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Abstract Broken line smoothing is a simple technique for smoothing a broken line fit to 

observational data and provides flexible means for interpolation. Here an extension of this 

technique is proposed, which can be utilized to perform various interpolation tasks, by 

incorporating, in an objective manner, an explanatory variable available at a considerably denser 

dataset than the initial main variable.  The technique incorporates smoothing terms with adjustable 

weights, defined by means of the angles formed by the consecutive segments of two broken lines. 

The mathematical framework and details of the method as well as practical aspects of its 

application are presented and discussed. Also, examples using both synthesized and real world (soil 

water dynamics and hydrological) data are presented to explore and illustrate the methodology. 
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INTRODUCTION 

In numerous scientific and engineering applications the dependence of a 

variable y on another variable x, described by a fitted curve, is exploited for purposes 

such as interpolation between measurements, prediction, filling in missing values in 

time series, estimation and removal of the measurement errors, etc. Whenever the 

mathematical expression of the dependence of y on x is of an a priori known type (e.g. 

linear, logarithmic, power, polynomial, etc.) the problem of curve fitting is simplified 

as the only requirement is the determination of the parameters of this expression, a 

task typically accomplished using regression techniques. The difficulty arises when 

such an expression is not known and cannot be approximated by a simple easily 

recognizable formulation. 

Currently, a lot of methods exist which can accomplish this task using 

appropriate computer codes and they are mainly used for spatial interpolation in 

environmental studies. They fall into three categories (Li and Heap 2008):  

(1) Non-geostatistical methods such as: splines (Craven and Wahba 1979 ; Wahba 

and Wendelberger 1980) and regression methods (Davis 1986); 

(2) Geostatistical methods including different approaches of kriging, such as: 

universal kriging, kriging with an external drift or cokriging (Goovaerts, 1997; 

Burrough and McDonnell 1998); and  

(3) Combined methods such as: trend surface analysis combined with kriging 

(Wang et al. 2005) and regression kriging (Hengl et al. 2007).  

Koutsoyiannis (2000), introduced the easy method of broken line smoothing 

(BLS) as a simple alternative to numerical smoothing and interpolating methods, 

closely related to piecewise linear regression and to smoothing splines. The idea is to 

approximate a smooth curve that may be drawn for the data points (xi, yi) with a 



broken line or open polygon which can be numerically estimated by means of a least 

squares fitting procedure. The abscissae of the vertices of the broken line do not 

necessarily coincide with xi’s but they can form a series of points with some chosen, 

lower or higher, resolution. The main concept of the method is the trade-off between 

two objectives, i.e. minimizing the fitting error and the roughness of the broken line. 

The larger the relative weight of the second objective is, the smoother the broken line 

resulting by the fitting procedure will be. 

This study is focused in the combination of two broken lines into a piecewise 

linear regression model with known break points and adjustable weights. The first 

broken line is fitted to the available data points while the second incorporates, in an 

objective manner, the influence of an explanatory variable available at a considerable 

denser dataset. The objective is to make the interpolation across the data points as 

accurate as possible. 

The method is illustrated using three applications: a) a theoretical - 

investigational, b) the interpolation of hydraulic conductivity function using water 

retention data as explanatory variable and vice versa and c) the spatial interpolation of 

rainfall data using the surface elevation as explanatory variable. 

METHODOLOGY 

Mathematical framework 

Let (xi, yi) be a set of n points at the x y plane for i = 1,…, n. Let cj, j = 0, …, m, m+1 

points of the x-axis so that the interval [c0, cm] contain all xi. For simplicity we will 

assume that the points are equidistant, i.e. cj – cj–1 = δ and that for every x value we 

know the value of an explanatory variable t. Therefore, for each point (xi, yi) there 

corresponds a value t(xi), for i=1, …, n and for a value cj there corresponds a value 

t(cj), for j=0, …, m. 

We make the assumption that the dependent variable y in every position x can 

be expressed as a linear function of the variable t, i.e. 

 y = d + e t (1) 

where d and e are coefficients, with their values changing according to x. This is not a 

global linear relationship but a local linear one as the quantities d and e change with x. 

Their variation is expressed from two broken piecewise straight lines. At the vertices 

of the broken lines, the above relationship becomes: 

 yj = dj + ej tj  (2) 

We wish to find the m+1 values dj and ej, so that the curve which is defined by 

the m+1 points (cj, dj + tj ej) and consists of a combination of the two broken lines and 

of the t(x) curve, ‘fits’ the set of points (xi, yi). This fit is meant in terms of 

minimizing the total square error among the set of original points (xi, yi) and the fitted 

curve, i.e. 

 p = 
i = 1

n

(yi – yi

 
)
2
 (3) 

where yi

 
 is the estimate of yi given by the broken lines for the known xi. 

In matrix form, this can be written as: 

 p = ||y – y
 

||
2
 (4) 



where y = [y1,…, yn]
T
 is the vector of known ordinates of the given data points with 

size n (the exponent T denotes the transpose of a matrix or vector) and y
 

 = [y1

 
,…,yn

 
]

Τ
 

is the vector of estimates with size n as given by application of equation (1), which for 

any x can be written as 

 y

(x) = d(x) + t(x) e(x) (5) 

where d(x), e(x) are the ordinates of the corresponding broken lines at point x.  

Assuming that for some j, cj – 1 ≤ x ≤ cj (see Fig. 1), the ordinate of the broken 

line d(x) can be determined from: 

 d(x) = dj + (dj-1 – dj) 
cj – x

cj – cj-1
 = dj + (dj-1 – dj) 

cj – x

δ
 (6) 

which can be written as: 

 d(x) = 
1

δ
 [ ](x – cj-1) dj + (cj – x) dj-1  (7) 

Likewise, the corresponding expression for e is: 

 e(x) = 
1

δ
 [ ](x – cj-1) ej + (cj – x) ej-1  (8) 

Therefore, if a point xi, lies in the subinterval [cj–1, cj] for some j (1 j  m) 

then the estimate yi



 is given by: 

 yi(xi, t(xi))
^  = 

1

δ
 { }[ ]dj (xi – cj-1) +dj-1 (cj – xi)  + t(xi) [ ]ej (xi – cj-1) + ej-1 (cj – xi)  (9) 

If we apply equation (9) for i = 1, 2, …, n, we get : 

 

y1


 = 

1

δ
 { }[ ]d1 (x1–c0)+d0 (c1–x1) +t(x1) [ ]e1 (x1–c0)+e0 (c1–x1)



yn


 = 

1

δ
 { }[ ]dm (xn–cm–1)+dm-1 (cm–xn) + t(xn) [ ]em (xn–cm–1)+em-1 (cm–xn)

 (10) 

in which we assumed that the point x1 lies in the interval [c0, c1] and point xn lies in 

the interval [cm–1, cm]. 

 



 

Fig.  1: Definition sketch for vector d, adopted from Koutsoyiannis 2000, similar for vector e 

 

The above equations can be more concisely written in the form: 

 y
 

 = Π d + Τ Π e (11) 

where y
 

 = [y1

 
,…,yn

 
]

Τ
 is the vector of estimates with size n; d = [d0,…,dm]

T
 is the 

vector of the unknown ordinates of the broken line d; e = [e0,…,em]
T
 is the vector of 

the unknown ordinates of the broken line e; T is a diagonal matrix with its elements: 

 T = diag(t(x1), …, t(xn)) (12) 

with t(x1), …, t(xn) being the values of the altitude at the given data points; and Π is a 

matrix with size n(m+1) whose ijth entry (for i=1, …,n; j=0, …m) is: 

 πij = 






xi–cj-1

δ
,  cj-1<xi cj

cj+1–xi

δ
, cj<xi cj+1

0,  otherwise

  (13) 

In addition to minimizing the fitting error defined in equation (4), we consider 

two requirements in order to avoid a very rough shape of both broken lines d and e 

and also ensuring a unique solution irrespective of how large the m is (see explanation 

below). To acquire a measure of the roughness of the broken line, we consider the 

differences of slopes between two consecutive segments of the broken line d and the 

broken line e, so that the following expressions can be appropriate measures for the 

roughness of the entire broken line: 

 qd = 
j=1

m-1

(2dj –dj-1 – dj+1)
2
 (14) 

and 

y, d

x

c0 c1 c2 c3 cj-1 cj

d0

d3

d1

dj

dj-1

d2

xi

yi



 qe = 
j=1

m-1

(2ej –ej-1 – ej+1)
2
 (15) 

These can be written in matrix form as: 

 qd = d
T
 Ψ

Τ
 Ψ d (16) 

and 

 qe = e
T
 Ψ

Τ
 Ψ e (17) 

where Ψ is a matrix with size (m–1)(m+1) and ijth entry: 

 ψij = 




 2, j=i+1

–1, | j–i–1|=1

0,  othewise

  (18) 

Apparently, Ψ
Τ
 Ψ = 0 for the special case m = 1. 

Combining equations (4), (11), (16), (17) and introducing the dimensionless 

multipliers λ, μ 0 for qd and qe, respectively, we form the generalized objective 

function to be minimized: 

 f(d,e):= p + λ qd + μ qe = || y – y
 

 ||
2
 +λ d

T
 Ψ

Τ
 Ψ d + μ e

T
 Ψ

Τ
 Ψ e (19) 

By differentiating equation (19) with respect to d and e and equating them to 

zero, we obtain, respectively: 

 
f1

d
 = – 2y

T 
Π + 2d

T
 Π

Τ
 Π + 2e

T
Π

Τ 
T

Τ
Π + 2 λ d

T
 Ψ

Τ
 Ψ = 0 (20) 

 
f2

e
 = – 2y

T 
TΠ + 2d

T
 Π

Τ
 TΠ + 2e

T
Π

Τ 
Τ

Τ
ΤΠ + 2 μ e

T
 Ψ

Τ
 Ψ = 0 (21) 

The solution of the set of equations (20) and (21), which minimizes (19), is 

obtained after applying the typical rules of derivatives involving matrices and it has 

the following form:  

 






d

e
 =  







Π

T
 Π + λ Ψ

Τ
 Ψ Π

T
 TΠ

Π
T 

ΤΠ Π
T 

Τ
Τ
 ΤΠ + μ Ψ

Τ
 Ψ

 

–1

 






Π

Τ
y

Π
Τ 

T
Τ
y

 (22) 

The vector of estimates, ŷ, is obtained from equation (11), once d and e 

vectors are calculated from equation (22). Also, from equation (9), we can estimate 

the ordinate ŷ of any x that lies in the interval [co, cm] if we know the value of 

parameter t at that point. 

We observe that the three matrices B:=Π
T
Π, C:=Ψ

T
Ψ and D:= Π

Τ
Τ

Τ
ΤΠ 

appearing in (22) are square matrices with size (m+1)×(m+1). B and D are tridiagonal 

while C is five-banded. B can be singular (not invertible) if one or more columns of Π 

have zero elements, that is, if at least two consecutive intervals [cj–1, cj] contain no 

xi’s. However, C is always singular and, hence, for λ, μ > 0, the sums B + λC and D + 

μC are non-singular and, thus, their inverses exist. 



Choice of parameters 

It is apparent that the method has three adjustable parameters: the number of intervals, 

m, and the smoothing parameters λ and μ corresponding to vectors d and e, 

respectively. The choice of parameters can be made by assessing the achieved data 

smoothing either graphically in the case of limited amount of given data points (n ≤ 

3), or by using standard objective ways as described by the following analysis. 

In order to provide a convenient search of the two smoothing parameters, we 

selected a transformation of λ and μ in terms of what has been called tension 

parameters, τλ and τμ, whose values are restricted in the interval [0, 1). These were 

derived from the numerical investigation performed by Koutsoyiannis (2000), 

concerning the transformation of the smoothing parameter λ, and have the form:  

 λ = 








10 m 
lnτm

lnτλ

κλ, μ = 








10 m 
lnτm

lnτμ

κμ (23) 

where τm = 0.99 is the maximum allowed tension, corresponding to the upper bound 

of λ and μ, set for numerical stability equal to: 

 λm = 
trace(B)

trace(C)
 10

8
, μm = 

trace(D)

trace(C)
 10

8
 (24) 

The exponents in equations (23) are determined by the relations: 

 κλ = 
lnλm

ln(10m)
, κμ = 

lnμm

ln(10m)
 (25) 

which are obtained by combining equations (23) and (24). The minimum allowed 

values of λ, μ is 0 if the inverse of matrixes B and D exist; otherwise they are 

estimated from equations (23) using small values of  τλ and  τμ, such as: τλ =1 – τm = 

0.01 and τμ =1 – τm = 0.01. 

Combining equations (11), (22) we obtain: 

 ŷ = A y (26) 

where A is a n  n symmetric matrix given by: 

 A = [Π ΤΠ] 






Π

T
 Π + λ Ψ

Τ
 Ψ Π

T
 TΠ

Π
T 

ΤΠ Π
T 

Τ
Τ
 ΤΠ + μ Ψ

Τ
 Ψ

 

–1

 [Π ΤΠ]
Τ
  (27) 

depending on all adjustable parameters: m, τλ, τμ. 

The estimation of these adjustable parameters can be done by minimizing the 

generalized cross-validation (GCV; Craven and Wahba 1979), defined by: 

 GCV = 

1

n
 ||(I–A)y||

2







1

n
 trace(I–A)

2 (28) 

For a given number of segments m the minimization of GCV, results in the 

optimum values of τλ and τμ. This can be repeated for several trial values of m until the 

global minimum of GCV is reached.  



Relation to broken line smoothing and other methods 

The formalization of the above setting of the broken line smoothing interpolation 

(BLSI) method was derived from that of the single broken line method 

(Koutsoyiannis 2000), by adding a linear function of the explanatory variable t, along 

with the introduction of the smoothness term Ψ
T
Ψ in the corresponding problem 

formulation. This allows implementing GCV in the parameter selection procedure. 

The main difference is the fact that the present method uses two broken lines, to 

obtain the vector of estimates ŷ , from equation (11). Thus, the method does not 

provide the vertices of a single broken line, but the estimates of points (xi, yi) with 

available t(xi) values, for i=1, …, n, fitted to the problem of interest. The above 

characteristics of the proposed method, do not appear neither at smoothing splines nor 

at another piecewise linear regression method.  

It should be obvious from the above discourse that BLSI does not require 

linearity between the involved variables, namely y, x and the explanatory variable t, 

but local linearity is incorporated in the mathematical framework in a broken line 

approach. Also, the functional dependence, in terms of vectors d, e, the number of 

segments, m, and the tension parameters τλ and τμ, is neither constant nor a priori 

known, but in each case is determined through the procedure of minimizing the 

generalized cross-validation (GCV). 

Finally, the method retains the remarkable property of the broken line 

smoothing (Koutsoyiannis 2000), that the resolution (length of consecutive segments 

of the broken line) δ does not necessarily has to coincide with that of the given data 

points, but it can be either finer or coarser, depending on the specific requirements of 

the problem of interest. 

RESULTS AND COMMENTS 

The exploration of the proposed method took place against synthesized and real world 

data. To demonstrate the method we present three applications, the first being 

synthesized for exploration purposes and the last two corresponding to real world 

problems. The computational framework of the method’s implementation (MS-Excel) 

provides a direct means for data visualization and graphical exploration. 

Exploration application 

The first application was the implementation of the method in interpolation — fitting 

to ten data points obtained from the rather complicated generating function (Fig. 2): 

 y(x) = ( )1+10 e
–0.01x – 0.1  t x 

 – 0.57 (29) 

while the values of the explanatory variable t, which depends on x values, are given 

form the relationship (Fig. 2): 

 t(x) = 60 x e
–0.25 x

 (30) 

The main objective of this application, apart from illustrating how the 

proposed method performs in interpolation based on given data points, was the 

investigation of the variation of the three parameters: m, τλ and τμ, and the 

confirmation that there is a single global minimum for the generalized cross-

validation (GCV). 

 



 

Fig. 2: Generating function y(x) and explanatory function t(x) for the purposes of the exploration 

application 

 

In order to achieve this, we implemented the method for different numbers of 

segments m (2 ≤ m ≤ 30) using ten data points (i = 10), in order to approximate the 

generating function of equation (29). The explanatory data set, t(x), comprised 46 

points (j = 1, …, 46) equally spaced along [0, 22.5], with xj – xj–1 = δ = 0.5. 

Consequently, for each case we obtained 46 point estimates of the generating function 

by applying equation (9).  

Figure 3 presents the variation of the following indices versus the number of 

segments m: 

(a) The minimum generalized cross-validation (GCV) given by equation (28). 

(b) The generalized cross-validation (GCV) given by equation (28), when τλ and τμ 

are close to their lower limit (e.g. τλ = τμ = 0.01) and when they take their 

maximum value: τλ = τμ = 0.99. 

(c) The mean square error (MSE) with respect to data points, provided by the 

numerator of equation (28), obtained by minimizing GCV. 

(d) The mean square error (MSE) with respect to data points, provided by the 

numerator of equation (28), obtained by minimizing GCV when τλ and τμ are 

close to their lower limit (e.g. τλ = τμ = 0.01) and when they take their 

maximum value: τλ = τμ = 0.99. 

(e) The optimum values, for each m, of τλ and τμ obtained by minimizing GCV. 
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Fig. 3: Variation of the MSE and GCV values along with the corresponding smoothing parameters τλ, 

τμ , versus the number of segments, m 

 

Figure 3 shows that, in the case of maximum τλ and τμ values (τλ = τμ = 0.99), 

both error indices are almost invariant and independent of the number of segments. In 

this case, the influence of the smoothness term Ψ
T
Ψ in equation (27), is much higher 

than the influence of the broken lines segments, resulting in a single “maximum 

smoothness” solution. 

The global minimum value of GCV was 1.460 × 10
–4

, corresponding to m = 7, 

τλ = 0.01 and τμ = 0.304. Beyond m = 11, the minimum GCV, as well as the GCV for 

the case of τλ = τμ = 0.01, remain almost constant. However, the existence of local 
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minima should be taken into consideration during the parameters estimation 

procedure. 

When GCV is minimized, MSE follows a similar pattern to the GCV 

variation, with its minimum value being 2.540 × 10
–8

 for m = 7, τλ = 0.01 and τμ = 

0.304. However, the global minimum value of MSE was 8.099 × 10
–14

 and occurred 

in the case of minimum tension values, i.e. τλ = τμ = 0.01 and m = 9. This complies 

with the formulation of equation (19) concerning the roughness of the broken lines. 

Also, Fig. 3 shows that in this case, the values of MSE, tend to remain stable for 

larger values of m. 

The optimum values of τλ and τμ that achieved by minimizing GVC, versus 

different numbers of segments m, are presented in Fig. 3. Even though they appear in 

different scale, their pattern is similar to these of the error indices, being almost stable 

after m = 6 for τλ and m = 9 for τμ. 

 

 

Fig. 4: BLSI fit, using ten data points, to the generating function of equation (29) for various values of 

the smoothing parameters. 

 

Figure 3 confirms that the proposed mathematical formulation ensures the 

presence of a single global minimum value of GCV according to equation (28) and 

therefore the applicability of the objective way to assess the optimum values of τλ and 

τμ, as was previously noted. 

Figure 4 presents the BLSI fit, using ten data points and 46 values of the 

explanatory variable t (i = 10, j = 46), to the generating function of equation (29) for 

the values of the smoothing parameters presented during the analysis of Fig. 3. The 46 

point estimates of the generating function were obtained by applying equation (9). It 

is apparent that in the case of the global minimum value for the GCV indicator (m = 

7, τλ = 0.01, τμ = 0.304) the estimates are indistinguishable from the generating 

function, which suggests that the error is negligible. In the case of small tension 
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values (m = 8, τλ = τμ = 0.01), the estimates are also very close to the generating 

function but the overall appearance is somewhat rough with deviations between the 

data points. This characteristic was expected since the GCV values for both cases 

were very close. On the other hand, the maximum tension case of τλ = τμ = 0.99 

resulted in a smoother curve but a worse approximation of the generating function. 

The fitted broken lines in terms of the vectors d, e that satisfy equation (22), 

for the above mentioned cases, are presented in Fig. 5. 

 

 

Fig. 5: Fitted broken lines (vectors d, e) to the generating function of equation (29) for various values 

of the smoothing parameters. 

Even though the final result as presented in Fig. 4 shows small differences 

between the cases of the optimum solution and small tension values, there is a 

significant variation between the corresponding broken lines, i.e. vectors d and e, as 

they appear in Fig. 5. Also, the scale and gradient differences between the two groups 

of broken lines indicate that the ordinates of the broken line e, are the adjustment 

coefficients - weights of the explanatory variable t. This complies with the 

mathematical framework of the method, as it is expressed by equation (1). 

In brief, the combination of the two broken lines by means of equation (11) 

results in a very satisfactory fit of the complex mathematical expression as described 

by equation (29) and depicted in Fig. 2. 

Real world applications 

The first real world application concerns interpolation between measurements of the 

hydraulic conductivity function K(h) (h being the soil pressure head), mainly used in 

numerical methods for the simulation and prediction of mass transport phenomena in 

vadose zone. Many different closed-form expressions have been widely employed to 

describe the unsaturated hydraulic properties of soils (Leij et al. 1997), but all of them 

need experimental data to be fitted upon. 

-1

0

1

2

3

4

5

6

7

8

9

10

11

0 4 8 12 16 20 24

y, d, e

x

Vector d, m = 7, GCV: global  minimum

Vector e, m = 7, GCV: global  minimum

Vector d: m = 8, τ(λ) = 0.01, τ(μ) = 0.01

Vector e: m = 8, τ(λ) = 0.01, τ(μ) = 0.01

Vector d: m = 7, τ(λ) = 0.99, τ(μ) = 0.99

Vector e: m = 7, τ(λ) = 0.99, τ(μ) = 0.99



For the experimental determination of the hydraulic conductivity function, a 

number of methods have been developed. Direct methods for measuring the K(h) 

functions in laboratory can be classified according to the flow mode as steady state 

(conventional constant head, constant flow, centrifuge) or unsteady state methods 

(outflow-inflow, instantaneous profile, thermal method) (Masrouri et al. 2008). Most 

of them are time consuming and laborious, leading scientists to consider other 

methods e.g. conceptual models which could predict K(h) from data obtained from the 

soil moisture retention curve and supportively coupled by Ks, measured independently 

at saturation, with the use of permeameters (Argyrokastritis et al. 2009).  

For the needs of this application, we used the experimental data for Hygiene 

sandstone (Brooks and Corey 1964) adopted from van Genuchten (1980), in terms of 

relative hydraulic conductivity, Kr, (Kr =  K / Ks, Ks = 108 cm/day), as dependent 

variable for every h. The soil’s moisture retention curve, Θ(h), was set as the 

explanatory function t. Therefore, for each point Kr(hi) for i = 1.…11, there was a 

corresponding value Θ(hi) (Fig. 6). 

The method was applied using as input the entire Kr dataset, as a general 

performance indicator, but in order to examine the method’s capability, we applied a 

cross validation procedure by creating two additional subsets of the available Kr data 

and implementing the method for each case. The first subset comprised four data 

points numbered: 1, 4, 8, and 11 (Fig. 6), which are the minimum amount of data 

points needed to implement the above mentioned procedure for obtaining a robust 

solution by minimizing the generalized cross-validation (GCV - equation 28). The 

second subset comprised only two points, the first and the last of the dataset (points 

numbered: 1 and 11). The latter is an extreme case, since interpolating such complex 

variables with only the lower and higher boundaries known, is a challenging task. 

 

 

Fig.  6: Soil hydraulic properties of Hygiene sandstone (after van Genuchten 1980) 

 

The explanatory dataset, Θ(h), was obtained by using the BLS method 

(Koutsoyiannis 2000), for m = 70 and τ = 0.01, to obtain 70 points from the 11 initial 
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data points. Therefore, in each case the outcome of the BLSI method was 70 point 

estimates of Kr. 

In the case of the entire Kr dataset and four available data points, the method 

was implemented for different number of segments, m (2 ≤ m ≤ 30) and for each one 

the GCV was minimized, by altering τλ and τμ values. In this way, the global 

minimum of GCV was reached. In order to obtain the optimum fit for the case of two 

available data points, we varied the m, τλ and τμ parameters and graphically assessed 

the results, until the outcome was acceptable. The results of this procedure are 

presented in Fig. 7 where the 70 point estimates of Kr(h) are presented as lines and in 

Table 1 together with the corresponding performance indices. Figure 7 demonstrates 

overall concurrence when using the entire dataset, but also an almost perfect fit is 

acquired in the case of four available data points.  

The performance indices presented in Table 1, confirm the efficiency of the 

BLSI method. Notable is the performance of the method considering the coefficient of 

determination, R
2
, which was obtained for each case with respect to the entire data set. 

In all three cases, R
2
 exceeded the value of 0.97 and especially when all available data 

points were used in the interpolation process, R
2
 obtained its maximum possible 

value, that is, 1. 

 

 

Fig. 7 BLSI fit to Kr(h) data points, for different numbers of available data points  

 

In the case of two available points, i.e. the first and the last of the dataset, 

BLSI performed amazingly well considering the limited amount of input data, 

presenting slight deviation with acceptable magnitude, from the observed values. 

 

Table 1 BLSI parameters and performance indices, for the Kr(h) interpolation example 

Available data 

points 

optimum number 

of segments, m 

optimum 

τ(λ) 
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τ(μ) 
MSE 

Global 
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GCV 

R
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BLSI: m = 3, τ_λ = 0.001, τ_μ = 0.001, with all data points available 

BLSI: m = 7, τ_λ = 0.9455, τ_μ = 0.5078, with 4 available data points

BLSI: m =  20, τ_λ = 0.7946, τ_μ = 0.6624, with 2 available data points



All 3 0.001 0.001 2.06×10
–5

 1.17×10
–4

 1.000 

Four (1, 4, 8, 11) 7 0.9455 0.5078 3.99×10
–22

 5.041×0
–5

 0.997 

Two (1, 11) 20 0.7946 0.6624 4.72×10
–3

 1.71×10
–1

 0.971 

*
 With respect to the entire data set 

 

Apart from the above mentioned example, the inverse problem was also 

studied, namely the interpolation of the Θ(h) dataset by using Kr(h) as the explanatory 

function t. As Table 2 and Fig. 8 show, the results were similar and very satisfactory, 

confirming the method’s ability to interpolate scarce data sets of variables with 

complex relationships by utilizing denser, physically related to them, explanatory 

datasets. 

 

Table 2 BLSI parameters and performance indices, for the Θ(h) interpolation example 

Available data 

points 

optimum number 

of segments, m 

optimum 

τλ 

optimum 

τμ 
MSE 

Global 

minimum 

GCV 

R
2*

 

All 8 0.01 0.9897 1.52×10
–8

 1.02×10
–6

 1.000 

Four (1, 4, 8, 11) 16 0.9711 0.7498 8.51×10
–26

 8.34×10
–10

 0.987 

Two (1, 11) 26 0.4307 0.8955 1.18×10
–7

 5.45×10
–2

 0.969 

*
 With respect to the entire data set 

 

 

Fig. 8 BLSI fit to Θ(h), for different number of available data points 

 

In the second real world application we spatially interpolate annual rainfall 

using as explanatory variable the surface elevation. Spatial variability of precipitation 
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is influenced by many factors; some of them connected to the chaotic nature of the 

atmospheric processes. In over-annual scale abutting on the sea and orography have 

significant effects (Goovaerts 2000). Hevesi et al (1992a; 1992b) reported a 

significant correlation of 0.75 between average annual precipitation and elevation.  

The objective of the application was: a) to verify the method’s applicability 

against a hydrological variable with significant correlation to an easily measurable, 

hence available at considerably higher resolution, explanatory variable and b) to 

verify the method’s versatility in terms of handling extensive datasets. 

The study area was the region of the Central Greece (Sterea Hellas) area (Fig. 

9a). The data consist of the mean rainfall at the 71 meteorological stations network of 

the specified area, derived from all available measurements until the year 1992 

(Christofides and Mamassis 1995), while the surface elevation of the study area was 

obtained from the Digital Elevation Model (DEM) SRTM Data Version 4.1 (Jarvis et 

al. 2008) and aggregated to a 2×2 km square grid (Fig. 9a) for practical and 

computational reasons, covering approximately an area of 25 620 km
2
. The result was 

6405 points of known elevation, which constituted the explanatory variable dataset. 

Since the BLSI method is one-dimensional, in terms of the independent 

variable x, the points spatial coordinates, (xi, yi), were projected onto a x' axis, 

according to the following expression: 

 g(xi, yi) = g(xi´), xi´ = xi + tan φ yi (31) 

for alternative angles φ, namely: 

 φ = 30
o
, tan φ = 

3

3
, xi´ = xi + 

3

3
 yi (32) 

 φ = 45
o
, tan φ = 1, xi´ = xi + yi  (33) 

 φ = 60
o
, tan φ = 3, xi´ = xi + 3 yi  (34) 

The global minimum of GCV, for all three cases, was reached by 

implementing the method for different number of segments, m (2 ≤ m ≤ 30) and 

minimizing GCV for each one, by altering τλ and τμ. The results of the above 

procedure are presented in Table 3. 

 

Table 3 BLSI parameters and performance indices, for the rainfall interpolation example 

Projection 

angle, φ 

optimum number of 

segments, m 
optimum τλ optimum τμ MSE 

Global minimum 

GCV 

30
o
 13 0.141 0.986 4.01×10

4
 5.63×10

4
 

45
o
 17 0.435 0.796 4.86×10

4
 6.71×10

4
 

60
o
 8 0.282 0.984 5.74×10

4
 7.41×10

4
 

 

As quality measure for the evaluation of the method’s efficiency, we utilized 

the minimum and maximum rainfall of the available meteorological stations data, 

along with their corresponding elevation. Those values, compared to the minimum 

and maximum rainfall obtained from implementing BLSI for each one of the three 

cases are presented in Table 4. 

 



  

(a) (b) 

 



  

(c) (d) 

Fig. 9 (a) Elevation map and meteorological stations; (b)-(d) rainfall maps produced for the three cases of projection angles.  



 

Table 4 Comparison between meteorological stations data and BLSI results 

 Stations data 
Projection angle, φ 

 
30

o
 45

o
 60

o
 

Minimum rainfall (mm) / Elevation (m) 339/ 5 380/ 0 386/ 0 336/ 1 

Maximum rainfall (mm) / Elevation (m) 1990/ 1420 1897/ 2414 2423/ 1310 2754/ 2012 

 

Figure 9 and Table 4 indicate that the result of the method respects the 

dependence of rainfall on elevation (with increased elevation, rainfall increases as 

happens in reality), confirming the efficiency of the BLSI method against the 

objectives set above. The validation of the obtained values, in order to conclude 

whether they could be regarded as acceptable for spatial interpolation of rainfall 

exceeds the scope of the present study. Further investigation regarding the use of the 

specified methodology for spatial interpolation of rainfall in two dimensions, along 

with comparisons with other methods, will be reported in a future study. 

Since the method’s mathematical framework provides direct means of 

evaluating interpolation errors across the available data points, an assessment of their 

distribution function could be of interest. Figure 10 demonstrates the normal 

probability plot, of the empirical distribution function of the rainfall estimation error 

for φ = 30
o
. For comparison, the theoretical normal distribution function N(0, 201.6) 

was also plotted. 

 

 

Fig. 10 Normal probability plot, in the case of φ = 30
o
, of the empirical distribution function of the 

estimation errors using Weibull plotting positions against normal distribution function N(0, 201.6)  

 

Apparently, Fig. 10 indicates that for the specific case of annual rainfall, the 

normal distribution is good approximation of the interpolation errors produced by 

BLSI’s implementation. This remark does not constitute a generally valid conclusion. 

Nonetheless, the method provides direct means to assess the distribution function of 

error, and hence the interpolation uncertainty, in a nonparametric manner, without the 

need to hypothesize a specific distribution function. Similar plots were made for the 
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other two cases studied, namely φ = 45
o
 and φ = 60

o
 (not shown here) and the results 

were found to be analogous to those for φ = 30
o
. 

CONCLUSIONS 

An innovative method which can be utilized to perform various interpolation tasks, by 

incorporating, in an objective manner, an explanatory variable available at a 

considerably denser dataset than the main variable, is described. The technique 

incorporates smoothing terms with adjustable weights, defined by means of the angles 

formed by the consecutive segments of two broken lines into a piecewise linear 

regression model with known break points. 

Apart from the demonstration of the mathematical framework, the method was 

illustrated and tested against three applications, a theoretical one with synthetic data 

from a known generating function and two real world examples: the interpolation of 

hydraulic conductivity function using water retention data as explanatory variable and 

vice versa, and the spatial interpolation of rainfall data using the surface elevation as 

explanatory variable. In every case, the method’s efficiency to perform interpolation, 

as well as smoothing, between data points that are interrelated in a complicated 

manner, by incorporating the explanatory variable, was confirmed, indicating its 

applicability for diverse scientific and engineering tasks. A notable property of the 

proposed method is the fact that the resolution (length of consecutive segments of the 

broken line) does not necessarily have to coincide with that of the given data points, 

but it can be either finer or coarser, depending on the specific requirements of the 

problem of interest. This is an important property that makes the method applicable 

and reliable even in the case of scarce data sets (e.g. with as few as two points, as in 

the second case study, the method gave amazingly good results).  

The third application showed that the method can be useful in spatial 

interpolation. However, the current formulation is not fully two dimensional but the 

general methodology allows an extension in many dimensions. The extension of the 

methodology for spatial (two dimensional) interpolation of variables, will be reported 

in future studies. 
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