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Abstract Evapotranspiration is a key hydrometeorological process and its estimation is important in 13 

many fields of hydrological and agricultural sciences. Simplified estimation proves very useful in 14 

absence of a complete data set. In this respect, a parametric model based on simplification of the 15 

Penman-Monteith formulation is presented. The basic idea of the parametric model is the 16 

replacement of some of the variables and constants that are used in the standard Penman-Monteith 17 

model by regionally varying parameters, which are estimated through calibration. The model is 18 

implemented in various climates on monthly time step (USA, Germany, Spain) and compared on 19 

the same basis with four radiation-based methods (Jensen-Haise, McGuiness and Bordne, 20 

Hargreaves and Oudin) and two temperature-based (Thornthwaite and Blaney-Criddle). The 21 

methodology yields very good results with high efficiency indexes, outperforming the other models. 22 

Finally, a spatial analysis including the correlation of parameters with latitude and elevation 23 

together with their regionalization through three common spatial interpolation techniques along 24 

with a recent approach (Bilinear Surface Smoothing), is performed. Also, the model is validated 25 

against Penman-Monteith estimates in eleven stations of the well-known CIMIS network. The total 26 

framework which includes the development, the implementation, the comparison and the mapping 27 
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of parameters illustrates a new parsimonious and high efficiency methodology in the assessment of 28 

potential evapotranspiration field. 29 

 30 
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 33 

1. Introduction 34 

Accurate estimation of evapotranspiration has gained scientific interest due to high 35 

importance in hydrological modelling, irrigation planning and water resources 36 

management. According to Farquhar and Roderick (2007), changes in evaporative 37 

demand affect fresh water supplies and have impact on agriculture, the biggest 38 

consumer of fresh water. Estimating water requirements for irrigation purposes goes 39 

back to 1890 in the USA (Jensen and Haise, 1963). 40 

The vast number of scientific attempts to estimate Potential Evapotranspiration 41 

(PET) or Reference Evapotranspiration (ETo) depicts the significant role of 42 

evapotranspiration in irrigation water management Those attempts yielded about 50 43 

evapotranspiration models (Lu et al. 2005, McMahon et al. 2013) which can be 44 

grouped into seven classes: (i) empirical, (ii) water budget (iii) energy budget, (iv) 45 

mass transfer, (v) combination, (vi) radiation  and (vii) measurement (Xu and Singh 46 

2000).  47 

The plethora of models and frameworks arises from the complexity of the 48 

physical phenomenon, the availability of the necessary hydrometeorological data and 49 

the variability of local climatic conditions.  50 

The Penman-Monteith formulation (Monteith 1981) was proposed by FAO as 51 

the standard method for computing Potential Evapotranspiration (PET) (Allen et al. 52 

1989) and has had numerous successful applications in hydrology and 53 

agrometeorology in various hydroclimatic regimes (Wang and Georgakakos 2007). 54 
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Basic drawback of the model’s applicability is the requirement of several climatic 55 

data like temperature, wind speed, relative humidity and radiation. Such 56 

measurements are not always easily available or accessible to researchers due to the 57 

sparse hydrometeorological stations networks in several regions, e.g. Africa, as well 58 

as the instability in the records of radiation and relative humidity (Samani, 2000). 59 

Therefore, the demand of new simplified models in several time scales (Alexandris 60 

and Kerkides 2003, Oudin et al. 2005, Valiantzas, 2013,) like radiation-based and 61 

temperature-based models, is justified. Several publications (Tabari 2010, Samaras et 62 

al. 2014) demonstrated that radiation-based methods are capable for PET estimation. 63 

Additionally, many researchers suggest the need for further model calibration 64 

(especially in the energy term of radiation) to improve the overall efficiency (Irmak et 65 

al. 2003, Zhai  L. et al. 2010, Azhar and Perera 2010, Thepadia and Martinez 2012, 66 

Tabari and Talalee 2011).  67 

This study presents a radiation-based model that introduces an innovative 68 

approach in the estimation of potential evapotranspiration. This methodology that 69 

requires only temperature data incorporates a new concept concerning local 70 

calibration needs and produces a parsimonious expression for the potential 71 

evapotranspiration estimation by replacing some of the variables and constants that 72 

are used in the standard Penman-Monteith model by regionally varying parameters, 73 

which are estimated through calibration. The model is implemented and compared to 74 

established radiation and temperature based methods using the available data from 53 75 

hydrometeorological stations of USA, Germany and Spain, representing different 76 

climate conditions, both arid and humid. Finally, analyses concerning: (a) the 77 

parameters’ dependence on latitude and (b) the parameters’ spatial variability, was 78 

performed based on data from the California Irrigation Management Information 79 
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System (CIMIS - Hart et al. 2009) programme that was introduced by the California 80 

Department of Water Resource and the University of California, Davis, in 1982. For 81 

the latter, the calibration procedure incorporates 39 CIMIS stations, while the 82 

validation is made against the calculated parameter values from a set of 11 additional 83 

stations. 84 

 85 

2. Materials and methods 86 

2.1 Penman-Monteith model and radiation-based methods 87 

The classic model of the Penman-Monteith (Monteith 1965) equation to estimate 88 

potential evaporation or evapotranspiration is expressed as: 89 

PET = 
Δ

Δ + γ'
 
Rn 

 λ
 + 

γ

 Δ + γ'
 F(u) D , γ΄ = γ (1 + rs/ra) (1) 90 

where PET is potential evaporation or evapotranspiration (mm/d), Rn is net radiation 91 

at the surface Δ is the slope of the saturation vapor pressure curve, γ is psychometric 92 

coefficient while rs and ra are the surface and aerodynamic resistance factors.  93 

Jensen and Haise (1963) evaluated 3000 observations of ET as determined by 94 

soil sampling procedures over a 35-year period, and developed an equation that 95 

requires only the average daily temperature and the extraterrestrial radiation, while 96 

one decade later, McGuiness and Bordne (1972) using lysimeter data suggested a 97 

slight modification to Jensen’s formulation.  98 

Another widely used approach is the Hargreaves model (Hargeaves and 99 

Samani 1982) that estimates the reference evapotranspiration at monthly and daily 100 

scale. The method has received considerable attention because it can produce very 101 

acceptable results under diverse climates using only temperature and radiation 102 

measurements (Shahidian et al. 2013). According to several researchers (Samani 103 
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2000, Xu and Singh 2002) the method performs poorly in extreme humidity and wind 104 

conditions. 105 

A recent study (Oudin et al. 2005), evaluated a number of evapotranspiration 106 

methods, on the basis of precipitation and streamflow data from a large sample of 107 

catchments in the USA, France and Australia. After extended analysis with the use of 108 

four hydrological models, the researchers modified the Jensen and McGuiness model 109 

and proposed a generalized radiation- based equation. 110 

Table 1 summarizes the expressions that estimate PET according to the above-111 

mentioned methodologies: 112 

Table 1 113 

where PET (mm d
–1

, equivalent to kg m
–2

 d
–1

 of the dimensionally consistent Penman- 114 

Monteith equations) is the potential evapotranspiration, Ra (kJ m
–2

d
–1

) is the 115 

extraterrestrial shortwave radiation, Ta (°C) is the air temperature, λ is the latent heat 116 

of vaporization (kJ kg
–1

) and ρ is the water density (kg L
–1

). 117 

 118 

2.2 Temperature-based methods 119 

The Thornthwaite model  (Thornthwaite, 1948) is the most simplified method and 120 

requires only temperature measurements. The model’s form is: 121 

PET = 1.6 Ld 





10 Ta 

I

a
 (2) 122 

where PET is the potential evapotranspiration (mm/month), Ld is the daytime length, 123 

Ta is the mean monthly air temperature (
o
C), I is the annual heat index and a is an 124 

empirically determined parameter which is function of I. 125 

The Blaney-Criddle method  (Blaney and Criddle, 1962) has received 126 

worldwide application for the estimation of irrigation demands. The model expression 127 

is: 128 
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PET = K p (0.46 Ta + 8.13)  (3) 129 

where PET is the potential evapotranspiration (mm/month), Ta the mean temperature 130 

(
o
C), K is the monthly consumptive use coefficient and p is the mean daily percentage 131 

of annual daytime hours. 132 

 133 

2.3 The parametric formula 134 

The need of parsimonious model structure is essential in several fields of water 135 

resources sciences (Koutsoyiannis 2009, Koutsoyiannis 2014). This refers both to the 136 

model structure and to the input data, which should be easily available. Most of 137 

simplified formulas fail to describe the phenomenon of evapotranspiration due to its 138 

high complexity and the varying local climate conditions. Thus, the idea of replacing 139 

some variables and constants used in the standard Penman-Monteith (PM) formula by 140 

a number of parameters which are regionally varying and estimated through 141 

calibration from a reference evapotranspiration sample, constitutes a new appealing 142 

strategy for evapotranspiration estimation. 143 

Koutsoyiannis and Xanthopoulos (1999), Tegos et al. (2009) and Tegos et al. 144 

(2013) examined the structure and the sensitivity of input data in PM model. They 145 

concluded that extraterrestrial radiation and temperature dominate in determining 146 

potential evapotranspiration. Furthermore, Mamassis et al. (2014) reached to the 147 

conclusion that the influence of every meteorological parameter in evaporation is 148 

almost linear, with temperature having the greater influence. 149 

By dividing both the numerator and the denominator by Δ, the PM equation 150 

can be written in the form: 151 

PET = 
1

λρ
 
Rn + γ λF(u) D

1 + γ' / Δ
 (4) 152 
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In the above expression, the numerator is the sum of a term related to solar 153 

radiation and a term related to the rest of meteorological variables, while the 154 

denominator is function of temperature. 155 

Based on the previous analysis, a simplification of the Penman-Monteith 156 

formula, where the numerator is approximated by a linear function of extraterrestrial 157 

solar radiation, while a linear descending function of temperature approximates the 158 

denominator, can be described by the following formula: 159 

PET = 
a Ra – b

1 – c Ta
 (5) 160 

where PET (mm) is the potential evapotranspiration, Ra (kJ m
–2

) is the extraterrestrial 161 

shortwave radiation calculated without measurements and Ta (°C) is the air 162 

temperature. 163 

Equation (5) contains three parameters, i.e. a (kg kJ
–1

), b (kg m
–2

) and c (°C
–1

), 164 

to which a physical interpretation can be assigned. Since extraterrestrial solar 165 

radiation is the upper bound of net shortwave radiation, the dimensionless term 166 

a* = a / λρ represents the average percentage of the energy provided by the sun (in 167 

terms of Ra) and, after reaching the Earth’s terrain, is transformed to latent heat, thus 168 

driving the evapotranspiration process. Parameter b lumps the missing information 169 

associated with aerodynamic processes, driven by the wind and the vapour deficit in 170 

the atmosphere. Finally, the expression 1 – cTa approximates the term: 1 + γ/Δ. We 171 

recall that γ΄ is a function of the surface and aerodynamic resistance (equation 1) and 172 

Δ is the slope vapour pressure curve, which is a function of Ta. 173 

 174 
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2.4 Hydrometeorological data and computational tools 175 

For exploration purposes, we use monthly meteorological data from 39 CIMIS 176 

stations (Hart et al. 2009), available at www.cimis.water.ca.gov, 10 stations from 177 

Germany and finally 4 stations from Spain (Table 2). The European data are freely 178 

available in the European Climate Assessment data set (Klok and Klein Tank, 2009 - 179 

http://eca.knmi.nl/). Stations’ latitudes range from N 32.76
o
 to N 53.38

o
 and their 180 

altitude varies from 2.74 m to 1342.6 m.  181 

The available data comprise mean temperature, relative humidity, sunshine 182 

duration and wind velocity. At all CIMIS stations the data covers the period from 183 

October 1992 to September 2012 while the European stations cover the period from 184 

January 1948 to December 2013. The choice of the time-periods was based on the 185 

simultaneous availability of the four required hydrometeorological variables 186 

(temperature, sunshine duration, humidity, wind speed). Additionally, the selection of 187 

each station and especially those from the CIMIS network was based on the existence 188 

of adequate length time series for the processes involved, i.e. 20 years. 189 

Table 2 190 

The time series processing along for the implementation of the different 191 

approaches for potential evapotranspiration estimation, i.e. Penman-Monteith, 192 

parametric and Hargreaves, was carried out using the free software application 193 

Hydrognomon (Kozanis et al. 2010, http://hydrognomon.org/), while the remaining 194 

expressions (Jensen, McGuiness and Oudin) were evaluated through spreadsheets. 195 

 196 
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2.5 Statistical criteria 197 

The main statistical criterion used for the evaluation of the methodologies 198 

performance against the values computed by the Penman Monteith method (PM) was 199 

the coefficient of efficiency (CE), introduced by Nash & Sutcliffe (1970): 200 

CE = 1 – 


i=1

n

( )PEi – PMi
2

 
i=1

n

(PM
–––

 – PMi)
2

  (6) 201 

where PMi and PEi are the potential evapotranspiration values of month i, computed 202 

by the Penman-Monteith method and the other model respectively, PM
–––

 is the monthly 203 

average over the common data period estimated by the Penman-Monteith formula 204 

while n is the sample size.  205 

Additionally, we applied several statistical measures, such as the mean bias error: 206 

MBE = 
1

n
 
i=1

n

( )PEi – PMi  (7) 207 

the mean absolute error: MAE = 
1

n
 
i=1

n

 |PEi – PMi| (8) 208 

and the root mean square error: RMSE = 








1

n
 
i=1

n

(PEi – PMi)
2

 

1/2

 (9) 209 

CE ranges between −∞ and 1 (1 inclusive), with CE = 1 being the optimal 210 

value. Values between 0 and 1 are generally regarded as acceptable levels of 211 

performance, whereas values less than 0 indicate that the mean observed value is a 212 

better predictor than the simulated value, which indicates unacceptable performance. 213 

MBE, MAE and RMSE values of  0 indicate a perfect fit (Moriasi et al. 2007).  214 
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 215 

3. Results  216 

The implementation of the parametric model was accomplished by calculating the 217 

three parameters involved at each station, as mentioned above. This procedure is 218 

automated via a least square optimization technique, embedded in the Hydrognomon 219 

software (Kozanis et al. 2010, http://hydrognomon.org/), providing means for 220 

acquiring optimized values of a, b and c parameters for the parametric method 221 

application. 222 

The calculated monthly Penman-Monteith potential evapotranspiration time 223 

series acted as the reference data sets against which the comparisons between the 224 

different methodologies took place. Table 3 summarizes the values of the parameters 225 

for each of the 53 stations, acquired by the procedure described above.  226 

Table 3 227 

3.1 Comparison with radiation-based methods 228 

Figure 1 presents the mean annual potential evapotranspiration calculated by the 229 

Penman-Monteith method for each one of the 39 CIMIS stations against the 230 

parametric and the other four methods. It is clear that the parametric, Hargreaves and 231 

McGuiness models respect the variation of the over-annual potential 232 

evapotranspiration, while the other two models, i.e. Oudin and Jensen-Haise 233 

underestimate and overestimate respectively, the potential evapotranspiration values. 234 

Figure 1 235 

The performance indices presented in Table 4 confirm the good performance of the 236 

parametric method, which has the highest CE and excellent results in the other 237 

statistical indices. The Hargreaves model follows with CE 78.9%, similar MBE and 238 

worst MAE and RMSE than the parametric model. The McGuiness method gave 239 
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moderate results, while the Jensen-Haise and Oudin models totally fail to represent 240 

the physical flux.  241 

Table 4 242 

For further comparison of the parametric method against the four radiation-243 

based methods, in terms of the achieved CE distribution from estimating monthly PE, 244 

each time series was split into two parts. The first 13 years were used as the 245 

calibration data set for the parametric model, while the remaining 7 years were used 246 

for validation. Table 5 presents the CE distribution, for the calibration (Cal) and the 247 

validation (Val) data set for 39 CIMIS stations, while that of the European stations is 248 

presented in Table 6.  249 

Table 5 250 

The results for both periods and in different climatic regimes are satisfactory 251 

for the parametric model, with the average CE values for the calibration period being 252 

94.80% for CIMIS stations and 96.52% for European stations, while for the validation 253 

period the corresponding values are 94.34% for CIMIS stations and 90.06% for the 254 

European stations. Altogether, the application of the parametric model in 26 stations 255 

from the 39 stations achieved CE values between 90 and 95%.  256 

Table 6 257 

The Hargreaves model achieved satisfactory results especially in the case of 258 

CIMIS network, where the model has been developed; while in European stations the 259 

acquired CE values are lower.  260 

The McGuiness model acquired lower CE values in the CIMIS network than 261 

Parametric and Hargreaves with 87.14% in calibration period and 87.76% in the 262 

validation period. The Oudin model presented moderate results in the CIMIS network 263 

(52.18% in the calibration and 46.82% in the validation period) but considerably 264 
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better results in European stations (89.37 % calibration and 82.82% validation 265 

period). By taking into account the similar results presented by Tegos et al. (2013), 266 

the Oudin model seems to perform better in humid than in arid climatic conditions.  267 

Finally, the Jensen-Haise model totally failed to produce physically 268 

meaningful results, since the achieved CE values were very low (Tables 4, 5, 6). 269 

 270 

3.2 Comparison with temperature-based methods 271 

We also compared the performance of the parametric model with two well-known 272 

empirical formulas of Thornthwaite and Blaney-Criddle (Tables 7, 8) by 273 

implementing the same procedure as in the comparison with the radiation-based 274 

methods, i.e. the first 13 years were used as the calibration data set, while the 275 

remaining 7 years were used for validation. Both approaches have wide application in 276 

data-scarce regions. In the CIMIS network the average CE for the Thornthwaite 277 

model was 20.53% for the calibration period and less than zero in the validation 278 

period, while in European stations the CE is 84.58% (calibration) and 78.27% 279 

(validation). The Blaney-Criddle method achieved average CE 69.99% (calibration), 280 

69.82% (validation) in the CIMIS network and 15.69% (calibration) and <0 281 

(validation) in European stations. Finally, the Thornthwaite model seems to be 282 

suitable for use in cold and humid climates (94.84% CE in German stations for the 283 

calibration period) and improper in arid regimes, while for the Blaney-Criddle model 284 

the opposite occurs. 285 

Table 7 286 

Table 8 287 
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3.3 Spatial analysis of the parameters 288 

The key idea of the parametric model is the replacement of some of the variables and 289 

constants that are used in standardized Penman-Monteith formula by three parameters, 290 

which are regionally varying and estimated through calibration using a reference 291 

evapotranspiration data set. Furthermore, knowledge of the spatial variability of the 292 

PET is crucial in geosciences and the use of the appropriate interpolation technique is 293 

significant (Mancosu et al. 2014). 294 

In this context, two applications are implemented. The first is the analysis of 295 

the parameters’ correlation to latitude and elevation, while the second is their 296 

estimation, through spatial interpolation techniques, along an extensive study area 297 

such as California, which provides sufficient data to perform the necessary calibration 298 

procedures. 299 

 300 

3.3.1 Correlation to latitude and elevation 301 

Through regression analysis, we investigated the correlation of every parameter (a, b, 302 

c) with latitude φ
 
and elevation. Six scatter plots of Fig. 2, show that parameters a, b 303 

are negatively correlated to latitude and elevation, in contrast to parameter c. This is 304 

similar to the findings of the previous study over the Greek territory (Tegos et al. 305 

2013) for parameter a. There is also noticeable correlation of parameter b with 306 

elevation (R
2
 = 0.24) and insignificant correlation of parameter c with elevation and 307 

latitude. Furthermore, Fig. 2 shows that the relation of the three parameters to latitude 308 

and elevation, according to findings of the present study, appears to be a non-linear 309 

one. 310 

 311 

Figure 2 312 



14 

 

3.3.2 Spatial interpolation over California 313 

Currently, a lot of methods exist which can accomplish spatial interpolation using 314 

available computer codes. In the present study, the three parameters’ spatial 315 

variability was investigated by four different methodologies: (1) Inverse Distance 316 

Weighting (IDW); (2) Natural Neighbours (NaN); (3) Ordinary Kriging (OK); and (4) 317 

Bilinear Surface Smoothing (BSS). 318 

The first three are well established and commonly used in spatial interpolation 319 

of environmental variables (Li and Heap, 2008). The Bilinear Surface Smoothing 320 

methodology is a new approach that approximates a surface that may be drawn for the 321 

data points with consecutive bilinear surfaces which can be numerically estimated by 322 

means of a least squares fitting procedure into a surface regression model with known 323 

break points and adjustable weights defined by means of angles formed by those 324 

bilinear surfaces. The BSS theory and basic features along with the adjustable 325 

parameters estimation methodology which is based on the generalized cross-326 

validation methodology are presented in Malamos and Koutsoyiannis (in review) BSS 327 

is implemented by means of a dynamic link library in Object Pascal (Delphi) 328 

programming language linked to Microsoft Excel. The obtained optimal values of the 329 

four adjustable parameters: the number of intervals according to x and y directions, 330 

i.e. mx, my and the corresponding smoothing parameters τλx and τλy, are presented in 331 

Table 9: 332 

Table 9 333 

IDW and NaN were implemented in ESRI’s ArcGIS environment using the 334 

default settings, while for OK all semivariogram models available in that software 335 

were investigated, i.e. circular, exponential, spherical, linear and Gaussian,. In every 336 



15 

 

case, the embedded fitting procedure ensured the minimization of the weighted sum of 337 

squares between experimental and model semivariogram values.  338 

 339 

Table 10 340 

Table 10 presents the values of the statistical criteria for each one of the 341 

implemented semivariogram models, sorted according to the CE criterion for each of 342 

the three parameters. It is obvious that the circular semivariogram achieved the best 343 

overall performance.  344 

All three parameters of the parametric model were estimated over California 345 

by applying the four spatial interpolation methods. The input data set consists of the 346 

calculated parameters values at the 39 CIMIS stations (Fig. 3, Table 3). 347 

Figure 3 348 

 349 

Table 11 presents the values of the statistical criteria used to assess the 350 

performance of the spatial interpolation methods with respect to the input data set. It 351 

is apparent that both non-geostatistical methods, according to the statistical criteria 352 

used, outperform ordinary kriging and bilinear surface smoothing, which performed 353 

similarly. This is not a surprise because both IDW and NaN, from construction, are 354 

exact methods of interpolation, so their results respect the data points exactly 355 

(Longley et al. 2005, Li and Heap 2008).  356 

Table 11 357 

However, the above statistical indices may not be representative with respect 358 

to the validity of the interpolation results in other locations, except for those 359 

incorporated in the interpolation procedure. In this context, a validation procedure was 360 

implemented by means of comparing the reference potential evapotranspiration 361 
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estimates acquired from the implementation of the parametric method, using the 362 

parameter estimates of the four interpolation methods, against those of the eleven 363 

additional CIMIS stations with adequate time series length, shown in Table 12 along 364 

with the estimated parameter values, in the case of IDW. 365 

Table 12 366 

The performance of each method is presented in Table 13, which summarizes 367 

the CE values acquired from the validation procedure. It is apparent that IDW 368 

outperforms the other three methods in the majority of the cases. This is an interesting 369 

fact, since the IDW method is the effortless of the four methodologies. On the other 370 

hand, the BSS performance is analogous or better to that of the input data set, with CE 371 

values close to those presented in Table 12. NaN and OK performed similarly, with 372 

the first achieving slightly superior outcome, since OK in the case of Borrego Springs 373 

resulted in negative CE value.  374 

Table 13 375 

The variation of the three parameters over California produced by the IDW 376 

technique is illustrated in Fig. 4. It is apparent that both a and c present an increasing 377 

North to South gradient, while the opposite occurs for parameter b. This remark 378 

coincides with the previous findings concerning the relation of the three parameters to 379 

latitude. 380 

Figure 4 381 

4. Summary and conclusions 382 

The parametric model is a parsimonious radiation-based and physically consistent 383 

approach derived from a simplification of the Penman-Monteith equation, which 384 

requires three parameters to be calibrated prior to its application. By systematic 385 

application of the method the parameters can be eventually provided by maps. 386 
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The comparison, on the basis of monthly and annual evapotranspiration data, 387 

with commonly used radiation-based models (Hargreaves, McGuiness, Jensen-Haise 388 

and Oudin models) and temperature-based models (Thorthwaite and Blaney-Criddle), 389 

verified the parametric model’s high efficiency in different climatic regimes.  390 

A parameters analysis, through regression techniques, was conducted in order 391 

to investigate their correlation to latitude and elevation variation. Moreover, the 392 

parameters’ spatial estimation was accomplished by implementing interpolation 393 

techniques such as: Inverse Distance Weighting (IDW), Natural Neighbours (NaN), 394 

Ordinary Kriging (OK) and Bilinear Surface Smoothing (BSS), along an extensive 395 

study area such as California. The validation procedure was implemented by 396 

comparing the reference potential evapotranspiration estimates acquired from the 397 

implementation of the parametric method, using the parameter estimates of the four 398 

interpolation methods, against those of the eleven additional CIMIS stations. This 399 

combined evaluation of the four different interpolation approaches, indicated that the 400 

simple and effortless IDW method performs better than the other three methodologies. 401 

Regarding the application of the new methodology, BSS’s efficiency to perform 402 

interpolation between data points that are interrelated in a complicated manner was 403 

confirmed, acquiring high CE values analogous to those of the other three methods. 404 

Overall, the key idea of the parametric model methodology, which is the 405 

simplification of the Penman-Monteith formula by introducing three parameters, 406 

which are regionally varying and estimated through calibration using a reference 407 

evapotranspiration data set, was very successful.  408 

Further research and applications regarding its strengths and weaknesses need 409 

to be conducted in future studies towards: (a) the sensitivity analysis of the three 410 

parameters and therefore the model’s performance against the length of the available 411 
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time series and (b) the implementation of worldwide climatic databases such as the 412 

United Nations Food and Agriculture Organization (UN-FAO) database known as 413 

CLIMWAT (Smith 1993), in order to perform regionalization of the parameters in 414 

world regions with different climatic regimes. 415 

 416 
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Table 1 Radiation-based methods for potential evapotranspiration estimation 

Method 

Jensen and 

Haise 

Mcguiness and 

Bordne 

Hargreaves Oudin  

PET  

expression 

Ra Ta

40 λ ρ
 

Ra (Ta + 5)

68 λ ρ
 0.0023

Ra

λ
 (Tα + 17.8) (Tmax – Tmin)

0.5
 

Ra (Ta + 5)

100 λ ρ
 

 

Table 2 Meteorological stations used for the evaluation of the potential evapotranspiration methods 

Νο. Station name, Location Νο. Station name, Location Νο. Station name, Location 

1 Five Points, U.S.A. 19 Buntigville, U.S.A. 37 De Laveaga, U.S.A. 

2 Davis, U.S.A. 20 Temecula, U.S.A. 38 Westlands, U.S.A. 

3 Firebaugh Teles, U.S.A. 21 Santa Ynez, U.S.A. 39 Sanel Valley, U.S.A. 

4 Gerber, U.S.A. 22 Seeley, U.S.A. 40 Aachen, Germany 

5 Durham, U.S.A. 23 Manteca, U.S.A. 41 Angermunde, Germany 

6 Carmino, U.S.A. 24 Modesto, U.S.A. 42 Bremen-Seefahrtshule,  

Germany 

7 Stratford, U.S.A. 25 Irvine, U.S.A. 43 Dresden-Klotzsche,  

Germany 

8 Castorville, U.S.A. 26 Oakville, U.S.A. 44 Dusseldorf, Germany 

9 Kettleman, U.S.A. 27 Pomona, U.S.A. 45 Frankfurt, Germany 

10 Bishop, U.S.A. 28 Frenso State, U.S.A. 46 Hamburg Fuhlsbuettel,  

Germany 

11 Parlier, U.S.A. 29 Santa Rosa, U.S.A. 47 Karlsrhue, Germany 

12 Calipatria, U.S.A. 30 Browns Valley, U.S.A. 48 Muenchen-Flughafen,  

Germany 

13 Mc Arthur, U.S.A. 31 Lindcove, U.S.A. 49 Stuggart-Schnarreberg,  

Germany 

14 UC Riverside, U.S.A. 32 Meloland, U.S.A. 50 Alicante, Spain 

15 Brentwood, U.S.A. 33 Alturas, U.S.A. 51 Badajoz Televera, Spain 

16 San Luis Obispo, U.S.A. 34 Cuyama, U.S.A. 52 Valencia, Spain 

17 Blackwells Corner, U.S.A. 35 Tulelake, U.S.A. 53 Zaragoza Aeropuerto,  

Spain 

18 Los Banos, U.S.A. 36 Windsor, U.S.A.   

 

Table 3 Meteorological stations numbers and corresponding parameter values for the parametric 

method 

Station a b c Station a b c 

Νο. (kg kJ
–1

) (kg m
–2

) (°C
–1

) Νο. (kg kJ
–1

) (kg m
–2

) (°C
–1

) 

1 1.47 10
–4

 1.49 1.58 10
–2

 28 1.29 10
–4

 1.3 1.73 10
–2

 

2 1.04 10
–4

 6.51 10
–1

 2.15 10
–2

 29 8.88 10
–5

 6.09 10
–1

 2.63 10
–2
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3 1.46 10
–4

 1.48 1.47 10
–2

 30 8.95 10
–5

 4.07 10
–1

 2.11 10
–2

 

4 1.02 10
–4

 4.97 10
–1

 1.93 10
–2

 31 1.12 10
–4

 1.04 1.74 10
–2

 

5 1.97 10
–4

 2.07 –2.70 10
–4

 32 2.12 10
–4

 2 4.94 10
–3

 

6 8.82 10
–5

 2.49 10
–1

 2.34 10
–2

 33 7.92 10
–5

 –2.20 10
–1

 2.44 10
–2

 

7 1.12 10
–4

 –2.50 10
–1

 1.44 10
–2

 34 1.08 10
–4

 4.03 10
–1

 1.97 10
–2

 

8 1.68 10
–4

 1.06 –3.60 10
–2

 35 9.28 10
–5

 5.20 10
–2

 2.12 10
–2

 

9 1.34 10
–4

 1.23 1.62 10
–2

 36 8.65 10
–5

 5.66 10
–1

 2.60 10
–2

 

10 1.43 10
–4

 7.39 10
–1

 1.05 10
–2

 37 1.02 10
–4

 5.82 10
–1

 1.24 10
–2

 

11 1.29 10
–4

 1.32 1.61 10
–2

 38 1.40 10
–4

 1.33 1.67 10
–2

 

12 1.69 10
–4

 1.32 8.86 10
–3

 39 9.88 10
–5

 6.54 10
–1

 2.37 10
–2

 

13 9.75 10
–5

 4.26 10
–1

 2.36 10
–2

 40 3.96 10
–5

 –2.46 10
–1

 2.62 10
–2

 

14 8.68 10
–5

 5.10 10
–2

 1.78 10
–2

 41 3.96 10
–5

 –2.58 10
–1

 2.73 10
–2

 

15 1.11 10
–4

 9.00 10
–1

 2.09 10
–2

 42 4.28 10
–5

 –1.64 10
–1

 2.68 10
–2

 

16 8.10 10
–5

 1.60 10
–1

 2.28 10
–2

 43 3.67 10
–5

 –3.45 10
–1

 2.81 10
–2

 

17 1.21 10
–4

 1.02 1.89 10
–2

 44 4.12 10
–5

 –3.02 10
–1

 2.64 10
–2

 

18 1.31 10
–4

 1.31 1.81 10
–2

 45 4.75 10
–5

 –8.8 10
–2

 2.62 10
–2

 

19 9.29 10
–5

 –1.10 10
–1

 2.11 10
–2

 46 4.18 10
–5

 –1.66 10
–1

 2.66 10
–2

 

20 6.66 10
–5

 –2.80 10
–1

 2.10 10
–2

 47 4.64 10
–5

 –6.6 10
–2

 2.58 10
–2

 

21 9.44 10
–5

 4.91 10
–1

 2.06 10
–2

 48 4.69 10
–5

 –8.8 10
–2

 2.51 10
–2

 

22 2.50 10
–4

 2.58 7.52 10
–4

 49 4.53 10
–5

 –1.64 10
–1

 2.52 10
–2

 

23 1.13 10
–4

 1.02 2.03 10
–2

 50 5.89 10
–5

 –4.67 10
–1

 1.84 10
–2

 

24 1.17 10
–4

 1.08 2.00 10
–2

 51 6.24 10
–5

 1.72 10
–1

 2.35 10
–2

 

25 6.64 10
–5

 –4.40 10
–2

 2.28 10
–2

 52 5.34 10
–5

 –1.93 10
–1

 1.96 10
–2

 

26 8.42 10
–5

 4.29 10
–1

 2.54 10
–2

 53 7.00 10
–5

 –2.2 10
–2

 2.39 10
–2

 

27 1.13 10
–4

 1.25 2.00 10
–2

 
    

 

Table 4 Values of performance indices used to evaluate the parametric method, in the estimation of 

mean annual potential evapotranspiration for the 39 CIMIS stations, against the other four models 

Method 
CE  

(%) 

MBE  

(mm) 

MAE  

(mm) 

RMSE  

(mm) 

Parametric 99.1 4 6 17 

Hargreaves 78.9 2 60 82 

Jensen-Haise < 0 417 452 493 

McGuiness 30.1 19 111 149 

Oudin < 0 -393 393 411 

 
Table 5 Distribution of CE values of radiation-based approaches in CIMIS network 

CE (%) Parametric Hargreaves Jensen-Haise McGuiness Oudin 
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Cal Val Cal Val Cal Val Cal Val Cal Val 

95-100 26 26 26 23 0 7 16 15 0 0 

90-95 11 5 10 7 0 2 6 7 0 0 

80-90 2 8 3 9 1 2 10 10 1 0 

70-80 0 0 0 0 6 3 3 3 3 5 

60-70 0 0 0 0 1 6 2 3 7 4 

50-60 0 0 0 0 3 4 1 1 12 6 

0-50 0 0 0 0 16 9 1 0 16 24 

<0 0 0 0 0 12 6 0 0 0 0 

 

Table 6 Distribution of CE values of radiation-based approaches in European stations 

CE 

Parametric Hargreaves Jensen-Haise Mcguiness Oudin 

Cal Val Cal Val Cal Val Cal Val Cal Val 

95-100 10 9 6 0 0 0 0 0 9 1 

90-95 4 4 4 6 0 0 0 0 2 8 

80-90 0 0 3 7 0 0 0 0 0 2 

70-80 0 0 1 1 0 0 7 1 1 1 

60-70 0 0 0 0 0 0 3 1 1 1 

50-60 0 0 0 0 0 0 3 1 1 0 

0-50 0 1 0 0 5 1 2 9 0 1 

<0 0 0 0 0 9 13 1 2 0 0 

 

Table 7 Distribution of CE values of temperature-based approaches in CIMIS network 

CE 
Thornthwaite Blaney-Criddle 

Cal Val Cal Val 

95-100 0 0 0 0 

90-95 0 0 0 0 

80-90 0 0 10 16 

70-80 0 0 18 12 

60-70 1 0 5 5 

50-60 4 3 2 1 

0-50 24 21 3 4 

<0 10 15 1 1 

 

Table 8 Distribution of CE values of temperature-based approaches in European stations 

CE 
Thornthwaite Blaney-Criddle 

Cal Val Cal Val 

95-100 5 0 0 0 
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90-95 5 1 0 0 

80-90 0 9 0 0 

70-80 2 1 1 1 

60-70 0 1 0 0 

50-60 1 1 0 1 

0-50 1 1 12 1 

<0 0 0 1 11 

 

 

Table 9 BSS parameters optimal values, for the California application 

Parameter mx my τλx τλy 

a 

(kg kJ
–1

) 
3 8 0.082 0.001 

b 

(kg m
–2

) 
3 28 0.001 0.01 

c 

(°C
–1

) 
3 8 0.001 0.001 

 

Table 10 Values of the statistical criteria used to assess the performance of the different kriging 

semivariogram models 

Parameter 
kriging  

semivariogram 
CE (%) MBE MAE RMSE 

a 

(kg kJ
–1

) 

circular 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

exponential 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

spherical 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

linear 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

gaussian 44.6  1.24 10
–6

 1.86 10
–5

 2.88 10
–5

 

b 

(kg m
–2

) 

circular 68.6  4.24 10
–3

 2.71 10
–1

 3.68 10
–1

 

exponential 72.8  3.12 10
–3

 2.50 10
–1

 3.43 10
–1

 

spherical 67.4  5.46 10
–3

 2.77 10
–1

 3.76 10
–1

 

linear 66.6  6.00 10
–3

 2.81 10
–1

 3.80 10
–1

 

gaussian 29.7  4.09 10
–2

 4.07 10
–1

 5.51 10
–1

 

c 

(°C
–1

) 

circular 39.3  3.56 10
–4

 4.62 10
–3

 8.19 10
–3

 

exponential 11.0  4.67 10
–4

 5.62 10
–3

 9.92 10
–3

 

spherical 11.7  4.64 10
–4

 5.60 10
–3

 9.88 10
–3

 

linear 11.0  4.67 10
–4

 5.62 10
–3

 9.92 10
–3

 

gaussian 11.0  4.67 10
–4

 5.62 10
–3

 9.92 10
–3
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Table 11 Values of the statistical criteria used to assess the performance of the spatial interpolation 

methods with respect to the input data set 

Parameter 
Interpolation  

Method 
CE (%) MBE MAE RMSE 

a 

(kg kJ
–1

) 

IDW 100 3.59 10
–8

 1.08 10
–7

 1.97 10
–7

 

NaN 100 –1.03 10
–7

 4.77 10
–7

 8.95 10
–7

 

OK 99.9  1.03 10
–8

 5.18 10
–7

 8.93 10
–7

 

 BSS 73.2 4.36 10
–8

 1.35 10
–5

 2.01 10
–5

 

b 

(kg m
–2

) 

IDW 100 2.95 10
–4

 1.72 10
–3

 3.06 10
–3

 

NaN 99.9 –9.48 10
–4

 1.16 10
–2

 2.12 10
–2

 

OK 68.6  4.24 10
–3

 2.71 10
–1

 3.68 10
–1

 

 BSS 65.2 1.97 10
–4

 2.68 10
–1

 3.88 10
–1

 

c 

(°C
–1

) 

IDW 100 2.56 10
–7

 8.82 10
–6

 1.52 10
–5

 

NaN 99.9 1.54 10
–6

 1.50 10
–4

 3.10 10
–4

 

OK 39.3  3.56 10
–4

 4.62 10
–3

 8.19 10
–3

 

 BSS 68.9 –2.57 10
–7

 3.25 10
–3

 5.87 10
–3

 

 

Table 12 CIMIS Stations used for validation purposes and estimated parameters values in the case of 

IDW 

Station 
a 

(kg kJ
–1

) 

b 

(kg m
–2

) 

c 

(°C
–1

) 

Arroyo Seco 1.38 10
–4

 1.06 1.20 10
–3

 

Carneros 9.10 10
–5

 5.48 10
–1

 2.42 10
–2

 

Green Valey Road 1.16 10
–4

 7.75 10
–1

 7.26 10
–3

 

King City Oasis 1.34 10
–4

 1.09 9.53 10
–3

 

Santa Barbara 1.03 10
–4

 5.56 10
–1

 1.98 10
–2

 

Alpaugh 1.23 10
–4

 8.27 10
–1

 1.67 10
–2

 

Auburn 1.04 10
–4

 6.20 10
–1

 1.99 10
–2

 

Borrego Springs 1.73 10
–4

 1.44 9.33 10
–3

 

Lodi West 1.10 10
–4

 8.54 10
–1

 2.05 10
–2

 

Merced 1.30 10
–4

 1.20  1.73 10
–2

 

Palmdale 1.01 10
–4

 7.86 10
–1

 2.00 10
–2
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Table 13 CE values for every interpolation method in validation procedure stations 

Station IDW NaN OK BSS 

Arroyo Seco 77.7 78.9* 76.8 66.8 

Carneros 96.1 96.2* 83.6 95.9 

Green Valey Road 71.6* 69.5 70.2 65.7 

King City Oasis  85.1 60.3 93.6* 64.3 

Santa Barbara 47.9 72.4 78.2* 23.4 

Alpaugh 95.7 95.5 96.0* 95.9 

Auburn 94.4* 93.6 94.3 85.8 

Borrego Springs 85.3* 81.3 <0 70.1 

Lodi West 94.0* 93.7 92.9 92.3 

Merced 96.9 97.1* 96.9 89.5 

Palmdale 69.6 70.3 91.1* 56.0 

* denotes each station’s highest CE value 
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Fig. 1 Mean annual Penman-Monteith potential evapotranspiration (symbols) for the 39 CIMIS stations 

against the parametric model and the other four methods 
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Fig. 2 Scatter plots of parameters against latitude and elevation 
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Fig. 3 Study area and the CIMIS Stations used for spatial analysis 
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Fig. 4  Parameters maps produced by the IDW method, for the California region 
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