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Abstract The non-parametric mathematical framework of Bilinear Surface Smoothing (BSS) 
methodology provides flexible means for spatial (two dimensional) interpolation of variables. As 
presented in a companion paper, interpolation is accomplished by means of fitting consecutive 
bilinear surfaces into a regression model with known break points and adjustable smoothing terms 
defined by means of angles formed by those bilinear surfaces. Additionally, the second version of 
the methodology (BSSE) incorporates, in an objective manner, the influence of an explanatory 
variable available at a considerable denser dataset. In the present study, both versions are explored 
and illustrated using both synthesized and real world (hydrological) data, and practical aspects of 
their application are discussed. Also, comparison and validation against the results of commonly 
used spatial interpolation methods (Inverse Distance Weighted, Spline, Ordinary Kriging and 
Ordinary Cokriging) is performed in the context of the real world application. In every case, the 
method’s efficiency to perform interpolation between data points that are interrelated in a 
complicated manner was confirmed. Especially during the validation procedure presented in the 
real world case study, BSSE yielded very good results, outperforming those of the other 
interpolation methods. Given the simplicity of the approach, the proposed mathematical framework 
overall performance is quite satisfactory, indicating its applicability for diverse tasks of scientific 
and engineering hydrology and beyond. 
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INTRODUCTION 

With the increasing number of applications for environmental purposes, there is also a 
growing concern about spatially distributed estimates of environmental variables. 
Analysis and simulation models prior to their application, require tasks such as 
interpolation between measurements, prediction, filling in missing values in time 
series, estimation and removal of the measurement errors, etc.  

However, most data for environmental variables (soil properties, weather) are 
collected from point sources. The spatial array of these data may enable a more 
precise estimation of the value of properties at unsampled sites than simple averaging 
between sampled points. The value of a property between data points can be 
interpolated by fitting a suitable model to account for the expected variation 
(Hartkamp et al. 1999). Currently, a lot of methods exist which can accomplish those 
tasks using appropriate computer codes. They fall into three categories (Li and Heap 
2008):  
(1)  Non-geostatistical methods such as: Splines, Thin Plate Splines (Craven and 

Wahba 1979, Wahba and Wendelberger 1980) and Regression Methods (Davis 
1986) 

(2)  Geostatistical methods including different approaches of Kriging, such as: 
Ordinary and Universal Kriging, Kriging with an External Drift or Cokriging 
(Goovaerts 1997, Burrough and McDonnell 1998) and  



(3) Combined methods such as: Trend Surface Analysis Combined with Kriging 
(Wang et al. 2005) and Regression Kriging (Hengl et al. 2007).  

In the present study applications of an innovative concept are demonstrated. 
The main idea, presented as Bilinear Surface Smoothing (BSS), is to approximate a 
surface that may be drawn for the data points (xi, yi) with consecutive bilinear surfaces 
which can be numerically estimated by means of a least squares fitting procedure into 
a surface regression model with known break points and adjustable weights defined 
by means of angles formed by those bilinear surfaces. Based on this concept, the 
second version of the methodology (BSSE) focuses in the combination of two bilinear 
surfaces into the surface regression model. The first surface is fitted to the available 
data points while the second incorporates, in an objective manner, the influence of an 
explanatory variable available at a considerable denser dataset. 

Both versions are illustrated using two approaches: (a) theoretical exploration, 
and (b) real world application in spatial interpolation of rainfall data using the surface 
elevation as explanatory variable where applicable. In the context of the second 
application, a comparison with the results of commonly used methodologies like: 
Inverse Distance Weighted, Spline, Ordinary Kriging and Ordinary Cokriging is 
performed (Goovaerts 1997, Goovaerts 2000, Burrough and McDonnell 1998). This 
comparison is implemented twice, firstly by using the entire dataset as input data and 
secondly, for validation purposes, the original dataset is divided in two subsets: one 
acts as input dataset while the second subset, that contains the remaining stations, is 
the validation dataset. 

THEORY AND DEFINITIONS 

The proposed mathematical framework suggests that fit is meant in terms of 
minimizing the total square error among the set of original points zi(xi, yi) for i = 1,…, 
n and the fitted bilinear surface, that in matrix form, can be written as: 

 p = ||z – z
 

||2 (1) 

where z = [z1,…, zn]
T is the vector of known applicates of the given data points with 

size n (the superscript T denotes the transpose of a matrix or vector) and 

z
 

 = [z1
 

,…,zn
 

]Τ is the vector of estimates with size n.  
A brief presentation of the method and its equations follows, while the details 

of the method including the algorithms and derivations of the equations are found in 
the companion paper (Malamos and Koutsoyiannis submitted). Let (cxl, cyk), l = 0, 
…, mx, k = 0, …, my, be a grid of (mx+1) × (my+1) points on the xy plane, so that 
the rectangle with vertices (cx0, cy0), (cxmx, cy0), (cx0, cymy) and (cxmx, cymy) contain 
all (xi, yi). For simplicity we assume that the points on both axes are equidistant, i.e. 
cxl – cxl–1 = δx and cyk – cyk–1 = δy.  

The general estimation function for point u on the (x y) plane, according to the 
Bilinear Smoothing Surface (BSS), method is: 

 zu


 = du (2) 

while according to the Bilinear Smoothing Surface with explanatory variable (BSSE) 
is: 

 zu


 = du + tu eu (3) 

where, du, eu are the values of the two bilinear surfaces at that point and tu is the 
corresponding value of the explanatory variable.  



The above equations can be more concisely written, for all given points zi(xi, 
yi) simultaneously, in the form: 

 z
 

 = Π d (4) 

and 

 z
 

 = Π d + Τ Π e (5) 

where d = [d0,…,dm]T is a vector of unknown applicates of the bilinear surface d, with 
size m+1 (m = (mx + 1) × (my + 1) – 1); e = [e0,…,em]T is a vector of unknown 
applicates of the bilinear surface e, with size m+1; T is a nn diagonal matrix with 
elements: 

 T = diag(t(x1, y1), …, t(xn, yn)) (6) 

with t(x1, y1), …, t(xn, yn) being the values of the explanatory variable at the given data 
points; and Π is a matrix with size n(m+1), whose ijth entry (for i=1, …,n; j=0, …m) 
is: 

 πij = 






 (cxl – xi) (cyk – yi)

δx δy
, when cxl–1 < xi  cxl and cyk–1 < yi  cyk

(cxl – xi) (yi – cyk–1)
δx δy

,  when cxl–1 < xi  cxl and cyk  yi <cyk+1

(xi – cxl–1) (yi – cyk–1)
δx δy

,  when cxl  xi < cxl+1 and cyk  yi < cyk+1

(xi – cxl–1) (cyk – yi)
 δx δy

,  when cxl  xi < cxl+1 and cyk–1 < yi  cyk

0, otherwise

  (7) 

The calculation of the unknown vectors d and e requires also the definition of 
matrices Ψx and Ψy  with size (m–1)(m+1) (for i=1, …,m–1 and j=0, …m) and ijth 
entry: 

 ψx i, j = 





2, when i=j and i–k(mx+1){1, mx+1}

–1,  when |i–j|=1 and i–k(mx+1){1, mx+1}

0, otherwise

 (8) 

where k = 0, …, my, while: 

 ψy i, j = 





2, when i=j and i–l(my+1){1, my+1}

–1, when |i–j|=1 and i–l(my+1){1, my+1}

0, otherwise

 (9) 

with l = 0, …, mx (note that Ψx and Ψy are identical when mx = my). 
In the case of BSS the solution that minimizes error, has the following form:  

  d = (ΠT Π + λx Ψx
Τ Ψx + λy Ψy

Τ Ψy)
–1 (ΠΤz)  (10) 

Likewise, in the case of BSSE the solution is: 









d

e
 = 






ΠT Π + λxΨx

Τ Ψx + λyΨy
Τ Ψy ΠT TΠ

ΠT ΤΠ ΠT ΤΤ ΤΠ + μxΨx
Τ Ψx + μyΨy

Τ Ψy

–1

 






ΠΤz

ΠΤ TΤz
 (11) 

The minimum number of m + 1 points required to solve equation (10) or (11) 
is 6, since the minimum number points needed to define the bilinear surfaces, is the 
number of points that define two consecutive planes oriented according to either x or y 
direction. Based on the above equations, we can estimate the applicate of any point 
that lies in the two-dimensional interval ([cx0, cxmx]  [cy0, cymy]) by using either one 
versions of the proposed methodology. 

CHOICE OF PARAMETERS 

The adjustable parameters required to implement each of the two versions of the 
methodology, can be estimated by transforming the smoothing parameters λ and μ in 
terms of tension: τλ and τμ, whose values are restricted in the interval [0, 1), for both 
directions (Malamos and Koutsoyiannis submitted). This transformation provides a 
convenient search in terms of computational time and is based on the generalized 
cross-validation (GCV - Craven and Wahba 1979, Wahba and Wendelberger 1980) 
methodology and symmetric linear smoothers (Buja et al. 1989; Carmack et al. 2012). 
Thus, for a given combination of segments mx, my, the minimization of GCV, results 
in the optimal values of τλx, τλy and τμx, τμy. This can be repeated for several trial 
combinations of mx, my values, until the global minimum of GCV is reached. 

RESULTS AND COMMENTS 

We present two applications, the first being synthesized for exploration purposes 
while the second corresponds to a real world problem, namely spatial interpolation of 
a rainfall field. 

Exploration application 

The first application is the implementation of the above presented versions of the 
methodology, namely BSS and BSSE, in interpolation - fitting to random data points 
obtained from the generating function (Fig. 1): 

 z(x, y) = (x + 2y – t)2 + (2x + y – t)2 + ε (12) 

where ε is an represents an intentionally added lognormal error with mean of 
logarithms 0 and standard deviation of logarithms 0.05. 

 



 

Fig. 1 Generating function, z, along with the twenty-two data points used for the purposes of the 
exploration application. 

 
Variable t depends on both x and y and acts as the explanatory variable in the 

case of interpolation with BSSE (Fig. 2): 

 t(x, y) = x e(y – 0.5x) (13)  

The main objective of this application, apart from illustrating the proposed 
methodology performance, is the investigation of the adjustable parameters variation 
and the confirmation that the proposed technique for acquiring the global minimum 
through the generalized cross-validation (GCV) satisfies the method’s requirements. 

In order to achieve this, we implemented both versions for different numbers 
of segments mx and my (1 ≤ mx ≤ 15 and 1 ≤  my ≤ 15, while m + 1 ≥ 6) using 22 
data points (i = 22), derived from equation (12). The size of the analysis grid was 
selected to be 0.05 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 0.5, resulting to a total of 231 points at 
which the generating function was estimated. 
 

 

Fig. 2 Explanatory function t(x, y) for the purposes of the exploration application. 



 

Interpolation using Bilinear Surfaces Smoothing (BBS) 

After the implementation of the iterative procedure for acquiring the global minimum 
of GCV as described previously, we obtained the optimal values of the four adjustable 
parameters: the number of intervals, mx, my, and the smoothing parameters τλx and 
τλy, as presented in Table 1: 

 

Table 1 BSS parameters optimal values and performance indices, for the exploration application. 

number of 
segments, mx 

number of 
segments, my 

τλx τλy MSE Global minimum GCV 

3 2 0.001 0.002 1.63×10–3 7.87×10–3 

 
The optimal value of the smoothing parameter τλx was the minimum allowed 

value used during the minimization procedure, suggesting that the optimal solution of 
the problem required that the difference of slopes between the consecutive segments 
of the bilinear surface according to x direction should be as small as possible. The use 
of a smaller number as lower limit for the smoothing parameters, did not significantly 
improve the results so for practical reasons the minimum value for the smoothing 
parameters was set to 0.001. 

Figure 3 presents the bilinear surface d acquired from the solution of equation 
(10), along x and y axes, by using the above presented parameters. The open circles 
represent the values of vector d, while the available data points are indicated with 
stars. The consistency to the mathematical framework is verified by the obvious 
difference of slopes between the consecutive segments of the bilinear surface 
according to both directions and also the fact that at least one data point is included in 
each one of the formed rectangles. 

 

  

Fig. 3 Bilinear surface d (circles) fitted to the 22 data points (stars) derived from function z (minimum 
GCV: mx = 3, my = 2). 

 



   

   

Fig. 4 Variation of the minimum GCV and of the corresponding MSE, versus the number of my, mx 
segments (global minimum GCV and MSE at mx = 3, my = 2). 

 
Figure 4 depicts the variation of the minimum GCV and the corresponding 

MSE versus all possible combinations of segments mx, my. The location of the global 
minimum for GCV is placed at mx = 3, my = 2, while minimum MSE is placed at 
mx = 7, my = 15. Also, Fig. 4 confirms that the proposed mathematical formulation 
ensures the presence of a single global minimum value of GCV according to equation 
(10) and therefore the applicability of the objective way to assess the optimal values 
of adjustable parameters, as it was previously noted. 

When GCV is minimized the two indices follow similar patterns, with the 
most characteristic one to be the variation along mx = my, where GCV’s small values 
are encountered. Also, the similarity along the patterns of the two indices along axis y, 
for optimal number of segments on the x axis (mx = 3, Fig. 5) is obvious and 



respectively similar are the patterns of the two indices along axis x, for optimal 
number of segments on the Y axis (my = 2, Fig. 6). 

 

  

Fig. 5 Variation of the minimum GCV and corresponding MSE values along with the variation of the 
smoothing parameters τλx, τλy, versus the number of segments, my, for the optimal number of segments 
mx (global minimum GCV: mx = 3, my = 2). 

Figures 5 and 6 present the variation of τλx and τλy optimal values along axis y, 
for optimal number of segments at x (mx = 3) and, likewise, the variation of τλx and τλy 
optimal values along axis x, for optimal number of segments at y (my = 2). Even 
though the scale is different, the pattern of τλy is similar to these of the error indices in 
the case of retaining a constant number of segments along axis x, while the pattern of 
τλx is similar to these of the error indices in the case of retaining a constant number of 
segments along axis y. 

This fact constitutes a direct analogy between the proposed methodology and 
the one-dimensional method by Koutsoyiannis (2000) and Malamos and 
Koutsoyiannis (2014) since the increase, beyond a certain point, of the segments’ 
number along one axis results in almost constant values of the smoothing parameter 
that refers to the opposite axis. On the other hand, the overall behaviour of the BSS 
method is different, due to the implementation of two-dimensional minimization 
procedure, as shown in Fig. 4. 
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Fig. 6 Variation of the minimum GCV and corresponding MSE values along with the variation of the 
smoothing parameters τλx, τλy, versus the number of segments, mx, for the optimal number of segments 
my (global minimum GCV: mx = 3, my = 2). 

Figure 7 presents the results obtained by the bilinear surface smoothing 
interpolation (BSS) method, using twenty-two data points (i = 22)  to estimate a total 
of 231 points derived from the generating function described by equation (12). Also, a 
graphical representation of equation (12) in terms of filled contours is incorporated in 
Fig. 7. 
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Fig. 7 Bilinear surfaces interpolation estimates of function z (symbols), along with the generating 
function. 

 
The performance indices presented in Table 2 confirm the good performance 

of the BSS method. Notable is the excellent modelling efficiency, EF (see Appendix 
A for definition) which was obtained initially with respect to the available data points 
and in a second case with respect to the entire data set, derived from the generating 
function described by equation (12). In both cases, EF exceeded the value of 0.99, 
which is very close to its maximum value, that is, 1. It is apparent that the estimates 
are almost indistinguishable from the generating function, which suggests that the 
error is negligible. 

 

Table 2 Values of performance indices used for the BSS evaluation. 

Number of points and 
origin of the  

evaluation dataset 
MBE MSE EF 

22  

(data points) 
0 1.63×10–3 0.998 

231 

(generating function) 
1.84×10–2 5.83×10–3 0.991 

 

Interpolation using Bilinear Surfaces Smoothing with the incorporation of 
explanatory variable (BSSE) 

Since the mathematical formulation presented above allows the incorporation of an 
explanatory data set, t(xi, yi), we utilized for this purpose 231 points derived from 
equation (13). These points formed a square grid with the same dimensions as the 
analysis grid. Consequently, we obtained 231 point estimates of the generating 
function. After the implementation of the iterative procedure for acquiring the global 
minimum of GCV as described previously, we obtained the optimal values of the six 
adjustable parameters: the number of intervals, mx, my, and the smoothing parameters 
λx, λy and μx and μy as presented in Table 3. 



The optimal values of the τλx and τλy smoothing parameters concerning bilinear 
surface d are similar to those of the previous case. The optimal value of the smoothing 
parameter τμy reached the maximum allowed value used during the minimization 
procedure, suggesting that the optimal solution of the problem required that the 
difference of slopes between the consecutive segments of the bilinear surface e 
according to y direction should be as large as possible.  

 

Table 3 BSSΕ parameters optimal values and performance indices, for the exploration application. 

number of 
segments, 

mx 

number of 
segments, 

my 
τλx τλy τμx τμy MSE 

Global 
minimum 

GCV 

4 2 0.001 0.006 0.769 0.99 2.41×10–4 3.70×10–3 

 
Figure 8 presents the bilinear surfaces d and e acquired from the solution of 

equation (11), along x and y axes, by using the above presented parameters. The open 
circles represent the values of vectors d and e. The consistency to the mathematical 
framework is verified by the obvious difference of slopes between the consecutive 
segments of the bilinear surfaces according to both directions. 

 

  
Fig. 8 Acquired bilinear surfaces d and e, so that z = d + t e fits the 22 data points derived from the 
generating function (minimum GCV: mx = 4, my = 2). 



 

  

Fig. 9 Bilinear surfaces interpolation estimates of function z (symbols), with the incorporation of the 
explanatory variable t, along with the generating function. 

 
Figure 9 depicts the 231 points obtained by the BSSE method, using twenty-

two data points (i = 22) against the generating function described by equation (12). 
Also, a graphical representation of equation (12) in terms of filled contours is 
incorporated in Fig. 9. 

The performance indices presented in Table 4 confirm the good performance 
of the BSSE method to incorporate the influence of the explanatory variable (Fig. 2) 
in the results. The negligible discrepancies between the true values and the estimates 
are mainly located in areas where the explanatory function t(x, y) has low values. 
Nevertheless, the overall method performance implies its capability to perform 
complicated interpolation tasks. The modelling efficiency (EF) is very high, similar 
to the previous example, exceeding 0.98. 

 

Table 4 Values of performance indices used for the BSSE evaluation. 

Number of points and 
origin of the  

evaluation dataset 
MBE MSE EF 

22  

(data points) 
0 2.41×10–4 1 

231 

(generating function) 
2.35×10–2 8.23×10–3 0.987 

 

Real world application 

For real world application we implemented both proposed versions of the 
methodology into spatial interpolation of over-annual rainfall. The objective of the 
application was: a) to verify the method’s applicability against a hydrological variable 
with significant correlation to an easily measurable, hence available at considerably 
higher resolution, explanatory variable, b) to verify the method’s versatility in terms 



of handling extensive datasets and c) to compare the results with commonly used 
methodologies like: Inverse Distance Weighted, Spline, Ordinary Kriging and 
Ordinary Cokriging (Goovaerts 1997, Goovaerts 2000, Burrough and McDonnell 
1998, Li and Heap 2008). The above methods form a representative set for 
comparisons of the Bilinear Surface Smoothing methodology as they range from the 
simple and deterministic Inverse Distance Weighted to the more complex and 
stochastic Cokriging. 

The study area was the region of Central Greece (Sterea Hellas; Fig. 10). The 
data consisted of the mean rainfall at a network of 71 meteorological stations, derived 
from all available measurements starting from 1992 and backwards until 1931 
(Christofides and Mamassis 1995). For the majority of the stations, the available 
timeseries were at least 30 years long. The analysis extend (mask) boundaries were 
defined by the coordinates of the outermost stations according to each one of the four 
cardinal directions. This was mandatory in order to ensure that the rainfall estimates 
adjacent to the boundaries of the study area are obtained from interpolation rather 
than extrapolation. 

Since spatial variability of precipitation, in over-annual scale, is influenced by 
orography (Hevesi et al. 1992a, 1992b, Goovaerts 2000) the topographic elevation 
can be used as explanatory variable for implementing the BSSE and Cokriging 
methodologies. The explanatory dataset was obtained from the Digital Elevation 
Model (DEM) SRTM Data Version 4.1 (Jarvis et al. 2008) and aggregated to a 2×2 
km square grid (Fig. 10) for practical and computational reasons, covering 
approximately an area of 23 920 km2 with 5980 points of known elevation. 
 

 

 

Fig. 10 Elevation map and meteorological stations of Central Greece (Sterea Hellas) 

 
The global minimum of GCV, for both cases, was reached by implementing 

both proposed methodologies for different numbers of segments mx and my (1 ≤ mx 
≤ 15 and 1 ≤  my ≤ 15, while m + 1 ≥ 6) and minimizing GCV for each one, by 
altering the adjustable parameters.  

Additionally, we assessed larger values of mx and my up to 30 segments in 
either direction (i.e. 16 ≤ mx ≤ 30 and 16 ≤  my ≤ 30), by setting the smoothing 
parameters to their minimum value (i.e. τλx = τλy = 0.001 and where applicable τμx = τμy 



= 0.001) in order to reduce the computational effort required to implement the GCV 
minimization procedure. This approach was based on the observations made by 
Koutsoyiannis (2000) and Malamos and Koutsoyiannis (2014), concerning the 
relation between large numbers of broken line segments and the minimum values of 
the smoothing parameters. This behaviour can be explained from the fact that 
increased numbers of bilinear surface segments contribute to the overall surface 
smoothness, thus acting as additional smoothing parameters. The results of the above 
procedure are presented in Table 5. 

 

Table 5 BSS and BSSE optimal parameter values and performance indices, for the rainfall 
interpolation example. 

Method 
number of 
segments, 

mx 

number of 
segments, 

my 
τλx τλy τμx τμy 

Global 
minimum 

GCV 

BSS 7 23 0.001 0.001 - - 6.19×104 

BSSE 4 8 0.965 0.04 0.946 0.606 4.96×104 

 
Inverse Distance Weighted (IDW), Spline, Ordinary Kriging (OK) and 

Ordinary Cokriking (OCK) were performed by means of ESRI’s ArcGIS 
environment. For the case of Spline interpolation, tension spline type (Franke 1982, 
Mitáš and Mitášová 1988) was implemented due to the smoothing term approach 
which is relevant, but not similar, to the proposed mathematical framework of bilinear 
surfaces interpolation. After investigation between several weight values, a weight 
value of 10 was utilized. According to literature, a spherical semivariogram was fitted 
using regression, in order to minimize the weighted sum of squares between 
experimental and model semivariogram values (Goovaerts 2000). The results were 
similar to those already presented in the study of Koutsoyiannis and Marinos (1995), 
since the occurring discrepancies between the cokriging implementations, were 
related to the use of different digital elevation models. 

Figure 11 presents the rainfall surface obtained from BSS along with the 
corresponding results from BSSE, while Fig. 12 presents the rainfall surfaces obtained 
from IDW, Spline, Ordinary Kriging and Ordinary Cokriging interpolation 
techniques. 

A clear west-east rainfall gradient is apparent in all cases, with high 
precipitation in the west due to the greater influence of the Ionian Sea (west of the 
area). The influence of the Aegean Sea (east of the area) is clear in the north-east part 
of the maps. 

The performance of each method (Table 6) was evaluated by using statistical 
criteria such as: mean bias error (MBE), mean absolute error (MAE), root mean 
square error (RMSE), mean square error (MSE) and modelling efficiency (EF) which 
is calculated on the basis of the relationship between the observed and predicted mean 
deviations (Willmott 1982, Vicente-Serrano et al. 2003, Li and Heap 2008). The 
relationships that provide them are depicted in Appendix A (Equations A1 to A5). 

 



Table 6 Values of the statistical criteria used to assess the performance of the spatial interpolation 
methods. 

Interpolation method 
MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

MSE EF 

BSS 0.0 129.3 172.9 3.0×104 0.82 

BSSE 0.0 140.1 185.7 3.4×104 0.80 

IDW –0.2 5.3 9.4 8.8×101 1.00 

Spline 3.5 11.8 18.4 3.4×102 1.00 

Ordinary Kriging 1.5 70.3 88.7 7.9×103 0.95 

Ordinary Cokriging 3.5 86.5 110.7 1.2×104 0.93 

 
From Table 6 it is apparent that IDW, Spline and both kriging methods, 

according to the statistical criteria used, outperform the bilinear surface smoothing 
methods, apart from the MBE criterion. This is not a surprise because: 
(a) Kriging, from construction, minimizes the MSE.  
(b) IDW is an exact method of interpolation, so its results respect the data points 

exactly.  
(c) Spline is forced to pass “not too far” from the data points (Burrough and 

McDonnell 1998).  
Nevertheless, the results of both bilinear surface smoothing methods are very 

satisfactory.  
 



 
Fig. 11 Rainfall maps (mm) produced by Broken Surface Smoothing (BSS) and Broken Surface 
Smoothing with explanatory variable (BSSE). 

 
Daly et al. 2002, emphasized that the human factor, in terms of expert 

knowledge on the spatial patterns of climate in a specific region, is capable of 
enhance, control, and parameterize computer based interpolation techniques. Based on 
that principle, our interpretation of rainfall spatial patterns (Fig. 11, 12) suggests that 
both cases of bilinear surface smoothing respect in a more efficient way the 
dependence of rainfall on the west-east gradient and the elevation (with increased 
elevation, rainfall increases as happens in reality). 

Also, the above statistical criteria performance may not be representative with 
respect to the validity of the interpolation results in other locations, except for those 
incorporated in the interpolation procedure. So, an alternative technique was 
implemented for the evaluation of the bilinear surface smoothing methods efficiency, 
in terms of performing validation between two subsets of the available data. The first 
acts as input to each one of the four interpolation methods while their outcome is 
compared against the second subset.  

In this context, while keeping the same analysis extent and boundaries, we 
divided randomly, the 71 meteorological stations network of the study area, into a 
subset that comprised 29 meteorological stations and acted as input dataset, while the 
second subset contained the remaining 42 stations and acted as validation dataset. The 
implementation of the interpolation procedures followed the previously presented 
approach and the results concerning BSS and BSSE, are presented in Table : 



 

Table 7 BSS and BSSE parameters optimal values and performance indices, for the rainfall 
interpolation example validation procedure. 

Method 
number of 
segments, 

mx 

number of 
segments, 

my 
τλx τλy τμx τμy 

Global 
minimum 

GCV 

BSS 13 14 0.01 0.01 - - 5.68×104 

BSSE 13 14 0.697 0.01 0.845 0.913 3.20×104 

 
 



(a) 

(b) 

(c) 

(d) 

Fig. 12 Rainfall maps (mm) produced by (a) IDW, (b) Spline, (c) Ordinary Kriging (OK) and (d) 
Ordinary Cokriging (OCK). 



 
Figure 13 presents the rainfall surface obtained from BSS methodology along 

with the corresponding results from BSSE methodology, while Fig. 14 presents the 
rainfall surfaces obtained from IDW, Spline, Ordinary Kriging and Ordinary 
Cokriging interpolation techniques.  
 

 
Fig. 13 Rainfall maps (mm) produced by Broken Surface Smoothing (BSS) and Broken Surface 
Smoothing with explanatory variable (BSSE) for the validation procedure (29 of 71 meteorological 
stations available). 



(a) 

(b) 

(c) 

(d) 

Fig. 14 Rainfall maps (mm) produced by (a) IDW, (b) Spline, (c) Ordinary Kriging (OK) and (d) 
Ordinary Cokriging (OCK) for the validation procedure (29 of 71 meteorological stations available). 



 

Visual interpretation of both figures indicates that the broken surface 
smoothing methodology produced satisfactory results even though a limited amount 
of data was available. Especially the BSSE version of the methodology, as shown in 
Fig. 13, produced a very plausible interpolation surface that respects the variation due 
to orography and the west-east rainfall gradient, in contrast to IDW, Spline and both 
kriging methods. 

In order to establish how the proposed interpolation methodology preserves 
the stochastic characteristics (first and second statistical moments) of the interpolated 
field, we present in Table 8 the mean values along with the standard deviations of the 
results acquired by the six methods against the stations data, for the validation case.  
 

Table 8 Mean value and standard deviation of the results of the spatial interpolation methods against 
the stations data, in the validation case. 

 
Mean value 

(mm) 
Standard deviation 

(mm) 

Stations data 1077.6 429.0 

BSS 907.7 395.2 

BSSE 987.1 379.4 

IDW 1021.1 259.9 

Spline 1008.0 351.7 

Ordinary Kriging 1026.5 316.1 

Ordinary Cokriging 1025.6 316.5 

 
All interpolation methods present negative bias both in mean and standard 

deviation, with the BSS and BSSE corresponding to the highest bias for the mean and 
the lowest bias for the standard deviation, thus representing the variability of the 
rainfall field better than the other methods. 

Additionally, Table 9 summarizes the values of the statistical criteria acquired 
with respect to the second subset. BSSE clearly outperformed IDW, Spline and both 
kriging methods in estimating the mean annual rainfall measured at the 42 
meteorological stations, apart from the MBE criterion. BSS outperformed Spline and 
both kriging methods and performed similarly to IDW, apart from the MBE criterion.  

 

Table 9 Values of the statistical criteria used to assess the performance of the spatial interpolation 
methods, in the validation case. 

Interpolation method 
MBE 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

MSE EF IPE3 

BSS –170.0 255.0 323.0 10.4×104 0.42 0.86 

BSSE –90.5 195.2 265.5 7.1×104 0.61 0.62 

IDW –56.5 244.3 318.1 1.2×105 0.44 0.74 

Spline –69.7 262.9 346.3 1.0×105 0.33 0.82 

Ordinary Kriging –52.0 263.4 345.4 11.9×104 0.34 0.82 

Ordinary Cokriging –51.2 266.5 348.5 12.1×104 0.32 0.83 



 
Apart from the above presented criteria, an inter-comparison technique in 

terms of an Ideal Point Error (IPE) which is calculated by identifying the ideal point 
to a multi-dimensional space that each model should be evaluated against 
(Domínguez et al. 2011), was implemented in order to demonstrate the performance 
of the proposed methodology against the other four methods. The comparison was 
based on the use of a combined evaluation vector comprising from three traditional 
metrics, as shown in Appendix A (Equation A6). The acquired values of the IPE3 
criterion presented in Table 9 verify that BSSE outperformed all other methods, while 
BSS performed similarly to them.  

Based on the above discourse, it is clear that the Bilinear Surface Smoothing 
methodology is able to perform complex interpolation tasks even in cases of scarce 
data sets. 

CONCLUSIONS 

A non-parametric spatial interpolation methodology (BSS) which 
approximates a surface that may be drawn for the available data points with 
consecutive bilinear surfaces with known break points and adjustable weights is 
utilized to perform various interpolation tasks. Additionally, an alternative to the main 
methodology (BSSE) that incorporates, in an objective manner, an explanatory 
variable by combining two bilinear surfaces into the same regression model, was 
implemented. The mathematical framework, the computational implementation and 
details concerning both versions of the methodology are discussed in a companion 
paper (Malamos and Koutsoyiannis submitted).  

Both versions were illustrated and tested against two applications, a theoretical 
one with synthetic data from a known generating function and a real world example: 
the spatial interpolation of rainfall data with or without the use of surface elevation, as 
explanatory variable.  

The interpolations performed to the synthetic data were successful by all 
means, either with respect to the available data points or with respect to the entire data 
set, according to the performance indices used, especially for BSS. The behaviour of 
the proposed mathematical framework was analogous to the single dimension 
methods presented by the authors in previous studies. This is clearly demonstrated by 
the variation patterns of the minimum GCV and corresponding MSE values when 
plotted against the number of segments of the bilinear surface. 

Also, a comparison to the results of commonly used methodologies like IDW, 
Spline, Ordinary Kriging and Ordinary Cokriging was conducted. Additionally, for 
validation purposes, the original dataset was divided into two subsets. One served as 
input dataset, while the second subset that contained the remaining stations was the 
validation dataset. In every case, the methods’ efficiency to perform interpolation 
between data points that are interrelated in a complicated manner was confirmed.  

The applicability and consistency of the mathematical framework against not 
only dense but also scarce data sets, is supported by the fact that the method’s 
resolution (number of consecutive bilinear surfaces) does not necessarily has to 
coincide with that of the given data points, but it can be either finer or coarser, 
depending on the specific requirements of the problem of interest. This was verified 
by the validation procedure presented in the real world case study, in which BSSE 
gave very good results outperforming those of the other interpolation methods in 
many aspects.  



Given the simplicity of the approach, the overall performance of the proposed 
mathematical framework is quite satisfactory, indicating its applicability for diverse 
scientific and engineering tasks related to hydrology and beyond, without the need to 
make arbitrary decisions on parameters. The approach seems promising in all respects 
but further research and applications need to be conducted to investigate the strengths 
and weaknesses of the method. 

ACKNOWLEDGMENT 

We wish to kindly acknowledge the Associate Editor Alin Carsteanu, the eponymous 
reviewer Efraín Domínguez and the anonymous reviewer for their thoughtful and 
thorough reviews, which have considerably helped us to improve our manuscript 
during revision. 

REFERENCES 

Buja, A., Hastie, T., and Tibshirani, R., 1989. Linear Smoothers and Additive Models. 
The Annals of Statistics, 17 (2), 453–510. 

Burrough, P.A. and McDonnell, R.A., 1998. Principles of Geographical Information 
Systems. Oxford University Press, Oxford, 333 pp. 

Carmack, P.S., Spence, J.S., and Schucany, W.R., 2012. Generalised correlated cross-
validation. Journal of Nonparametric Statistics, 24 (2), 269–282. 

Christofides, A., and N. Mamassis, Hydrometeorological data processing, Evaluation 
of Management of the Water Resources of Sterea Hellas - Phase 2, Report 18, 
268 pages, Department of Water Resources, Hydraulic and Maritime 
Engineering - National Technical University of Athens, Athens, 
September 1995. 

Craven, P. and Wahba, G., 1979. Smoothing noisy data with spline functions. 
Numerische Mathematik, 31 (4), 377–403. 

Daly, C., Gibson, W., Taylor, G., Johnson, G., and Pasteris, P., 2002. A knowledge-
based approach to the statistical mapping of climate. Climate Research, 22, 
99–113. 

Davis C., J., 1986. Statistics and Data Analysis in Geology, 2nd edition. John Wiley & 
Sons Canada, Ltd. 

Domínguez, E., Dawson, C.W., Ramírez, A., and Abrahart, R.J., 2011. The search for 
orthogonal hydrological modelling metrics: a case study of 20 monitoring 
stations in Colombia. Journal of Hydroinformatics, 13, 429. 

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford 
University Press, New York, 483 pp. 

Goovaerts, P., 2000. Geostatistical approaches for incorporating elevation into the 
spatial interpolation of rainfall. Journal of Hydrology, 228 (1-2), 113–129. 

Franke, R., 1982. Smooth interpolation of scattered data by local thin plate splines. 
Computers & Mathematics with Applications, 8 (4), 273–281. 

Hartkamp, A.D., K. De Beurs, A. Stein, and J.W. White. 1999. Interpolation 
Techniques for Climate Variables. NRG-GIS Series 99-01. Mexico, 
D.F.: CIMMYT  

Hengl, T., Heuvelink, G.B.M., Rossiter, D.G., 2007. About regression-kriging: From 
equations to case studies. Computers & Geosciences 33 (10), 1301-1315. 

Hevesi, J.A., Istok, J.D., and Flint, A.L., 1992. Precipitation Estimation in 
Mountainous Terrain Using Multivariate Geostatistics. Part I: Structural 
Analysis. Journal of Applied Meteorology, 31 (7), 661–676. 



Hevesi, J.A., Flint, A.L., and Istok, J.D., 1992. Precipitation Estimation in 
Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps. 
Journal of Applied Meteorology, 31 (7), 677–688. 

Jarvis, A., H.I. Reuter, A. Nelson, E. Guevara, 2008, Hole-filled SRTM for the globe 
Version 4, available from the CGIAR-CSI SRTM 90m Database 
(http://srtm.csi.cgiar.org) 

Koutsoyiannis, D., and P. Marinos, Final Report of Phase B, Evaluation of 
Management of the Water Resources of Sterea Hellas - Phase 2, Report 32, 95 
pages, Department of Water Resources, Hydraulic and Maritime Engineering 
– National Technical University of Athens, Athens, September 1995. 

Koutsoyiannis, D., 2000. Broken line smoothing: a simple method for interpolating 
and smoothing data series. Environmental Modelling & Software 15 (2), 139-
149. 

Li, J. and Heap, A.D., 2008. A Review of Spatial Interpolation Methods for 
Environmental Scientists. Geoscience Australia. GPO Box 378, Canberra, 
ACT 2601, Australia: Geoscience Australia. 

Loague, K. and Green, R.E., 1991. Statistical and graphical methods for evaluating 
solute transport models: Overview and application. Journal of Contaminant 
Hydrology, 7 (1-2), 51–73. 

Malamos, N. and Koutsoyiannis, D., 2014. Broken line smoothing for data series 
interpolation by incorporating an explanatory variable with denser 
observations:Application to soil-water and rainfall data. Hydrological Sciences 
Journal doi:10.1080/02626667.2014.899703. 

Malamos, N. and Koutsoyiannis, D., (submitted). Bilinear surface smoothing for 
spatial interpolation with optional incorporation of an explanatory variable. 
Part 1: Theory, Hydrological Sciences Journal. 

Mitáš, L. and Mitášová, H., 1988. General variational approach to the interpolation 
problem. Computers & Mathematics with Applications, 16 (12), 983–992. 

Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual 
models part I - A discussion of principles. Journal of Hydrology, 10 (3), 282–
290. 

Vicente-Serrano, S., Saz-Sánchez, M., and Cuadrat, J., 2003. Comparative analysis of 
interpolation methods in the middle Ebro Valley (Spain): application to annual 
precipitation and temperature. Climate Research, 24, 161–180. 

Wahba, G., Wendelberger, J., 1980. Some New Mathematical Methods for 
Variational Objective Analysis Using Splines and Cross Validation. Monthly 
Weather Review 108 (8), 1122-1143. 

Wang, H., Liu, G. and Gong, P., 2005. Use of cokriging to improve estimates of soil 
salt solute spatial distribution in the Yellow River delta. Acta Geographica 
Sinica, 60(3): 511-518. 

Willmott, C.J., 1982. Some Comments on the Evaluation of Model Performance. 
Bulletin of the American Meteorological Society, 63 (11), 1309–1313. 



APPENDIX A 

STATISTICAL CRITERIA 

The statistical criteria used for the evaluation of the methodologies performance are: 
mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE), 
mean square error (MSE) and modelling efficiency (EF) (Nash and Sutcliffe 1970, 
Willmott 1982, Loague and Green 1991). Willmott (1982) suggests that RMSE and 
MAE are among the “best” overall measures of model performance, as they 
summarize the mean difference in the units of observed and predicted values. The 
problem is that RMSE provides a measure of model validity that places a lot of 
weight on high errors, whereas MAE is less sensitive to extreme values. The 
relationships that provide them are: 
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where n is the number of observations, Oi are the observed values, Pi are the predicted 
values, while Ō is the mean of the observed values. The optimum (minimum) for the 
MBE, MAE, RMSE, MSE statistics is 0, while the optimum (maximum) for EF is 1. 

Ideal Point Error 

The Ideal Point Error (IPE) (Domínguez et al. 2011) measurement is calculated by 
identifying the ideal point, up to a five-dimensional space, that each model should be 
evaluated against. For the purposes of the present study, the three-dimensional IPE3 is 
implemented by normalizing RMSE, MBE and the coefficient of determination (R2), 
so the individual IPE3 for each measure ranges from 0 for the best model to 1 for the 
worst.  

The coordinates of the ideal point are: RMSE = 0, R2 = 1, MBE = 0. IPE3 
measures how far a model is from this ideal point by the relationship: 

 IPE3 = 
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In equation A6, i represents each of the models under investigation. 


