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Abstract 

In this paper, we present a methodology to analyze processes of double cyclostationarity (e.g. daily and seasonal). This method 
preserves the marginal characteristics as well as the dependence structure of a process (through the use of climacogram). It 
consists of a normalization scheme with two periodicities. Furthermore, we apply it to a meteorological station in Greece and 
construct a stochastic model capable of preserving the Hurst-Kolmogorov behaviour. Finally, we produce synthetic time-series 
(based on aggregated Markovian processes) for the purpose of wind speed and energy production simulation (based on a 
proposed industrial wind turbine). 
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1. Introduction 

Several methods exist for dealing with processes of single periodicity, with most of them preserving the marginal 
characteristics of the process and assuming a short-range dependence structure (cf. [1]). However, neglecting a 
possible long-range dependence, i.e. Hurst-Kolmogorov (HK) behaviour, could lead to unrealistic predictions and 
wind load situations, causing some impact on the energy production and management of renewable sources. Here, 
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we focus on the stochastic nature of wind speed in an hourly scale. The most challenging problem of wind speed 
simulation is the internal periodicities (e.g. daily and seasonal cycle), a common characteristic of 
hydrometeorological processes. In this paper, we apply the methodology presented in [1], which involves the 
analysis of a monthly-scale process, but with preserving both daily and seasonal periodicity. Particularly, assuming 
that the process has a double cyclostationarity, we first normalize each cyclostationary variable, using a scheme of 
double periodicity with three parameters. Then, we analyze the stochastic structure of the wind process and we 
construct a model based on the climacogram, a stochastic tool with many advantages in stochastic interpretation and 
model building [2,3]. Additionally, we produce synthetic time-series for the purpose of wind speed and energy 
production simulation (based on a proposed industrial wind turbine). Finally, we apply the methodology to the 
meteorological station of Larissa (www.hnms.gr) in the area of Thessaly (Greece), with latitude 22.417o, longitude 
39.633o and elevation +74 m. This is one of the older stations in Greece and includes up to 75 years of measurements 
in an hourly scale. Its marginal mean wind speed is estimated as 1.7 m/s and its standard deviation as 2.71 m/s (for 
more information see in [2]). 

In the next section, we describe the normalization method, we show how to analyze the stochastic structure of a 
normalized process and how to generate synthetic time-series based on aggregated Markovian processes. Finally, we 
produce a one week hourly wind speed time-series (that preserves the marginal characteristics as well as the 
dependence structure of the examined process) and we estimate the hypothetically produced energy from a wind 
turbine. Note that underlined symbols denote random variables and the overline symbol (^) denotes estimation. 

2. Stochastic analysis of the wind speed process 

2.1. Cyclostationarity 

One of the most common characteristics of hydrometeorological processes (in a sub-climatic scale) is the double 
periodicity, i.e. the continuous change of the process’ statistical properties in both daily and seasonal scales. Several 
techniques have been developed to model this behaviour (a brief description can be seen in [1]). However, most of 
them can capture the marginal characteristics of the process assuming a short-range dependence structure between 
daily and seasonal variables. A method to model a single periodicity with any type of internal dependence structure 
is presented in [1], where the process is assumed to be cyclostationary in seasonal scale (e.g. monthly scale). The 
main feature of this method is the application of a normalization scheme (derived from the principle of maximum 
entropy) to all seasonal variables, capturing in this way both the marginal properties as well as the dependence 
structure of the process (zero values are excluded from the analysis since the wind process cannot exhibit zero 
speeds). Here, we apply this scheme but with also including the daily periodicity since we are interested in sub-daily 
(e.g. hourly) scale simulation. The normalization scheme is the following: 
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where ~N(0,1) is the transformed process of X, c and c are the mean and standard deviation for each 
cyclostationary variable (i.e. one for each hour and month), and gc is a parameter related to the distribution tail of the 
cyclostationary process. 

From Fig. 1, we observe that the cyclostationary mean value of the process can be well described by a periodic 
exponential function for the daily scale and with a simple cosine function for the monthly scale (performance of 
these models to the Larissa station can be also seen in [2]). Also, we observe that the standard deviation can be well 
modeled by two simple periodic functions and that gc significantly varies only within the daily scale and thus, can be 
described by a single cosine function: 
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where t denotes time (h), i are dimensionless coefficients, Th equals the annual time duration in hours and Td=24 
h. For the Larissa station the coefficients i are calculated (with fitting R2 coefficient around 95% for all cases) as: 

1=0.463, 2=0.177, 3=0.6, 4=0.07, 5=-0.1, 6=0.738, 7=0.217 and 8=0.541. 
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dc

Fig. 1. (a) fluctuation of hourly mean wind speed for each month; (b) fluctuation of hourly wind speed standard deviation for each month; (c) 
fluctuation in a monthly scale of both mean and standard deviation of hourly wind speed (hourly-averaged); (d) fluctuation in a hourly scale of 

parameter gc (monthly-averaged).

2.2. Stochastic structure 

By normalizing the process, we have no longer effects of the internal periodicities to the stochastic structure of 
the process and thus, we can now proceed to the estimation of the latter. There are several stochastic tools available 
for the analysis of the dependence structure of a process (e.g. autocovariance, power spectrum, variogram). Based on 
the analysis of [3], we choose to use the climacogram (i.e. plot of variance of the mean aggregated process vs. scale, 
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The cosine function in the exponent of Equation (2), should include an extra parameter a0 related to its phase and should be re-written as:

Exp[-Cos[2π/Td*(t+α0)]]

where α0 =3.5 h for this study. 

Special thanks to Ilias Deligiannis for spotting this typo.



 Panayiotis Dimitriadis and Demetris Koutsoyiannis  /  Energy Procedia   76  ( 2015 )  406 – 411 409

cf. [4]). It has been shown that for simple processes, such as Markovian, HK and combinations thereof, the latter 
stochastic tool often outperforms the aforementioned tools in terms of smaller statistical uncertainty. Furthermore, it 
has a plethora of advantages in terms of stochastic analysis (e.g. in determining the Hurst coefficient) and model 
building (e.g. it has simple and analytical expressions for the expected value of the process). The climacogram 
definition, classical estimator and expected value are shown in the equations below. 
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where  is the continuous-time climacogram (in m2/s2), m is the continuous-time scale (in h),  is the sampling 
time interval (in our analysis equals 1 h), n is the total number of observations and k is the discrete-time scale 
(dimensionless). 

In Fig. 2, we observe that the empirical (from the normalized process) climacogram exhibits a Markovian decay 
at small scales and an HK behaviour at large ones (similar observations in the wind process are derived in [3]). Here, 
we choose to fit a Markovian model (to control the small scales) and an HK one for the larger scales (shown in the 
equation below), by assuming that the empirical climacogram represents the expected value of the process. The best 
fitted parameters are estimated as: M=6 m2/s2, q=0.05 h, HK=0.1 m2/s2 and H=0.75: 
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Fig. 2. (a) qq-plot of standardized and normalized time-series of the 1st hour of the day of the 1st month (where w denotes wind speed); (b) 
continuous-time climacograms for a random (H=0.5) process, empirical (standardized and normalized) climacograms from the analysis of the 

Larissa station, the adapted for bias climacogram of the HK and Markovian fitting model to the empirical normalized climacogram as well as the 
continuous-time model used for the stochastic generation based on the aggregated Markovian process (described in section 2.3).

2.3. Stochastic generation and application in energy production simulation 

For the stochastic generation we choose the methodology presented in [3]. We produce synthetic HK Gaussian 
distributed time series based on an aggregation of Markovian processes: 
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whose parameters ql are connected to each other in a pre-defined way (parameters l can be calculated analytically 
following the analysis of [3]), particularly: 
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where p1 and p2 are parameters, which can be calculated by minimizing the residouble between the modeled and 
aggregated-Markovian processes. For the chosen HK process and for n 106, we choose to generate four Markovian 
processes, with the best fit corresponding to p1=0.113 and p2=0.099 (Fig. 2). 

Hence, we can generate a N(0,1) process with the desired stochastic structure and then, by applying the inverse 
normalization scheme described in section 2.1, we can produce a time-series with the same statistical characteristics 
as the original one, for the purpose of simulation (note that we set all negative synthetic values to zero). In Fig. 3, we 
illustrate a weekly time-window of generated hourly wind speed with the same stochastic structure and seasonality 
properties of the Larissa station. Furthermore and for illustration purposes, we assume a reference wind speed (i.e. 
10 min mean wind speed at hub height with a 50-year return period) equal to 42.5 m/s and a larger annual average 
wind speed of 10 m/s. Based on the latter specifications and on the IEC-61400 standards [5], we can install a wind 
turbine generator of class II, with an industrial solution of ENERCON E-82 (cf. [2]). Finally, we show in Fig. 3 the 
simulation of the energy production based on the turbine’s power curve. 
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Fig. 3. (a) wind turbine power curve of ENERCON E-82 (enercon.de); (b) a weekly-window of hourly wind speed simulation and the 
corresponding energy production from the installed wind turbine (where w denotes wind speed).

3. Conclusions 

In this paper, we present a methodology for dealing with processes of double cyclostationarity (e.g. daily and 
seasonal). Most existing methodologies preserve the marginal characteristics and assume a process with a short-
range dependence structure. The present method is based on a normalization scheme with two periodicities and it is 
more appropriate for the wind speed process. Furthermore, we describe how to analyze the stochastic structure of a 
normalized process with the use of climacogram, a stochastic tool with many advantages in stochastic interpretation 
and model building. Also, we construct a stochastic model capable of preserving an HK behaviour and we produce 
synthetic time-series (based on aggregated Markovian processes) for the purpose of simulation. Finally, we apply the 
above to a meteorological station in Greece and we illustrate an example of simulation of wind speed and energy 
production (based on a proposed industrial wind turbine).
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