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Abstract. The need of understanding and modelling the
space–time variability of natural processes in hydrological
sciences produced a large body of literature over the last
thirty years. In this context, a multifractal framework pro-
vides parsimonious models which can be applied to a wide-
scale range of hydrological processes, and are based on the
empirical detection of some patterns in observational data,
i.e. a scale invariant mechanism repeating scale after scale.
Hence, multifractal analyses heavily rely on available data
series and their statistical processing. In such analyses, high
order moments are often estimated and used in model identi-
fication and fitting as if they were reliable. This paper warns
practitioners against the blind use in geophysical time series
analyses of classical statistics, which is based upon indepen-
dent samples typically following distributions of exponential
type. Indeed, the study of natural processes reveals scaling
behaviours in state (departure from exponential distribution
tails) and in time (departure from independence), thus im-
plying dramatic increase of bias and uncertainty in statisti-
cal estimation. Surprisingly, all these differences are com-
monly unaccounted for in most multifractal analyses of hy-
drological processes, which may result in inappropriate mod-
elling, wrong inferences and false claims about the prop-
erties of the processes studied. Using theoretical reasoning
and Monte Carlo simulations, we find that the reliability of
multifractal methods that use high order moments (> 3) is
questionable. In particular, we suggest that, because of esti-
mation problems, the use of moments of order higher than
two should be avoided, either in justifying or fitting models.
Nonetheless, in most problems the first two moments provide
enough information for the most important characteristics of
the distribution.

1 Introduction

A simple way to understand the extreme variability of sev-
eral geophysical processes over a practically important range
of scales is offered by the idea that the same type of ele-
mentary process acts at each relevant scale. According to this
idea, the part resembles the whole as quantified by so-called
“scaling laws”. Scaling behaviours are typically represented
as power laws of some statistical properties, and they are ap-
plicable either on the entire domain of the variable of interest
or asymptotically. If this random variable represents the state
of a system, then we have the scaling in state, which refers
to marginal distributional properties. This is to distinguish
from another type of scaling, which deals with time-related
random variables: the scaling in time, which refers to the de-
pendence structure of a process. Likewise, scaling in space
is derived by extending the scaling in time in higher dimen-
sions and substituting space for time (e.g. Koutsoyiannis et
al., 2011).

The scaling behaviour widely observed in the natural
world (e.g. Newman, 2005) has often been interpreted as
a tendency, driven by the dynamics of a physical system,
to increase the inherent order of the system (self-organized
criticality): this is often triggered by random fluctuations
that are amplified by positive feedback (Bak et al., 1987).
In another view, the power laws are a necessity implied by
the asymptotic behaviour of either the survival and autoco-
variance function, describing, respectively, the marginal and
joint distributional properties of the stochastic process which
models the physical system. The main question is whether
the two functions decay following an exponential (fast de-
cay) or a power-type law (slow decay). We assume the latter
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to hold in the form of scaling in state (heavy-tailed distribu-
tions) and in time (long-term persistence), which have also
been verified in geophysical time series (e.g. Markonis and
Koutsoyiannis, 2013; Papalexiou et al., 2013). According to
this view, scaling behaviours are just manifestations of en-
hanced uncertainty and are consistent with the principle of
maximum entropy (Koutsoyiannis, 2011). The connection of
scaling with maximum entropy constitutes also a connection
of stochastic representations of natural processes with sta-
tistical physics. The emergence of scaling from maximum
entropy considerations may thus provide theoretical back-
ground in modelling complex natural processes by scaling
laws.

In the literature, natural processes showing scaling be-
haviour are often classified as multifractal systems (i.e. mul-
tiscaling) that generalize fractal models, in which a single
scaling exponent (the fractal dimension) is enough to de-
scribe the system dynamics. For a detailed review on the fun-
damentals of multifractals, the reader is referred to Schertzer
and Lovejoy (2011).

Multifractal models generally provide simple power-law
relationships to link the statistical distribution of a stochas-
tic process at different scales of aggregation. All power laws
with a particular scaling exponent are equivalent up to con-
stant factors, since each is simply a scaled version of the
others. Therefore, the multifractal framework provides par-
simonious models to study the variability of several natural
processes in geosciences, such as rainfall. Rainfall models
of multifractal type have, indeed, for a long time been used
to reproduce several statistical properties of actual rainfall
fields, including the power-law behaviour of the moments
of different orders and spectral densities, rainfall intermit-
tency and extremes (see e.g. Koutsoyiannis and Langousis,
2011, and references therein). However, published results
vary widely, calling into question whether rainfall indeed
obeys scaling laws, what those laws are, and whether they
have some degree of universality (Nykanen and Harris, 2003;
Veneziano et al., 2006; Molnar and Burlando, 2008; Molini
et al., 2009; Serinaldi, 2010; Verrier et al., 2010, 2011; Gires
et al., 2012; Veneziano and Lepore, 2012; Papalexiou et al.,
2013). In fact, significant deviations of rainfall from mul-
tifractal scale invariance have also been pointed out. These
deviations include breaks in the power-law behaviour (scal-
ing regimes) of the spectral density (Fraedrich and Larn-
der, 1993; Olsson, 1995; Verrier et al., 2011; Gires et al.,
2012), lack of scaling of the non-rainy intervals in time series
(Veneziano and Lepore, 2012; Mascaro et al., 2013), differ-
ences in scaling during the intense and moderate phases of
rainstorms (Venugopal et al., 2006), and more complex devi-
ations (Veneziano et al., 2006; Marani, 2003).

Multifractal signals generally obey a scale invariance that
yields power law behaviours for multi-resolution quantities
depending on their scale1. These multi-resolution quanti-
ties at discrete time steps (j = 1, 2,. . . ), denoted byx(1)

j in

the following, are local time averages in boxes of size1

(notice that we use the so-called Dutch convention accord-
ing to which random variables are underlined; see Hemel-
rijk (1996), and the additional notational conventions in
Koutsoyiannis (2013)). This is the basis of the fixed-size box-
counting approach (see e.g. Mach et al., 1995).

For multifractal processes, one usually observes a power-
law scaling of the form

E
[(

x
(1)
j

)q]
∝ 1−K(q), (1)

where E[·] denotes expectation (ensemble average) andK(q)

is the moment scaling function, at least in some range of
scales1 and for some range of ordersq. Generally, the mul-
tifractal behaviour of a physical system is directly character-
ized by the multiscaling exponentsK(q), whose estimation
relies on the use of the sampleq-order moments at different
scales1 and their linear regressions in log-log diagrams.

A fundamental problem in the multifractal analysis of
data sets is to estimate the moment scaling functionK(q)

from data (Villarini et al., 2007; Veneziano and Furcolo,
2009). Considerable literature has been dealing with estima-
tion problems in the context of so-called scaling multifrac-
tal measures for at least three decades (see e.g. Grassberger
and Procaccia, 1983; Pawelzik and Schuster, 1987; Schertzer
and Lovejoy, 1992; Ashkenazy, 1999; Mandelbrot, 2003; and
Neuman, 2010). Interestingly, Mandelbrot (2003) and Neu-
man (2010) recognize the crucial role played by time depen-
dence in estimating multifractal properties from finite length
data. Nonetheless, in this work we remain strictly within the
framework of the standard statistical formalism, which is ac-
tually a novelty with respect to the literature cited above. In
this context, we highlight the problematic estimation of mo-
ments for geophysical processes, because the statistical pro-
cessing of geophysical data series is usually based upon clas-
sical statistics. The classical statistical approaches rely on
several simplifying assumptions, tacit or explicit, such as in-
dependence in time and exponentially decaying distribution
tails, which are invalidated in natural processes thus caus-
ing bias and uncertainty in statistical estimations. In many
studies, it has been a common practice to neglect this prob-
lem, which is introduced when the process exhibits depen-
dence in time and is magnified when the distribution func-
tion significantly departs from the Gaussian form, which it-
self is an example of an exceptionally light-tailed distribu-
tion. In their pioneering work on statistical hydrology, Wallis
et al. (1974) already provided some insight into the sampling
properties of moment estimators when varying the marginal
probability distribution function of the underlying stochas-
tic process. The main results of the paper agree well with
those found here, but its Monte Carlo experiments were car-
ried out under a classical statistical framework assuming
independent samples.

The purpose of this paper is to explore, at different
timescales, the information content in estimates of raw

Hydrol. Earth Syst. Sci., 18, 243–255, 2014 www.hydrol-earth-syst-sci.net/18/243/2014/



F. Lombardo et al.: Just two moments! 245

moments of processes exhibiting temporal dependence (see
Sect. 2). In order for the true moments to be fully known a
priori, we use synthetic examples in a Monte Carlo simula-
tion framework. We explore processes with both normal and
non-normal distributions including ones with heavy tails. We
show (Sect. 3) that, even in quantities whose estimates are
in theory unbiased, the dependence and non-normality affect
significantly their statistical properties, and sample estimates
based on classical statistics are characterized by high bias
and uncertainty.

2 Local average process

Central to the development of robust multifractal models is
the concept of “local average” of a stochastic process. Practi-
cal interest often revolves around local average or aggregates
(temporal or spatial) of random variables, because it is sel-
dom useful or necessary to describe in detail the local point-
to-point variation occurring on a microscale in time or space.
Even if such information were desired, it may be impossi-
ble to obtain: there is a basic trade-off between the accuracy
of a measurement and the (time or distance) interval within
which the measurement is made (Vanmarcke, 1983). For ex-
ample, rain gauges (owing to size, inertia, and so on) measure
some kind of local average of rainfall depth over time. More-
over, through information processing, “raw data” are often
transformed into average or aggregate quantities such as, e.g.
sub-hourly averages or daily totals.

Mathematically, letx(t) be a stationary stochastic process
in continuous timet with meanµ = E [x], and autocovariance
c(τ ) = Cov[x(t), x(t + τ)], whereτ is the time lag. Consider
now the random processx(1)

j obtained by local averagingx(t)
over the window1 at discrete time stepsj (=1, 2,. . . ), de-
fined as

x
(1)
j =

1

1

j1∫
(j−1)1

x (t)dt; j = 1, 2, . . . , n , (2)

wheren = T /1 is the number of the sample steps ofx(1)
j in

the observation periodTo, andT =
⌊
To
/
1
⌋
1 is the obser-

vation period rounded off to an integer multiple of1. The
relationship between the processesx(t) andx(1)

j is illustrated
in Fig. 1.

The mean of the processx(1)
j is not affected by the aver-

aging operation, i.e.

E
[
x

(1)
j

]
=

1

1

j1∫
(j−1)1

E
[
x (t)

]
dt = µ. (3)

Let us now investigate the climacogram of the processx(1)
j ,

which is defined to be the variance (or the standard devia-
tion) of the time-averaged processx(1)

j as a function of the

timescale of averaging1 (Koutsoyiannis, 2010). The cli-
macogram ofx(1)

j can be calculated from the autocovariance
functionc(τ ) of the continuous-time process as follows (see
e.g. Vanmarcke, 1983, p. 186; Papoulis, 1991, p. 299):

Var
[
x

(1)
j

]
= γ (1) =

2

12

1∫
0

(1 − τ)c (τ )dτ , (4)

which shows that the climacogramγ (1) generally decreases
with 1 and fully characterizes the dependence structure of
x(t). The climacogramγ (1) and thec(τ ) are fully depen-
dent on each other; thus, the latter can be obtained by the
former from the inverse transformation (see Koutsoyiannis,
2013, for further details):

c(τ ) =
1

2

d2(τ2γ (τ)
)

dτ2
. (5)

Thus, the dependence structure ofx(t) is represented either
by the climacogramγ (1) or the autocovariance function
c(τ ). In addition, the Fourier transform of the latter, the spec-
tral density functions(w), wherew is the frequency, is of
common use. Selection of an analytical model forc(τ ) or
s(w) is usually based on the quality of fit in the range of
observed (observable) values ofτ andw which, for reasons
mentioned above, does not include the “microscale” (τ → 0
or w → ∞) or in general the asymptotic behaviour. How-
ever, asymptotic stochastic properties of the processes are
crucial for the quantification of future uncertainty, as well as
for planning and design purposes (Montesarchio et al., 2009;
Russo et al., 2006). Any model choice does, of course, imply
an assumption about the nature of random variation asymp-
totically. Therefore, we may want this assumption (although
fundamentally unverifiable) to be theoretically supported.
In this context, Koutsoyiannis (2011) connected statistical
physics (the extremal entropy production concept, in par-
ticular) with stochastic representations of natural processes,
which are otherwise solely data-driven. He demonstrated that
extremization of entropy production of stochastic represen-
tations of natural systems, performed at asymptotic times
(zero or infinity) results in the Hurst–Kolmogorov process
(HKp), else known as fractional Gaussian noise (Mandelbrot
and Van Ness, 1968).

HKp can be defined in continuous time by the following
autocovariance function (Koutsoyiannis, 2013):

c (τ ) = ν (α/τ)2−2H
; 0.5 < H < 1, (6)

which shows that autocovariance is a power function of lagτ ;
consequently, it can be shown that the spectral density func-
tion s(w) is also a power law of the frequencyw with expo-
nent 1–2H . The three nominal parameters of the HKp areν,
α andH : the units ofα andν are [τ ] and [x]2, respectively,
while H , the so-called Hurst coefficient, is dimensionless.
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Fig. 1.Sketch of the local average processx(1)
j

obtained by averaging the continuous-time processx(t) locally over intervals of size1.

Substituting Eq. (6) in (4) we obtain the climacogram of
the processx(1)

j as

γ (1) =
ν
(
α
/
1
)2−2H

H (2H − 1)
. (7)

Thus, the variance ofx(1)
j is a power law of the averaging

time 1 with exponent 2H − 2, precisely the same as that of
c(τ ).

The climacogram contains the same information as the au-
tocovariance functionc(τ ) or the power spectrums(w), be-
cause they are transformations of one another. Its relationship
with the latter is given by (Koutsoyiannis, 2013)

γ (1) =

∞∫
0

s (w)
sin2(πw1)

(πw1)2
dw. (8)

It has been observed that, when there is temporal dependence
in the process of interest, the classical statistical estimation
of the climacogram involves bias (Koutsoyiannis and Mon-
tanari, 2007), which is obviously transferred to transforma-
tions thereof, e.g.c(τ ) or s(w). The bias in the climacogram
estimation can be determined analytically and included in the
estimation itself (Koutsoyiannis, 2013). However, in the next
section we show how the problems of uncertainty in statis-
tical estimation may be extremely remarkable when using
other uncontrollable quantities (e.g. high order moments) to
justify or calibrate stochastic models.

3 Multifractal analysis

Multifractal analysis has been used in several fields in sci-
ence to characterize various types of data sets, which have
been investigated by means of the mathematical basis of mul-
tifractal theory. This is the basis for a series of calculations
that reveal and explore the multiple scaling rules, if any, from
data sets, in order to calibrate multifractal models. From a
practical perspective, multifractal analysis is usually based
upon the following steps (Lopes and Betrouni, 2009).

– Estimate the sample raw moments of different orders
q over a range of aggregation scales1.

– Plot the sampleq-moments against the scale1 in a
log-log diagram.

– Fit least-squares regression lines (one for each order
q) through the data points.

– Estimate the multiscaling exponentsK(q) as the
slopes of regression lines (see Eq.1).

The classical estimator of theqth raw moment of the local
average processx(1)

j is

m(1)
q =

1

n

n∑
j=1

(
x

(1)
j

)q

. (9)

High moments, i.e.q ≥ 3, mainly depend on the distribu-
tion tail of the process of interest. If we assume, for rea-
sons mentioned in Sect. 1, scaling in state, i.e. a power-type
(e.g. Pareto) tail, then raw moments are theoretically infinite
beyond a certain orderqmax. However, their numerical esti-
mates from a time series by Eq. (9) are always finite, thus re-
sulting in infinite biases from a practical perspective, because
the estimate is a finite number while the true value is infinity.
Even belowqmax, where it can be proved that the estimates
are unbiased, we show that the estimation of moments can
be still problematic. It is easily shown, indeed, that the ex-
pected value of the moment estimator equals its theoretical
value E[(x(1)

j )q ] = µ
(1)
q for any timescale1, i.e.

E
[
m(1)

q

]
=

1

n

n∑
j=1

E
[(

x
(1)
j

)q]
= µ(1)

q , (10)

which can be used to derive the variance of the moment esti-
mator as follows:

Var
[
m(1)

q

]
= E

[(
m(1)

q

)2
]

− E
[
m(1)

q

]2

=
1

n2

n∑
i=1

n∑
j=1

E
[(

x
(1)
j

)q (
x

(1)
i

)q]
−

(
µ(1)

q

)2
. (11)
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Fig. 2. Estimator variance of the mean of the local aver-

age processx(1=1)
j

standardized by the process variance, i.e.

Var[m(1=1)
1 ]/Var[x(1=1)

j
] = γ (T )/γ (1), plotted against the sample

sizen = T for 1 = 1.

This quantity can be assumed as a measure of uncertainty in
the estimation of theqth moment of the local average process
x(1)
j . Therefore, the estimatorm(1)

q is theoretically unbiased
(because of Eq.10) but involves uncertainty (quantified by
Eq.11), which is expected to depend on statistical properties
of the instantaneous processx(t) (i.e. marginal and joint dis-
tributional properties), the averaging scale1, the sample size
n, and the moment orderq.

3.1 Estimation of the mean

The (unbiased) estimator of the common meanµ of the local
average processx(1)

j is given by Eq. (9) for q =1,

m
(1)
1 =

1

n

n∑
j=1

x
(1)
j = x

(T )
1 , (12)

whereT is the largest timescale of averaging multiple of1

in a given observation periodTo (Fig. 1).
As a consequence of Eqs. (4) and (12), the variance of the

estimator above can be expressed as follows:

Var
[
m

(1)
1

]
= Var

[
x

(T )
1

]
= γ (T ) =

2

T 2

T∫
0

(T − τ)c (τ )dτ . (13)

Therefore, the estimatorm(1)
1 is a function of the dependence

structure of the continuous-time (instantaneous) processx(t),
and the rounded observation periodT . Note that the uncer-
tainty in the estimation of the sample mean is independent of
the timescale of averaging1 while it depends on the obser-
vation periodT .

Considering now the HKp, the autocovariance function is
given by Eq. (6). Hence, the climacogramγ (T ) takes the
form of Eq. (7). In Fig. 2, we show how the temporal de-
pendence (governed by the Hurst coefficientH for the HKp)

influences the reliability of moment estimates. For simplicity
and without loss of generality, we plot the ratio of Var[m(1)

1 ]

to Var[x(1)
j ] for 1 = 1 against the scaleT , which equals the

sample sizen for 1 = 1. As a consequence of Eqs. (13) and
(7), the ratio is given by

Var
[
m

(1=1)
1

]
Var

[
x

(1=1)
j

] =
γ (T )

γ (1)
= n2H−2. (14)

Notice that large values ofH result in a much higher ratio
than in the iid case (which is given by 1/n), and the con-
vergence to the iid case is extremely slow (see Fig. 2). In
essence, it can be argued that the greater the dependence in
time, the harder it is to estimate the moment; in the sense
that larger samples are required in order to obtain estimates
of similar quality.

3.2 Estimation of higher moments

Let us now investigate the behaviour of estimators of higher
order moments (q > 1) when the underlying random process
exhibits dependence in time and when changing the process
marginal distribution; this can be done by Monte Carlo sim-
ulation. Specifically, we use the Gaussian distribution and
three one-sided distributions whose tails are sub-exponential,
i.e. heavier than the former (as observed in several geophys-
ical processes). All synthetic time series are generated in a
way to have similar dependence structures based on the HKp,
which are therefore governed by the Hurst coefficientH .

In this study, we estimate the performance ofqth moment
estimators for four different common tail types (ordered from
heavier to lighter): the Pareto, the log-normal, the Weibull
and the Gaussian tails (see e.g. El Adlouni et al., 2008; and
Papalexiou et al., 2013). The Pareto is the only power-type
distribution, while the remaining three are of exponential
type with all their moments finite. Specifically, we use the
Pareto type II distribution, defined in [0,∞), with survival
function

F PII (x) = P
{
x > x

}
=

(
1+ κ

x

β

)−1/κ
, (15)

whereβ > 0 is the scale parameter, andκ > 0 the shape pa-
rameter. The latter, also known as the tail index, controls the
asymptotic behaviour of the tail, which is given byx−1/κ ; as
the value ofκ increases the tail becomes heavier and conse-
quently extreme values occur more frequently. Moreover, the
shape parameterκ unequivocally defines the orderqmax =1/κ
beyond which theqth moments are theoretically infinite, i.e.
E[(x(1)

j )q ] = ∞ for q ≥ 1/κ; in our study we assumeκ = 0.2,
and thusqmax = 5.

The log-normal distribution, also defined in [0,∞), is very
commonly used in geosciences and has the survival function

www.hydrol-earth-syst-sci.net/18/243/2014/ Hydrol. Earth Syst. Sci., 18, 243–255, 2014



248 F. Lombardo et al.: Just two moments!

F LN (x) =
1

2
erfc

(
ln

((
x

β

) 1
κ
√

2

))
, (16)

where erfc(x) = 1− erf(x) = 2
/√

π
∫

∞

x
exp

(
−t2

)
dt is the

complementary error function,β > 0 is the scale parameter,
andκ > 0 is the shape parameter that controls the behaviour
of the tail (notice some differences from the more typical no-
tational convention in the literature; see Forbes et al. (2011,
p. 131) for further details). Despite all its moments being the-
oretically finite, the log-normal distribution is very similar in
shape to a power-type distribution (Pareto), in the sense that
the two distributions appear almost indistinguishable from
each other for a large portion of their body (Mitzenmacher,
2004). Therefore, log-normal is regarded as a heavy-tailed
distribution.

Another widely used distribution is the Weibull distri-
bution, again defined in [0,∞). Its survival function is a
stretched exponential function (obtained by inserting a frac-
tional power law into the exponential function), i.e.

F W (x) = exp

(
−

(
x

β

)κ)
, (17)

whereβ > 0 is the scale parameter, and the stretching expo-
nent 0< κ < 1 (shape parameter) actually modifies the shape
of the exponential distribution so as to obtain a heavier tail.
Consequently, the Weibull distribution can be regarded as a
generalization of the exponential distribution, which is re-
covered withκ = 1. The case withκ > 1 (compressed expo-
nential function, i.e. a tail lighter than the exponential one)
has less practical importance, with the notable exception of
κ = 2, which gives the Rayleigh distribution, closely related
to the Gaussian distribution.

3.3 Monte Carlo simulation

As the log-normal model has been the most common in mul-
tifractal literature, we start our study from this model. For
the Monte Carlo simulation we use the model introduced by
Lombardo et al. (2012), which follows a disaggregation ap-
proach. In that respect it resembles the discrete multifractal
cascade models, yet it is not affected by uncontrollable non-
stationary issues that are typical in these multifractal cas-
cades. The model starts the generation from the coarsest scale
and then disaggregates into finer scales applying a specific
scale-dependent exponential transformation to the HKp in a
way to preserve part of its scaling properties. For the Monte
Carlo experiment we generate 30 000 time series with sample
sizen = 210

= 1024, unit mean, standard deviationσ = 1.29
andH = 0.85. Later we will compare with the other models
in a different setting, i.e. aggregating rather than disaggregat-
ing, using the same statistical properties (note thatσ = 1.29
is the standard deviation of the Pareto type II with unit mean
and tail indexκ = 0.2).

The results of the Monte Carlo simulation experiment are
depicted in Figs. 3–6. Specifically, Fig. 3 shows the proba-
bility distribution of the natural logarithm of the ratio ofqth
moment estimates to their expected values (i.e. the theoret-
ical values, following Eq.10). It can be noticed that the in-
formation content of the sample moments strongly decreases
when increasing the orderq (i.e. the distribution is less con-
centrated around 0): only low moments have reasonably low
variation, all others vary within several orders of magnitude
(notice that the horizontal axis is logarithmic and spans more
than 10 orders of magnitude!). Despite the sample raw mo-
ment being an unbiased estimator of the true (population)
raw moment, the probability distribution of the statistical es-
timator is very broad and skewed. This is particularly the case
for high moments. Note that the averaging scale1 has neg-
ligible influence on the statistical characteristics of low mo-
ment estimators, while it slightly regularizes the behaviour
of higher moment estimators.

In addition, in Fig. 4 we show the empirical frequency
distribution of the sample fifth moment estimated from log-
normal time series averaged locally over different timescales
1. Again here the bias is theoretically zero, but the most
probable value of the moment estimate (the mode) is very
different from its expected value. For example when1 = 1
(upper-left panel in Fig. 4), the mode of the distribution of
m

(1=1)
5 (green line) is almost two orders of magnitude less

than the expected value (red line) and the probability of cal-
culating from a unique sample a value equal to the mode is
much greater (almost one order of magnitude) than the prob-
ability of obtaining the expected value itself. Recall that the
expected value of the sample moment equals the true value
of the moment, because of unbiasedness, but according to
the distributions in Fig. 4 we can hardly expect the moment
estimate from a unique sample to be close to this expected
value. Increasing the averaging scale1 reduces the differ-
ence between the mean and the mode. Nonetheless, this dif-
ference is still remarkable at large scales (see e.g. lower-right
panel in Fig. 4).

The large difference between the mode and the expected
value of the moment estimators is not the only problem. An-
other problem is the high estimation uncertainty. In order to
illustrate the uncertainty in the moment estimation, Fig. 5
shows semi-logarithmic plots of the prediction intervals of
the sample moments, calculated from the Monte Carlo simu-
lations, against the moment order, for various scales1. The
logarithmic scale on the vertical axis highlights the huge vari-
ability of estimates when the order increases. Note that the
mean of raw moments (i.e. the true expected value) moves
closer to the upper prediction limit for ordersq > 3, thus
making the use of high moments unreliable. Furthermore,
Fig. 6 depicts log-log diagrams of the prediction intervals
of the sample moments against the scale of averaging1,
for various ordersq. In addition to the observations made
with respect to Fig. 5, Fig. 6 shows that the increase of
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Fig. 3.Empirical cumulative distribution function (ecdf) of the natural logarithm of the ratio ofqth moment estimates to their expected values

E[(x(1)
j

)q ] = µ
(1)
q when varying1.

Fig. 4.The epdf of the sample fifth moment estimated from log-normal time series averaged locally over different timescales1.

the averaging scale1 has little influence on the variability
of the moments, meaning that the sample size reduction is
somewhat compensated by the time averaging. Nevertheless,
it is clear that larger samples provide better estimates than
smaller. For example, Meneveau and Sreenivasan (1991) pro-
pose a criterion of statistical convergence for the moments
of local average processes, and find that data records of size
10q may be sufficiently long to ensure statistical convergence
for qth order moments. However, this is not immediately
straightforward in case of highly correlated data series, as
we show in Fig. 2. To further investigate this issue account-
ing for the criterion of convergence above, in Fig. 7 we show
the trend of the interquartile range (IQR) of the prediction
intervals for the third (q = 3) moment when increasing the

sample size from 210 to 214 (the ensemble consists of 10 000
log-normal time series for each sample size generated by the
model of Lombardo et al., 2012). It can be noticed that the
sample size should be increased more than one order of mag-
nitude to obtain roughly a 10 % improvement over the results
presented in Fig. 5 for1 = 1.

In the second part of the Monte Carlo simulation experi-
ment we use a different approach, first generating at the finest
scale and then aggregating into coarser scales. In this case
we generate 30 000 synthetic time series from the four dis-
tributions described in Sect. 3.2 above (ordered from heavier
to lighter tail type: Pareto, log-normal, Weibull with shape
parameter smaller than 1 and Gaussian) with characteristics
same as those in the previous experiment. In this case we
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Fig. 5. Semi-logarithmic plots of the prediction intervals of the sample moments versus the orderq for various timescales1, where “Q”
stands for quantile.

Fig. 6.Log-log plots of the prediction intervals of the sample moments versus the scale1 for various ordersq.

investigate how the classical estimators of raw moments be-
have when varying the tail type of the marginal distribution
of the underlying stochastic process. To accomplish this aim,
in Fig. 8 we plot on a semi-logarithmic scale the prediction
intervals of the sample moments against the moment order
(assuming1 = 1), for the four distributions. It can be seen
that the tail type significantly influences the reliability of mo-
ment estimators. The heavier the distribution tail, the more
uncertain the sample moments are. This is especially the case
for high moments, because they depend enormously on the
distribution tail and non-normality affects significantly their
statistical properties. Analogous considerations apply to ag-
gregated series (i.e.1 > 1).

It is emphasized that the vertical axes in Fig. 8 span more
than 10 orders of magnitude yet the prediction limits do not
necessarily bracket the true value of the moment. Particularly
for the Pareto distribution the true (population) values of the
fifth and sixth moments are infinite while their statistical es-
timates are finite and the entire graph does not provide any
hint that these high moments differ so essentially from the
lower ones. Another important conclusion drawn from Fig. 8
is that the prediction limits in the case of the Gaussian dis-
tribution are dramatically narrower than in all other cases.
As the Gaussian distribution has been dominating in classi-
cal statistical applications and perhaps in statistical thinking,
this fact may explain why the multifractal applications were
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Fig. 7.Semi-logarithmic plot of the interquartile range (IQR) (stan-
dardized with respect to the IQR forn = 210) of the prediction in-
tervals for the third moment versus the sample sizen for the log-
normal series generated by our downscaling model (Lombardo et
al., 2012).

misled to neglect the huge uncertainty of high moment esti-
mates and its impact on modelling.

3.3.1 Empirical moment scaling function

Since the ultimate aim of a multifractal analysis is to study
the scaling of raw moments, we have carried out some ad-
ditional numerical investigations on the generated samples
by simply taking an average slope of linear regressions of
sample moments at different scales1 in log-log diagrams
(actually, this is commonly the case when dealing with real
world data). Despite being not really crucial to the focus
of our work (which aims to answer the question about how
many raw moments we can estimate reliably), we believe it
is worth exploring the variability in the estimates of the mo-
ment scaling functionK(q), when using the statistical tools
which we cautioned against. To accomplish this purpose, we
use the log-normal synthetic series generated by the down-
scaling model of Lombardo et al. (2012).

In order to estimate an empirical exponent functionK(q)

describing the scaling of raw moments over a range of
timescales, we should define the following non-dimensional
quantities commonly used in the literature (e.g. de Lima and
Grasman, 1999; Serinaldi, 2010). The scale ratioλ so that
λ = 1 for the largest scale of interest1max, i.e.λ = 1max/1.
In our case, we assume that1max= [n/8] = 128, where the
sample sizen = 1024, so that sample moments can be esti-
mated from at least eight data values, while the generic ag-
gregated scale1 is bounded in [1, 128]. Similarly, we form
the non-dimensional processε(λ) dividing the local average
of the continuous-time processx(t) by its mean at the largest
scale1max (or equivalentlyλ = 1); then

ε (λ) =
x

(
1max

λ

)
j

E
[
x

(1max)
j

] ≈
x

(
1max

λ

)
j

m
; λ =

1max

1
, (18)

wherem is the temporal mean of the data series. The scal-
ing behaviour of the process is characterized by the moment
scaling functionK(q) as follows:

E
[(

ε (λ)
)q]

≈ λK(q). (19)

If K(q) linearly increases withq, then the process is said to
be “simple scaling”, otherwise it exhibits a “multiple scal-
ing” behaviour.

In Fig. 9, we graphically show how uncertainty in sample
moments is reflected in the uncertainty in the estimates of
scaling exponents. It can be noticed that the functionK(q)

shows a non-linear behaviour for the log-normal series, thus
suggesting a multifractal behaviour. Analogous considera-
tions apply to the series generated by the other Monte Carlo
experiments described in Sect. 3.3 above (not reported here).

The prediction intervals in Fig. 9 spread out widely while
increasing the moment orderq, which is consistent with an
enhancement of uncertainty. We clarify that we used the ra-
tios of moment estimates in all calculations to computeε(λ).
Nonetheless, recalling that we assumed the unit ensemble
meanµ = E[x(t)] = 1 in all our Monte Carlo experiments, we
found (not shown here) the same numerical results if using
raw moments without taking any ratios. This is to stress that
ratios of moments do not seem to play any significant role in
the estimation of multiscaling exponents in our case.

It may be useful to add here some theoretical aspects.
The theory of multifractals depends on the fact that raw mo-
ments obey power laws as the scale1 → 0 (or equivalently
λ → ∞) (Falconer, 1990; Gneiting and Schlather, 2004), and
so it depends on taking limits which cannot be achieved
in reality. For most experimental purposes, the multifractal
behaviour of a processx(t) is usually found by estimating
the gradient of a graph of log(E[(ε(λ))q ]) against logλ over
an “appropriate” range of scales, where empirical points are
closely matched by a straight line of slopeK(q). Being the
latter an asymptotic slope, it is difficult to find the “appro-
priate” range of scales to estimateK(q), because we could
be misled by some artificial slopes which do not indicate
the multifractal behaviour of the underlying process (see e.g.
Koutsoyiannis, 2013). In addition, we should emphasize that
the empirical moment scaling functionK(q) varies across
scales for ergodic processes. The simple proof for this is
given in the Appendix A in the special case ofq = 2.

Furthermore, we show in Appendix B that the theoretical
moment scaling functionKTh(q) for the model by Lombardo
et al. (2012) is given by

KTh (q) = q (q − 1)(1− H), (20)

whereH is the Hurst coefficient. Based on these findings, the
empirical results in Fig. 9 do not seem to agree well with their
theoretical counterparts. For example, in our caseH = 0.85,
for q = 4 the theoretical value should beKTh(q) =1.8, while
the estimated mean value is aboutK(q) = 0.5 in the scale
range of our Monte Carlo experiments. Hence, not finding
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Fig. 8.Semi-logarithmic plots of the prediction intervals of the sample moments versus the orderq for various marginal probability distribu-
tions, assuming1 = 1.

Fig. 9. Prediction intervals of the moment scaling functionK(q)

versus the orderq for the log-normal series generated by the down-
scaling model (Lombardo et al., 2012).

the “appropriate” range of scales, in addition to estimation
problems reported in our work, may lead to remarkable un-
derestimation of the moment scaling function.

4 Conclusions

During recent decades, there has been a growing interest in
multifractal analyses especially for the study of hydrological
processes, particularly in rainfall modelling. Indeed, the mul-
tifractal framework provides parsimonious models to study
the variability of several natural processes in geosciences,
such as rainfall. Models following this approach require the
scaling of the sample moments of different ordersq, which is
used in model identification and fitting. A common problem
with the application of multifractal models, which in some
cases may have led to incorrect results, is their disconnec-
tion from stochastic methodology and reasoning, and the (un-

stated) naïve consideration that statistical estimates represent
the true properties of a process.

Using theoretical reasoning and Monte Carlo simulations
we find that the reliability of multifractal methods which use
high order moments (> 3) is questionable. In particular, we
highlight the problems in inference from time series of geo-
physical processes. The classical statistical approaches, often
used in geophysical modelling, are based upon several sim-
plifying assumptions, tacit or explicit, such as independence
in time and exponential distribution tails, which are invali-
dated in natural processes. Indeed, the study of natural pro-
cesses reveals scaling behaviours in state (departure from ex-
ponential distribution tails) and in time (departure from inde-
pendence). While the multifractal models are based on these
scaling behaviours per se, they may have failed to explore
their statistical consequences with respect to the implied dra-
matic increase of uncertainty.

The following list briefly summarizes the main findings of
our analyses.

– As natural processes are characterized by dependence
in time, while classical statistics typically assumes in-
dependence, much larger samples are required in order
to obtain estimates of similar reliability with classical
statistics.

– Estimators of high moments whose distribution ranges
over several orders of magnitude cannot support infer-
ence about a natural behaviour nor fitting of models.

– The most probable value of sample high moments (the
mode) can strongly differ (by orders of magnitude)
from its expected value (i.e. the true value), thus mak-
ing the statistical estimate problematic even in the case
of unbiasedness.
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– The calculation of numerical values of high order mo-
ments is misleading as the theoretical moments may
tend to infinity for high orders, while the sample esti-
mates are always finite. Even smaller order moments
can be very uncertain.

– Even if the generated process is multifractal, the sam-
ple estimates of theq moments from a unique sample
can provide misleading results.

Hence, we have shown that distribution tails heavier than
the exponential one and temporal dependence result in enor-
mously increased uncertainty and/or infinite biases from a
practical perspective in raw moments. This paper warns
practitioners against the blind use in geophysical time se-
ries analyses of classical statistical tools, which neglect de-
pendence and heavy tails in distributions. Ossiander and
Waymire (2000) already caution against using high moments
in multifractal estimation, but their particular focus is on
discrete multiplicative cascade models. Indeed, they demon-
strate that the estimators of multiscaling exponents converge
almost surely to the structure function of the cascade gen-
erators as the sample becomes large for all moment orders
within a certain critical interval, whose upper bound is con-
sistent with our results.

Ignorance of increased uncertainty and inattentive use of
high order moments may result in inappropriate modelling,
wrong inferences and false claims about the properties of the
processes. Evidently, the first two moments need to be used
in all problems as they define the most important characteris-
tics of the distribution, marginal (the first two moments) and
joint (the second moment). Even for these two lowest mo-
ments it is important to always study their uncertainty and
this only can be done in connection with a model fitted for the
process of interest (as it is not possible to define uncertainty
without specifying a model for the marginal distribution and
dependence). The third moment is often useful as a measure
of skewness but we should always be aware of its uncertainty;
however using the third moment is not the only way to iden-
tify and assess the skewness of a distribution. For example,
in parameter estimation of three-parameter distributions, it
is better to avoid the method of moments and use other fit-
ting methods such as maximum likelihood, L-moments, etc.
Moments of order> 3 should be avoided in model identifica-
tion and fitting because their estimation is problematic. If we
have to use them, then it is imperative to specify their uncer-
tainty and involve this uncertainty in any type of modelling
and inference.

Appendix A

To show that the empirical moment scaling functionK(q)

varies across scales for ergodic processes it suffices to con-
sider the special case of second-order moments (q = 2). Ac-

cording to Eqs. (18) and (19) we could write

E

(x

(
1max

λ

)
j

)2
≈ λK(2)

(
E
[
x

(1max)
j

])2
= λK(2)µ2 , (A1)

whereµ is the mean of the process. On the other hand, we
know that

E

[(
x

(1)
j

)2
]

= γ (1) + µ2 , (A2)

whereγ (1) is the variance of the local average process at the
scale1, see Eq. (4). If we assume that the process is ergodic,
then we must haveγ (1) → 0 as1 → ∞ (Papoulis, 1991,
p. 430).

Recalling that1 = 1max/λ, from Eqs. (A1) and (A2) we
have

λK(2)µ2
= γ

(
1max

λ

)
+ µ2. (A3)

Dividing both sides byµ2 and taking the logarithms, we ob-
tain

K (2) =

log
(
γ
(

1max
λ

)/
µ2

+ 1
)

logλ
. (A4)

Clearly then, asλ → 0 (i.e. as the scale grows to infinity
1 → ∞), the numerator→ 0 and the denominator→ ∞.
So,K(2) = 0 asymptotically. Note that we have not made any
assumption about the dependence structure or the marginal
probability of the process; the only assumption is that the
process is ergodic. In summary, for scales tending to infinity
theK(2) should tend to zero, while for scales tending to zero
theK(2) will take nonzero values.

Appendix B

To show that in the model by Lombardo et al. (2012) the the-
oretical moment scaling function is given by Eq. (20), we
first recall that, if the local averagex(1)

j is log-normally dis-
tributed, itsq-order raw moment is given by (Kottegoda and
Rosso, 2008, p. 216)

E
[(

x
(1)
j

)q]
= exp

(
qµ

ln
(
x

(1)
j

) +
1

2
q2γ

ln
(
x

(1)
j

)) , (B1)

where the two parameters can be determined in terms of the
meanµ = E[x(1)

j ] and the varianceγ (1) =Var[(x(1)
j )] of the

local average process as follows:

µ
ln
(
x

(1)
j

) = logµ −
1

2
log

(
γ (1)

µ2
+ 1

)
, (B2)

γ
ln
(
x

(1)
j

) = log

(
γ (1)

µ2
+ 1

)
. (B3)
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In the downscaling model by Lombardo et al. (2012), the
functionγ (1) obeys the following power law:

γ (1) = γ 12H−2, (B4)

whereγ ≡ γ (1 = 1) is the variance of the reference local
average processx(1=1)

j .
In order to derive the theoretical moment scaling function

KTh(q), we investigate the following limiting behaviour (Fal-
coner, 1990, p. 257):

KTh (q) = lim
1→0

log
(
E
[(

x
(1)
j

)q])
− log1

, (B5)

where, according to Eq. (B1), the numerator of the right-hand
side can be written as

log
(
E
[(

x
(1)
j

)q])
= qµ

ln
(
x

(1)
j

) +
1

2
q2γ

ln
(
x

(1)
j

) . (B6)

Substituting Eqs. (B2) and (B3) in the right-hand side of Eq.
(B6), we obtain

log
(
E
[(

x
(1)
j

)q])
= q logµ +

q

2
(q − 1) log

(
γ (1)

µ2
+ 1

)
. (B7)

From Eq. (B4) and using the properties of the logarithm, Eq.
(B7) becomes

log
(
E
[(

x
(1)
j

)q])
= log

(
µq

(
γ

µ2
12H−2

+ 1

) q
2 (q−1)

)
. (B8)

Recalling that the Hurst coefficient is a parameter satisfying
0 < H < 1 (Mandelbrot and Van Ness, 1968), the exponent
2H−2< 0. Substituting Eq. (B8) in Eq. (B5), we easily ob-
tain Eq. (20).
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