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| The scientific decade of IAHS 2013-2022

Panta Rhei - Change in Hydrology and Society

View Visitars

The new scientific decade 2013-2022 of IAHS, entitled “Panta Rhei —
Everything Flows”, is dedicated to research activities on change in hydrology
and society. The purpose of Panta Rhei is to reach an improved interpretation
of the processes governing the water cycle by focusing on their changing
dynamics in connection with rapidly changing human systems. The practical
aim is to improve our capability to make predictions of water resources
dynamics to support sustainable societal development in a changing
environment. The concept implies a focus on hydrological systems as a
changing interface between environment and society, whose dynamics are
essential to determine water security, human safety and development, and to
set priorities for environmental management. The Scientific Decade 20132022
will devise innovative theoretical blueprints for the representation of processes

Change in Hydrology

including change and will focus on advanced monitoring and data analysis and Saciety
techniques. Interdisciplinarity will be sought by increased efforts to bridge with
the socio—economic sciences and geosciences in general. http://distart119.ing.unibo.it

/pantarhei/?g=node/1

D. Koutsoyiannis, Hydrology, society, change and uncertainty 2



The pyramid of knowledge and the roots of
hydrology in common sense and philosophy

Fluid
mechanics

Physics
Mechanics ... .. Statistical

. thermophysics

>Low complexity ... High complexit>

Philosophy Graph from Koutsoyiannis (2014a)
Common sense adapted from Gauch (2003)
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Heraclitus: Change and randomness

Navta pet
Everything flows

(Heraclitus; quoted in Plato’s Cratylus,
339-340)

Alwv aic é0Tl Tai{wv TECOEVWVY
Time is a child playing, throwing dice
(Heraclitus; Fragment 52)

Heraclitus
ca. 540-480 BC

D. Koutsoyiannis, Hydrology, society, change and uncertainty 4



Aristotle: Change and nature of precision

MetafdAdel TG YpOovw TAVTa
All is changing in the course of time
(Aristotle; Meteorologica, .14, 353a 16)

Memaidevuévov yap oty Emi
TOOOUTOV TAKPIPEC EMINTEY KA’
EKAOGTOV YEVOC, £ ° 0060V 1) TOD
TPAYUATOC PUOIC EMIOEXETAL

[t is the mark of an educated man to
look for precision in each class of things
just so far as the nature of the subject
admits

(Aristotle, Nicomachean Ethics 1094b)

Aristotle
384 - 322 BC
(wikipedia)
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Change and
predictability

Predictable
(regular)

VV

Non-periodic Periodic
e.g. acceleration of e.g. daily and
a falling body annual cycles

Simple systems — Short time horizons

Important but trivial

>

Py Py
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Decision making under uncertainty

AveppipOw kVPoc¢ lacta alea est
Let the die be cast The die has been cast

[Plutarch’s version] [Suetonius’s version]

(Julius Caesar, 49 BC, when crossing Rubicon River)

= The type of change that can be predicted with —
precision is usually trivial. s \: N

m Also, decision making under certainty is mostly trivial.

= History teaches that while understanding and prediction are good
advisers for decisions and actions, neither of them is a
prerequisite.

s According to Aristotle, what is needed as a guide to human
decisions and actions is Orthos Logos (Recta Ratio, or Right
Reason).

= Science, including hydrology, can contribute to societal progress
by promoting Orthos Logos.
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Social perception of contemporary changes

s The current acceleration of change, mostly due to
unprecedented human achievements in technology,
inevitably results in increased uncertainty.

= In turn, the increased uncertainty makes the society
apprehensive about the future, insecure and credulous to a
developing future-telling industry.

m Several scientific disciplines, including hydrology, tend to
become part of this industry.

= The social demand for certainties, no matter if these are
delusional, is combined by a misconception in the scientific
community (cf. Taylor and Ravetz, 2013): to confuse science
with removing uncertainty.

s This has been particularly the case in the climate change
industry and the part of hydrology related to it.
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Future-telling industries: From Delphi and
Pythia to modern climate predictions

m Pythia’s power relied on ambiguous predictions:

“Neelg dnietg ov BvNEelg v TOAEUW” or “you
will go you will come not in the war you will
die” (put a comma before or after “not”).

s  Modern climate predictions (or “projections”)
owe their success to the distant time horizon to
which they refer (e.g. 2080, 2100, etc.); this
makes them (temporarily) resistant to
falsifiability.

Pythia inspired by
pneuma rising from
below (from wikipedia)

< <Climate model outputs
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Indeed, time horizons of climate predictions are
long...®

Summers in{2080-2100 Warmer than Warmest on Record

From 2100 AD
(Battisti and Naylor,
Science, 2009)...

2%/fyr; Actual warming
2%/yr; Warming in equilibrium with actual CO2
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‘ How good have climate predictions been so far?

Hydrological Sciences—Journal-des Sciences Hydrologigi 1334

Hydrological Sciences urna
Journa - Journal deg Sciences Hydm’ogiques 56(7) 201
RAPID COMMUNICATION REPLY
Scientific g;
alogue on cli
- 3 L - - - m R 9 o
On the credibility of climate predictions '’ A€ is it giving play eyes or o
eply to “A pq Pening closeq
ck eye f,
v D, Ye lor the 4 .
D. KOUTSOYIANNIS, A. EFSTRATIADIS, N. MAM e Ydrological Science Journap
Deparmment of Water Resources, Faculty of Civil Engineering, National Tec, D. Koulsoyian sl
Heroon Polytechneiou 5, GR-157 80 Zographou, Greece . A Chl’istoﬁdcs"'

dk(@itia.ntua.gr

Abstract Geographically distributed predictions of future climate, obtained through climate models, are I L ——— —
Wldel}’ used in hydn)]ng).' and manv other diecinlines. tvmicallv withomt aszeceine their reliahility. Here we h

compare the output of various
long (over 100 years) records
climatic (30-year) scale. Thus

models can Eerf‘nrm better at 1.

See details in
Koutsoyiannis et
al. (2008, 2011)
and
Anagnostopoulos
et al. (2010).

—— A Efstratiadis!

—— B S° & N MamaSsisl

A comparison of local and aggregated climate model outputs with
observed data

G. G. Anagnostopoulos, D. Koutsoyiannis, A. Christofides, A. Efstratiadis & N. Mamassis

Department of Water Resources, Faculty of Civil Engineering, National Technical University of Athens, Heroon Polytechneiou 5,
GR 157 80 Zographou, Greece
a.christofides@itia.ntua.gr

Received 10 April 2009; accepted 10 May 2010; open for discussion until 1 April 2011

Citation Anagnostopoulos, G. G., Koutsoyiannis, D., Christofides, A., Efstratiadis, A. & Mamassis, N. (2010) A comparison of local and

aggregated climate model outputs with observed data. Hydrol. Sci. J. 55(7), 1094-1110.

Abstract We compare the output of various climate models to temperature and precipitation observations at 55
points around the globe. We also spatially aggregate model output and observations over the contiguous USA using
data from 70 stations, and we perform comparison at several temporal scales, including a climatic (30-year) scale.
Besides confirming the findings of a previous assessment study that model projections at point scale are poor, results
show that the spatially integrated projections are also poor.
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Can climate models simulate past precipitation?

Precipitation - alternative simulations - Global - land only
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Source: Climate Data Information
http://www.climatedata.info/Precipitation/Precipitation/global.html
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Climate prognostology: how useful is it in
studying change in hydrology

Very useful: It provides an example that we have just to avoid
and it prompts us to search for a different path:

Avoid a simplistic view that complex systems can be
predictable on the long run in deterministic terms.

Avoid being driven by political agendas and economic
interests.

Avoid mixing up science with activism.

Avoid fooling the society by providing unreliable predictions.
Avoid promoting biased catastrophic scenarios.

Avoid making hydrology “climate impactology”.

Exploit the rich experience of hydrology in studying and
managing uncertainty.

Improve decision making under unpredictability.
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Arithmetic simply useless? Or dangerous?

useless arithmetic

Why Environmental Scientists

Can’t Predict the Future L

Orrin H. Pilkey & Linda Pilkey-Jarvis

Excerpts from the book:

A reviewer of a paper I wrote condemning beach
models penned the following criticism, which is
very typical of the responses that model critics
receive: “Everyone, even the engineers, realizes that
models have shortcomings, some serious ones, but
that is all that they have at this time. They are
constantly working on improving them. Instead of
continuing to tear down the existing ones, the
discipline would be much better served by offering
better alternatives”.

My response (had I been given a chance to
respond) would have been this: One should not use
bad models for any reason. If you know that there
are problems, shame on you and your fellow
modelers for not saying so when you apply the
model and give the results to the public. Because
of the complexity of beaches, rest assured that
nothing better is coming along. They can never
be quantitatively modeled with sufficient accuracy
for engineering purposes.

(Pilkey and Pilkey-Jarvis, 2007, p. 136)
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Hydrol. Earth Syst. Sci., 14, 585-601, 2010
www.hydrol-earth-syst-sci.net/14/585/2010/

© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

HESS Opinions
“A random walk on water”

D. Koutsoyiannis

‘ A toy model to demonstrate (un)predictability

G "\ Hydrology and

Earth System
Sciences

Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University

of Athens, Greece

Invited contribution by D. Koutsoviannis, recipient of the EGU Henry Darcy Medal 2009.

Received: 5 October 2009 — Published in Hydrol. Earth Syst. Sci. Discuss.: 29 October 2009
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Abstraet. According to the traditional notion of randomness
and uncertainty, natural phenomena are separated into two
mutually exclusive components, random (or stochastic) and
deterministic. Within this dichotomous logic, the determin-
istic part supposedly represents cause-effect relationships
and, thus, is physics and science (the “good™), whereas
randomness has little relationship with science and no

1 What is randomness?

In his foundation of the modern axiomatic theory of proba-
bility, A. N. Kolmogorov (1933) avoided defining random-
ness. He used the notions of random events and random vari-
ables in a mathematical sense but without explaining what
randomness is. Later. in about 1965. A. N. Kolmogorov and
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Emergence of randomness from determinism from a

caricature hydrological system

= The toy model is designed intentionally simple.

= Only infiltration, transpiration and soil water storage are considered.
m The rates of infiltration ¢ and potential transpiration 7, are constant.

Nothing in the model is set to be random.

1

- 1

,,,,, l V: I

————— Vegetation ;
T: cover I

Transpiration I

I

Infiltration

X:
Soil water

p

Discrete time: i (¢ = i4 where 4 is
an arbitrary time unit, 4 = 1 TU).
Constants
o Input: ¢ =250 mm/TU;
o Potential output:
7,=1000 mm/TU.
State variables (a 2D dynamical
system):
o Vegetation cover, v;
(O<v,<1);
0 Soil water (no distinction
from groundwater): x;
(- 0 <x;<a=750 mm).
Actual output: 7,=v; 7,4
Water balance
X;=min(x;_; + (¢ - v;_17,), @)
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System C

ynamics

0.0
0.2
0.4
0.6
0.8
Vi.1 1.0

-1000

-800

-600

-800
-600
-400
-200

--200
--400
--600
--800
F-1000

-400
200
200
400

600

Xi .

Interesting surface—Not invertible transformation

X

M 600-800

O 400-600

@ 200-400

0 0-200
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%/,ﬁﬁ’l Il |
S il '
o rmIHHHH |
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Water balance + Vegetation cover dynamics
max(@+(x._,/B)°1) v._,

X;=min(x;,_; + A(@ - v;_17;), @)

V. =

m0.9-1

W 0.8-0.9
00.7-0.8
M 0.6-0.7
0 0.5-0.6
M 0.4-0.5
00.3-0.4
00.2-0.3
M 0.1-0.2
0o0-0.1

max@—(x,_,/ B>+ (X, !/ B)°v,,

Assumed constants: ¢ = 250 mm/TU, 7, = 1000 mm/TU, @ = 750 mm, § = 100 mm.
Easy to program in a hand calculator or a spreadsheet.
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Interesting trajectories produced by simple
deterministic dynamics

m These trajectories of x

and v, for time i = 1 to 100 were produced assuming initial

conditions x, = 100 mm (# 0) and v, = 0.30 (# 0.25) using a spreadsheet (it can be

downloaded from itia.

m The system state
does not converge  «,
to an equilibrium.

m The trajectories
seem periodic.

m Iterative application
of the simple
dynamics allows
“prediction” for
arbitrarily long time
horizons (e.g,,

X100 = —244.55 mm;
Vigo = 0.7423).

ntua.gr/923/).
800 n — 0.9
—o— Soil water, x — — Equilibrium: x=0
---0--- \egetation cover, v —-———Equilibrium: v=0
600 = m] 0.8
: : o
: : : :
400 i Ca— ; : T 0.7
! . - I = R o y
y. ! | SR
= : b 0.6
. o[l
; . T\
: A gt 0.5
I 1 qf |\
i ; S O l 3 SN l 1 0.4
[ I A P e Y
T - 403
_D.__;_-_I'_JI___.._:_.I_I‘_.I ___________ 'I _____ : [ __l__._'_'_]'_: :__|_I
- I e S A A B
600 i Ta g PR B e 102
T A S - PR SRS R R
800 { ™ . R s (i
o T B R SR = 1= R = B S S = B
“ppdd Ty @m op 0@ op O ® o G
-1000 . — . 0
0 10 20 30 40 50 60 70 80 90 100
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Does deterministic dynamics allow a reliable
prediction at an arbitrarily long time horizon?

m Postulate: A continuous (real) variable that varies in time cannot be ever
known with full precision (infinite decimal points).

m [tis reasonable then to assume that there is some small uncertainty in the
initial conditions (initial values of state variables).

m Sensitivity analysis allows to see that a tiny uncertainty in initial conditions
may get amplified. 800

) 600 /\ A

Bold blue line 400 T /\ A/\ /\/\ /
corresponds to
initial conditions
X, =100 mm,

200

O_

v, = 0.30. -200

All other lines 40 L L T 1T
represent initial 600 { Short time horizons: good predictions. "
conditions slightly 800 4 Long time horizons: extremely inaccurate = |

(< 1%) different. and useless predictions.

-1000

0 10 20 30 40 50 60 70 80 9 100
|
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From deterministic to stochastic predictions

= In adeterministic description, x; := (x;, v;) is the vector of the
system state and S is the vector function representing the
known deterministic dynamics of the system.

m Because of the inefficiency of the deterministic description,
we turn into a stochastic description and consider x; as a
random variable with a probability density function f(x).

s The stochastic representation behaves like a deterministic
solution, but refers to the evolution in time of admissible
sets and probability density functions, rather than to
trajectories of points:

Fromx. =S (x;_{) to f;(x) =

2
dxov f s~1(4) fl 1(u)du

where A := {x < (x,v)} and S-1(4) is the counterimage of A.
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‘ Stochastics for ever...

fx;) -
600
X, : :Low uncertainty ) : High uncertainty )
600
A \ ~ ,\,\/\,’»/\/\"’
400 i ,/‘“\,v”,,«f’h LN
~ |
‘N Tk
” 1|
200 A \.\ :\\ | \\,. |”’ A A 1
A AP kW A RV A R AN _”_ L | N
N A |
0 I |\ // \:/ ¥
AR NATRIRAT AR A A
-200 . AR
i \ II \\\ Il\\ v V ! v
: A
-400 Py v ke WANWAN S /
exact trajectory for x[0] = 100, v[0] = 0.3 \ D P ~'\/\ /‘—\J\J,f\_ 1L
6001 " 95% prediction limits - deterministic forecast |
naive statistical forecast (average)
300 - - - +95% prediction limits - statistical forecast
0 10 20 30 40 50 60 70 80 90 100 S § § s 3 -
S e o e
Q@ o
)

The stochastic representation is good for both short and long horizons, and helps
figure out when the deterministic dynamics should be considered or neglected.
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A different perspective of long-term predictability and
the key consequence of antipersistence

= Arguably, when we are interested about a prediction for a long time horizon, we
do not demand to know the exact value at a specified time but an average
behaviour around that time (the “climate” rather that the “weather”).

= The plotof the soil 800 |

water for a long - 600 ‘ '

TU) indicates: 200 | | | |

o High variability 0
at a short (annual)
scale. -200 7

o A flat time average 47
at a 30year scale -600 I - I
(“climate”). 800 - |

. e i — Annual storage

0 Peculiar variation _,, | ——Moving average of 30 values

patterns. 0 100 200 300 400 500 600 700 800 900 1000

The behaviour quickly flattening the time average is known as antipersistence
(often confused with periodicity/oscillation, which is an error).

Antipersistence enhances climatic-type predictability (prediction of average).
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‘ Quantification of variability

= To study the peculiar variability of the soil water x;, we introduce the random
variable e; := ((x; - x;,_,)/4)? where 4 = 1 TU; g, is an analogue of the “kinetic
energy’ in the variation of the soil water.

m Furthermore we introduce a macroscopic variable 8, an analogue of
“temperature”, which is the average of 10 consecutive ¢; high or low 6 indicates
high or low rates of variation of soil water.

= The plot of the time 0.25
series of O for a long
period (10000 TU)
indicates long and
persistent excursions
of the local average

——single values  =====moving average|of 30 values l average for 10000 TU

Mm 1|

o
N

0.15 -

|| | | |
(“the climate”) from @& o5 [ - J,Hﬂ"_lﬂ" !
the global average H ' Ilhl

Temperature" (m/TU)2

o
[N

(of 10000 values). 0.05

= These remarkable | M

changes are produced 0 |
by the internal 0 100 200 300 400 500 600 700 800 900 1000

dynamics (no forcing). Time (tens of TU)

The frequent and long excursions of the local average from the global average
indicate long-term persistence, or long-term change (not static conditions).

Persistence/change are often confused with nonstationarity—but this is an error.
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Demonstration that variability and persistence
entail unpredictability

"Temperature" (m/TU)2
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The plot shows 100 terms of “temperature” time series produced with exact, as
well as rounded off, initial conditions.

The departures in the two cases are striking.

Even a fully deterministic system is fully unpredictable at a climatic time scale
when there is persistence.
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Multi-scale stochastics and predictability

= For an one-step ahead prediction, a purely random process x; is the most

unpredictable.

m Dependence and conditioning on observations enhances one-step ahead

predictability.

s However, in the climatic-type
predictions, which concern the
local average rather than the exact
value, the situation is different.

m The climacogram shown on the
right (plot of standard deviation
vs. time scale of averaging) shows
that in a persistent process (like
in e and 0), the uncertainty at long
time scales is very high.

m The reduction due to conditioning
on the past is annihilating because
of the persistence.

o(k)/o(1)

0.001

1 %

0.1

0.01

o X
¢ e

1 10 100
Scale k (TU)

Contrary to the common perception, positive dependence/persistence substantially
deteriorates predictability over long time scales—but antipersistent improves it.
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‘ From the toy model to real world hydrological
systems

WATER RESOURCES RESEARCH, VOL. 48, W09555, doi:10.1029/2011WR011412, 2012

A blueprint for process-based modeling of uncertain hydrological
systems

. . . ¢ 2
Alberto Montanari' and Demetris Koutsoyiannis®
Received 16 September 2011 ; revised 19 August 2012; accepted 20 August 2012; published 29 September 2012.

[1] We present a probability based theoretical scheme for building process-based models

of uncertain hydrological systems, thereby unifying hydrological modeling and uncertainty

assessment. Uncertainty for the model output is assessed by estimating the related

probability distribution via simulation, thus shifting from one to many applications of the

selected hydrological model. Each simulation is performed after stochastically perturbing

input data, parameters and model output, this latt  expressed by equations (1)<6) we may see lhat we passed
population of the model error, whose probability g, the deterministic formulation of the hydrological model

and model parameters. Within this view randomz . . . . .
s inherfm property of hydrological systems. | expressed by equation (1), 1.e., (to replicate 1t for clarity),

well as the open research questions. The theoreti

real-world and synthetic applications. The releva 0=50.X) (7)
proposing a statistically consistent simulation fra
does not require model likelihood computation ai
The results show that uncertainty is satisfactorily
assumptions could be significant in conditions of

|

to the stochastic formulation expressed by

0(0) = L [;r;t@—S{B..x}lﬂx:-fa{ﬂm{x: d0dX ()
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‘ Differences of the “blueprint” with

deterministic modelling

Deterministic model
Q =S5(0,X)

where Q the model output (e.g. river flow), @ a vector of model parameters and X

a vector of model inputs.
Stochastic version—general formulation

fo(Q) = fig Jxy (@ — $(8,X)10,X) fo x(6,X)dOAX

where e := Q — 5(0, X) (model error) and f denotes probability density.
Simplifying assumptions that enable an easy Monte Carlo implementation:
o Independent parameters and inputs: fg x (0, X) = f5(0) fx(X).

o Representativeness of deterministic model prediction for error conditioning:
fe(el0,X) = f.(e]|S(0, X)).

Summary of differences of the stochastic approach with deterministic modelling:

0 Models are approximations of reality and model parameters are not physical
constants; they are modelled as random variables.

o Precise predictions are infeasible; only probabilities can be calculated.

0 One model run is not sufficient; many runs in a Monte Carlo framework can
give the required probabilities.

D. Koutsoyiannis, Hydrology, society, change and uncertainty
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Differences of the “blueprint” with conventional
stochastic models

Conventional stochastic models (e.g. ARMA and even Hurst-
Kolmogorov processes) are linear.

Assuming that the background deterministic model Q = S(0, X) is
nonlinear (and usually is), the resulting stochastic model for f,(Q) will
be nonlinear too.

This nonlinear setting offers a more detailed description of the
relevant processes and a more realistic representation of system
dynamics at short lead times.

However, at long lead times linearity is actually recovered:

o As entropy approaches its maximum (information is getting lost),
linearity reemerges, as it is a consequence of entropy maximization
(Koutsoyiannis, 2014b; Efstratiadis et al., 2014).

Therefore, for long lead times conventional linear stochastic
modelling may be preferable as it is simpler and may not be poorer
than detailed nonlinear stochastic modelling.
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‘ Can we effectively control unpredictable systems?

= Definitely yes—there is overwhelming engineering experience about it.
= An illuminating

example iS 0 ffere d gzoo Annual runoff — — Awerage 1988-94 Awverage 1908-87
by an intenseand £
persistent (lasting 2, | P
7 years) drought R i
that shocked Athens. | | | | |

» The ingredients for 1988 1989 1990 1991 1992 1993 | 1994

the success story of the Athens drought management include:
o Consistent modelling (see more information in Koutsoyiannis, 2011):
m  Stochastic hydrological model reproducing long-term persistence.

m  Advanced decision support tool based on an original and
parsimonious stochastic methodology termed parameterization-
simulation-optimization.

o Construction of new engineering works to improve water resource
availability.

o Engagement of the society in water saving practices, which resulted in
decrease of the water consumption by 1/3.
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Concluding remarks

= IIP #PUC ([lavta pel # Prediction Under Change)
= [IP#PUD (Ilavta pel # Prediction Under Doom)

= [IP can help the hydrological community and the society in the
following important tasks:

o 0 00 00 0o

reconciliation with change;

reconciliation with uncertainty;

recognition of the tight connection of change and uncertainty;
recognition of the inevitability of change and uncertainty;
recognition of the good sides of change and uncertainty;
advancement of decision making under uncertainty;

developing adaptability and resilience for an ever uncertain future;

promotion of technology and engineering means for planned
change to control the environment for the benefit of the society;

promotion of the importance of honesty in science and its
communication to the society;

advancement of the Hydrology of Uncertainty.
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