in front of) points of lower record lengths.

726

Figure 3. Explanatory plot of the maxima extraction method. The annual maximum daily rainfall is considered unknown (red rectancles) if its rank is in the smaller 40% of ranks (red shaded ranks) and the missing-value percentage (MV%) of the year it belongs is larger than 1/3 (red shaded percentages).

Figure 4. Empirical distribution of the year's percentage per record having missing values as
resulted from the analysis of the 15 137 records; the solid line depicts a fitted Beta distribution.

Figure 5. Box plots depicting the resulting sample differences of various statistics between the real annual maxima series and the ones created from the incomplete daily series. The advantage of the first method compared to the others is clearly seen by the smaller range of the box plots. The lower and upper fences of the box plots represent the sample quantiles Q_1 and Q_{99} , respectively.

Figure 6. Observed L-kurtosis vs. L-skewness points of the 15137 annual maximum daily
rainfall records and the theoretical point and line of the Gumbel and GEV distribution,
respectively.

Figure 7. Empirical distribution of the GEV shape parameter as resulted by fitting the GEV
distribution to the 15 137 annual maximum daily rainfall records. The solid line depicts a fitted
normal distribution.

Figure 8. Mean value of the GEV shape parameter for various categories of record length. The
numbers in the boxes indicates the percentage of records with positive shape parameter value.

Figure 9. (a) Mean, quantiles Q_5 and Q_{95} as estimated for various records lengths and their fitted asymptotic values; (b) standard deviation; (c) percentage of records with negative shape parameter.

Figure 10. Empirical distribution of the GEV shape parameter as resulted from the Monte Carlo simulation where 15 137 synthetic records generated with the shape parameter being randomly sampled from the N(μ_{γ} , σ_{γ}^2). The solid line depicts the fitted normal distribution.

761

Figure 11. Monte Carlo points estimated (a) for the Gumbel distribution, and (b) for the GEV distribution with fixed shape parameter $\gamma = 0.114$, depicted in comparison to the observed ones.

Figure 12. Geographical distribution of the mean value of the GEV shape parameter (estimated by the standard L-moment estimator) in regions of latitude difference $\Delta \varphi = 2.5^{\circ}$ and longitude difference $\Delta \lambda = 5^{\circ}$.

Figure 13. Geographical distribution of the mean value of the GEV shape parameters estimated
by the unbiased estimator of Eq. (8) that corrects the sample-size effect; notice the difference in
the values of the legend with the legend of Figure 12.

Figure 14. Standard error values of the GEV shape parameter mean values that are given in the

map of Figure 13.