A global survey on the seasonal variation of the marginal distribution of daily precipitation

3 Simon Michael Papalexiou and Demetris Koutsoyiannis

4 Department of Water Resources, Faculty of Civil Engineering, National Technical University of
5 Athens, Heroon Polytechneiou 5, GR-157 80 Zographou, Greece (smp@itia.ntua.gr)

6 Abstract

7 To characterize the seasonal variation of the marginal distribution of daily precipitation, it is 8 important to find which statistical characteristics of daily precipitation actually vary the most 9 from month-to-month and which could be regarded to be invariant. Relevant to the latter issue is 10 the question whether there is a single model capable to describe effectively the nonzero daily 11 precipitation for every month worldwide. To study these questions we introduce and apply a 12 novel test for seasonal variation (SV-Test) and explore the performance of two flexible 13 distributions in a massive analysis of approximately 170,000 monthly daily precipitation records 14 at more than 14,000 stations from all over the globe. The analysis indicates that: (a) the shape 15 characteristics of the marginal distribution of daily precipitation, generally, vary over the 16 months, (b) commonly used distributions such as the Exponential, Gamma, Weibull, Lognormal, and the Pareto, are incapable to describe "universally" the daily precipitation, (c) exponential-tail 17 18 distributions like the Exponential, mixed Exponentials or the Gamma can severely underestimate 19 the magnitude of extreme events and thus may be a wrong choice, and (d) the Burr type XII and 20 the Generalized Gamma distributions are two good models, with the latter performing 21 exceptionally well.

- 22 Keywords: daily precipitation, seasonal variation, spatial variation, marginal distribution,
- 23 Generalized Gamma distribution, Burr Type XII distribution

24 **1. Introduction**

25

"O, wind, if winter comes, can spring be far behind?"—P.B. Shelley

26 Most geophysical processes exhibit seasonal variation, which implies an underlying regular 27 pattern, which potentially enables a degree of predictability, utilizing the periodic changes of the 28 process's coarse behavior with time. This is exactly why it is important to correctly characterize 29 the seasonal variability of geophysical processes. Among those, precipitation is one of the most 30 important since it affects human lives significantly. Seasonality does not necessarily refer to the 31 four standard seasons of the temperate zones, but it generally describes the within year 32 variability. An effective scale to characterize seasonality is the monthly scale. Generally, 33 planning and management of water resources systems, particularly those involving water supply 34 (e.g. for irrigation) must take seasonality into account.

35 Precipitation may be represented as a stochastic process with two components: its marginal 36 probability distribution and its dependence structure. We can reasonably expect these 37 components to vary periodically if we study precipitation at any subannual time scale. 38 Furthermore, it is rational to assume that the daily time scale is the finest time scale in which the 39 seasonality could be studied without complications, because precipitation at subdaily scales may 40 also be affected by earth's daily rotation (the daily cycle). In practice, estimating and trying to 41 reproduce the statistical characteristics of precipitation on a daily basis can be a laborious task 42 and, most importantly, can have questionable reliability as the estimation of the various 43 characteristics will be based on small samples. For this reason, daily precipitation is typically 44 studied and modeled on a monthly basis assuming that within a specific month its statistical 45 characteristics remain essentially invariant. Consequently, the daily precipitation process can be 46 decomposed into 12 different processes with fixed month-to-month correlations and fixed 47 monthly marginal distribution. Here we are not concerned with the autocorrelation structure but48 we focus on the monthly variation of the marginal distribution of the daily precipitation.

49 The marginal distribution of daily precipitation belongs to the so-called mixed type 50 distributions and comprises two parts: a discrete part describing the probability dry and 51 mathematically expressed as a probability mass concentrated at zero, and a continuous part 52 spread over the positive real numbers describing probabilistically the amount or the intensity of 53 nonzero precipitation. The probability dry, in general, can be easily assessed from empirical data 54 as the ratio of the number of dry days over the total number of days, while the continuous part is 55 usually modeled by a parametric continuous distribution fitted to nonzero values. Yet this 56 distribution is not unique and in practice, as a literature review reveals, various distributions have 57 been used for the nonzero daily precipitation. For example the Exponential distribution [e.g., 1,2], mixed Exponentials [e.g., 3–5], the Gamma distribution [e.g., 6–8], the Weibull distribution 58 59 [e.g., 9,10], the Lognormal distribution [e.g., 9,11], mixed Lognormals [12], power-type 60 distributions like the two-, three- and four-parameter Kappa distributions [13–16], generalized 61 Beta distributions [17], as well as the Generalized Pareto [e.g., 18] for peaks over threshold, and 62 probably many more.

A question that can be raised based on the aforementioned studies and on many more is whether or not all of these distributions, some completely different with each other in structure, are indeed suitable for describing the probability of non-zero daily precipitation or they have prevailed and become popular for reasons such as simplicity. Additionally, most of these studies are of local character, i.e., they are based on the analysis of a limited number of precipitation records and from specific areas of the world. The exceptions are very few, e.g. in a study by Papalexiou and Koutsoyiannis [19] daily precipitation was analyzed in more than 10,000 stations 70 worldwide. In practice, in most cases precipitation in modeled using exponential-type 71 distributions like the Exponential distribution, the Gamma or mixed Exponentials. These, 72 however, might not be adequate if the actual distribution of nonzero precipitation has a heavier 73 tail than those light tail distributions and consequently may severely underestimate the 74 magnitude and the frequency of extreme events. Actually, two recent studies [20,21], where 75 daily precipitation extremes were analyzed in more than 15,000 stations worldwide, revealed that 76 most of the records cannot be described by exponential-tail distributions but rather by 77 distributions with heavier tails.

78 In this study the seasonal variation of the marginal distribution function of daily 79 precipitation is analyzed to find which statistical characteristics of daily precipitation actually 80 vary the most from month to month and which could be regarded to be invariant. Relevant to the 81 latter issue is the question whether there is a single model capable to describe effectively the 82 nonzero daily precipitation for every month and at every area of the world. Obviously these 83 questions cannot be answered by local analyses. Therefore, here we perform a massive analysis 84 approximately at 170,000 monthly daily precipitation records from more than 14,000 stations 85 from all over the globe.

86 **2.** The data

The original database we use here is the Global Historical Climatology Network-Daily database (version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily) which comprises thousands of daily precipitation records from stations all around the globe. Nevertheless, we use only a part of these records as many of them are very short in length, contain a large percentage of missing values, or have values of questionable accuracy which are assigned with various quality flags (details on quality flags can be found in the website given above). For these reasons and in order to create a robust subset of records with ensured quality we chose only those having: (a) record length longer than 50 years, (b) missing values less than 20% and, (c) values assigned with quality flags less than 0.1%. As an additional measure to ensure the quality of the data we deleted all values assigned with flags "G" (failed gap check) or "X" (failed bounds check) as these flags are used for unrealistically large values. Fortunately, only 594 records in total had such values and typically no more than one or two values per record. The resulting subset comprises 15,137 stations.

100 Although this study concerns the monthly daily precipitation we analyze also the daily 101 precipitation of all months as in some cases, especially for design purposes, we are not interested 102 about the month that an event occurs but just on its exceedance probability or else on its return 103 period. In this case monthly daily values can be merged and treated as represented by a single 104 random variable (note that the term "daily precipitation" refers to daily precipitation values of all 105 months while the term "monthly daily precipitation" refers to the daily precipitation values of 106 individual months). From each station we formed 13 different records, one for all daily values 107 and 12 for the monthly daily values, resulting in a total of 196,781 different records. 108 Nevertheless, some months for stations located in very dry areas have very few nonzero 109 precipitation values or even none so that estimation of the various important statistics would be 110 highly uncertain or even impossible (e.g., estimation of L-skewness needs at least three values). 111 To overcome this problem we constrained the minimum sample size of monthly nonzero 112 precipitation values; so among the 15,137 records initially chosen we finally selected those 113 having at least 20 nonzero values for each month resulting in a total of 14,157 stations and 114 consequently 169,884 monthly daily records were formed. The locations of these stations and 115 their corresponding lengths in years are given in the map of Figure 1. Note that in some areas the

116 map cannot provide the clear picture of the record length distribution. For example in the USA, 117 the network of stations is very dense and inevitably points overlap, so that, below the layer of 118 points representing high record lengths, other points exist representing smaller records lengths.

119 **3. Seasonal variation**

120 **3.1** Statistics studied

121 To assess the seasonal variation of daily precipitation we study representative statistics of the 122 marginal distribution on a monthly basis. Additionally, in order for the study to be more 123 complete as well as for comparison purposes we estimated these statistics for the daily 124 precipitation values of all months too (indicated with "All" in the figures). Particularly, we 125 studied: (a) the probability dry, (b) the mean value, (c) the L-variation, and (d) the L-skewness. 126 The probability dry expresses the discrete part of the marginal distribution and is simply 127 estimated as the ratio of dry days to total days. The latter three are statistics for the continuous 128 part of the marginal distribution describing the nonzero precipitation, which are calculated using 129 only nonzero precipitation values.

130 The mean value of nonzero precipitation is a classical measure of central tendency while 131 L-variation $\tau_2 = \lambda_2/\lambda_1$ and L-skewness $\tau_3 = \lambda_3/\lambda_2$, defined as ratios of L-moments λ_i [22], are 132 dimensionless measures of the distributional shape. L-ratios are preferable over ratios based on 133 the classical moments like the coefficients of skewness and kurtosis as they exhibit better 134 statistical properties, e.g., they are more robust [see e.g., 23]. Additionally, L-kurtosis (defined as $\tau_4 = \lambda_4/\lambda_2$) is also commonly used as a measure of shape, yet for positive random variables L-135 136 variation is well defined and actually is more robust and more convenient as it is bounded in 137 [0,1]. Usually, L-variation or even the classical coefficient of variation (defined as the ratio of 138 standard deviation to the mean value) are interpreted as standardized measures of variance;

139 indeed, they express, respectively, the value of the second L-moment λ_2 and the value of the 140 standard deviation of a distribution having mean value equal to 1. Yet for positive random 141 variables, where actually these coefficients are meaningful, both depend on the distribution's 142 shape parameters only or are constants if the distribution does not have shape parameters, and 143 thus, they are essentially measures of distributional shape.

144 As already noted, we anticipate from our experience the probability dry to vary over the 145 months in most areas of the world. Additionally, it may seem obvious that the monthly mean 146 value of daily precipitation (including zero values) will vary too as it is directly related to 147 probability dry, e.g., a larger number of rainy days on average in a month logically will increase 148 the monthly mean (estimated as the record's total monthly precipitation divided by the total 149 number of month's days). However, it is not that evident that the mean value of the monthly 150 nonzero daily precipitation (estimated as the record's total monthly precipitation divided by the 151 total number of the month's rainy days) will vary over the months (during rainy days it could be 152 possible to rain on average the same amount irrespective of the month). Finally, our perception 153 on precipitation may lead us to assume that extreme precipitation varies with season, e.g., it is 154 well-known that specific weather mechanisms, responsible for extreme precipitation, are linked 155 with specific seasons. Consequently, this may imply that the shape characteristics of 156 precipitation distribution change over seasons, as the distribution's shape, particularly the right 157 tail, controls the frequency and the magnitude of extreme events. Yet this assumption may be 158 false as extreme precipitation may emerge by a change in the scale or else in the variance of 159 precipitation and not necessarily by a change in its shape characteristics. For these reasons 160 whether or not the distributional shape characteristics vary with season needs to be investigated 161 and verified.

162 **3.2 Variation in the hemispheres**

163 Northern Hemisphere (NH) and Southern Hemisphere (SH) have opposite seasons and thus, it is 164 reasonable to assume that natural processes under seasonal variation exhibit different behavior 165 between the two hemispheres. This may be generally valid, especially for processes like the 166 surface temperature, yet precipitation is a more complex process that may be affected more by 167 regional climate conditions. For example, the celebrated Köppen climate classification [see e.g., 168 24,25], which classifies climate according to the annual and monthly average temperature and 169 precipitation, defines several different types and subtypes of climate for each hemisphere. Thus, 170 different precipitation patterns may appear even in adjacent areas of the same hemisphere.

171 Nevertheless, a first coarse approach that could provide a general picture is to present the 172 seasonal variation of the statistics by hemisphere. Among the 14,157 stations analyzed, 8447 173 belong in the NH and 5710 in the SH. The aforementioned statistics, i.e., the probability dry, 174 mean value, L-variation and L-skewness, were calculated for the monthly daily precipitation of 175 each station; their averages and standard deviations are given, for each hemisphere and 176 additionally for the whole globe, in Table 1. Furthermore, a better picture is provided by the box 177 plots given in Figure 2 which present these statistics on a monthly basis and for each hemisphere. 178 The left (red) box plots are for the NH while the right (gray) are for the SH while the box plot's 179 inner lower and upper fences that define the box indicate, respectively, the 25% and 75% 180 empirical quantile points and thus define the empirical interquartile range (IQR) or the 50% of 181 the central values. The line within the box indicates the median, while the lower and upper 182 fences of the whiskers indicate, respectively, the 5% and 95% empirical quantile points or else 183 they define the 90% empirical confidence interval (ECI) of the studied statistics. It should be 184 clear that results presented for each hemisphere express the average and standard deviation

values of the stations analyzed in each hemisphere and may not be representative values for the whole hemisphere (especially in the SH where stations are situated in few areas). Estimation of representative hemisphere values, if possible, would demand spatial integration which is out of the scope of this study.

189 As we see in Figure 2, the probability dry in NH exhibits the typical behavior we have in 190 our minds for NH, i.e., dry summer months and wet winter months. Particularly, if we focus on 191 the median of each box plot it exhibits a sinusoidal-like variation, so it seems that most stations 192 in NH have this pattern. Surprisingly, the corresponding pattern in SH is not clear at all; if we 193 focus on the median, although it resembles a sinusoidal-like function, clearly, it is not the 194 familiar and the anticipated one as it has three "local" peaks, i.e., in January, April and August. 195 We also note that the IQR seems to vary irregularly and does not follow the variation of the 196 median. Of course, this does not imply the absence of seasonality in probability dry in the SH, as 197 this result can easily emerge if we assume several different patterns for the studied stations. Also, 198 it is interesting that the variation of the median in both hemispheres is not very large, especially 199 in the SH, yet the range of the 90% ECI is very wide expressing the large variation of probability 200 dry around the world.

The mean value of the nonzero precipitation in both hemispheres, as Figure 2 shows, exhibits a clear seasonal pattern, which reminds that of the surface temperature. Specifically, NH and SH show essentially a contrasting behavior to each other, yet in terms of seasons the behavior is the same, i.e., the warm months in both hemispheres are those with the highest average nonzero daily precipitation. This behavior though is not in full correspondence as in NH the minimum and the maximum mean values (comparing the medians) are, respectively, in January and in September, while the corresponding values in the SH are observed, respectively, in August and in February. Remarkably, for the NH the average nonzero daily precipitation pattern is in contrast with probability dry implying greater precipitation depths in rainy days of dry months than of wet months. Yet this is not absolutely precise as the driest moths are from June to August while those with the highest average of nonzero daily precipitation are from July to September; additionally, the lowest value in probability dry is in July while the peak average value is in September. This contrast seems not to be valid for the SH as the probability dry exhibits an irregular pattern.

215 Figure 2 also reveals a marked monthly variation pattern for L-variation and L-skewness. 216 Similarly to the average of nonzero daily precipitation, both statistics exhibit a contrasting 217 behavior between the two hemispheres; but again, comparing the medians, high and low values 218 are observed, respectively, at warm and cold months. A comparison between the two shape 219 statistics shows that L-variation and L-skewness in SH show an almost identical pattern with the 220 only difference being in the lowest value which is observed one month later for L-skewness. 221 Additionally, L-variation in NH takes its lower values around February while L-skewness around 222 April. Generally, the monthly variation of both statistics (based on their medians) is small, i.e., in 223 both hemispheres L-variation and L-skewness range, respectively, from 0.55 to 0.6 and from 224 0.42 to 0.47. However, the IQR or the 90% ECI is much wider in the SH compared to NH. 225 Comparing the shape statistics with the mean value of daily precipitation, we note an agreement 226 in the general pattern in SH, while in NH especially for L-skewness the difference in the patterns 227 is significant.

228 **3.3** A simple test to identify seasonal variation

All previous comparisons based on the monthly box plots of the statistics indicate clear seasonal
variation patterns; a surprising exception is the probability dry of the SH. Nevertheless, both the

IQR and the 90% ECI of all those statistics are much wider allowing at least theoretically a portion of the stations studied to have different patterns than the characteristic one indicated by the medians in Figure 2.

234 As mentioned, we intuitively anticipate some characteristics of daily precipitation like the 235 probability dry to vary with season, yet this it is not self-evident, e.g., for distributional shape 236 measures like L-variation and L-skewness. When dealing with a small number of records it is 237 relatively easy to assess if a statistic varies with season using simple means, e.g., a plot of the 238 statistic vs. month would reveal the variation pattern. Yet when dealing with thousands of 239 stations, an "eyeball" technique would be insufficient or even subjective. For this reason we form 240 here a simple test to assess and quantify the seasonal variation of the various statistics we 241 investigate.

Seasonal variation evokes sinusoidal-like functions; however, even if a statistic is expected 242 243 to obey a sinusoidal-like law, its sample counterpart may deviate significantly from the 244 anticipated law due to sample variability commonly caused either by sampling uncertainty, 245 particularly for small samples, or by non-robust estimators, or even from local weather 246 characteristics modifying the expected behavior in some months. This implies that a precise 247 sinusoidal variation may not be common to observe and thus a test based on these characteristics 248 would be inflexible and probably with doubtful efficacy. For this reason, we propose here a non-249 parametric test allowing for the statistic under investigation to deviate from the exact sinusoidal 250 form.

The seasonal variation test (SV-Test) is described in the following steps: (a) the desired statistic is calculated for each month, (b) the numbers 1 and -1 are assigned, respectively, to monthly values smaller and larger than the median of all months, (c) this sequence is rotated until the first and the last value have different signs, (d) this sequence is split into sub-sequences
consisting of identical-value runs (SIVR), (e) the number of SIVR is calculated.

256 Note that step (c) is necessary to simplify the test and estimate less benchmark values by 257 the Monte Carlo process described in sequence. Particularly, if step (c) is not applied then two 258 cases should be studied, i.e., one when the sign between the first and last value differs, and one 259 when it is the same. Given that six values will equal 1 and six -1 (that emerges by the definition 260 of the median value) it can be proven that if the sign differs then the number of feasible SIVR 261 that a sequence consisting 1 and -1 can be split is 2, 4, 6, 8, 10 or 12 if all values are alternating. 262 In the other case an odd number of SIVR would emerge, i.e., 3, 5, 7, 9 or 11. Also, step (c) 263 ensures that the resulting number of SIVR is the minimum, e.g., a sequence starting and ending 264 with the same sign having 11 SIVR if it is rotated in order the first and last sign to differ it will 265 have 10 SIVR.

266 The resulting number of SIVR quantifies seasonality. If the considered statistic exhibits a 267 sinusoidal-like seasonal variation the SV-Test will result exactly in two SIVR. Figure 3 depicts 268 an explanatory sketch of the SV-Test showing the monthly values of a statistic after rotation so 269 that the first and the last value are in opposite sides of the median; even though the statistic does 270 not resemble exactly a sinusoidal law, the application of the test results in two SIVR revealing 271 the seasonality that is visually apparent. We could also expect that four SIVR still reveal 272 seasonal variation as they could easily emerge if the statistic's sample estimates are sensitive, 273 e.g., if the December's value in the graph of Figure 3 was above the median, then four SIVR 274 would result. It seems reasonable to assume that a larger resulting number of SIVR indicates random variation or a variation that does not resemble the "familiar" seasonal variation. 275

276 One could argue that the previous interpretation of the resulting number of SIVR is 277 subjective, e.g., it could be assumed that two or four SIVR could easily emerge even if there is 278 no seasonal variation due to randomness. Thus, in order to make the SV-Test complete we need 279 benchmark values for reference and comparison. The idea is to find the probability for each 280 feasible number of SIVR to emerge in the case where the variation of a statistic is random. 281 Theoretically, this problem can be solved analytically using combinatorics, yet it is not that easy; 282 in contrast a Monte Carlo approach can easily provide the answer. In this direction, we apply a Monte Carlo simulation summarized in three simple steps: (a) we generate 10^6 samples 283 284 consisting of 12 random numbers each, (b) we apply the SV-Test to estimate the resulting 285 number of SIVR for each sample, and (c) we calculate the probability for each feasible number 286 of SIVR as the ratio of the times that this number of SIVR emerged to total number of samples (10^6) . 287

288 The results are graphically depicted in Figure 4 where the first number above the bars 289 indicates the probability for a specific SIVR number to occur and the second number above the 290 bars indicates the cumulative probability, e.g., the probability for up to four SIVR to occur is 291 17.6%. Accordingly, if a statistic varies randomly the probability for two SIVR is only 1.3% and 292 for four is 16.3%, while the most probable numbers of SIVR are six and eight with probabilities 293 43.3% and 32.5%, respectively. This implies that if the studied statistic does not exhibit seasonal 294 variation then application of the test will result in more than two SIVR with probability 98.7% 295 and in more than four SIVR with probability 82.4%, and thus, we can safely assume that not only 296 two but also four SIVR indicate seasonal variation.

297 **3.4** Application of the test

We applied the SV-Test for each station and for the four aforementioned statistics with the results presented in Figure 5. The SV-Test verifies, as we see in Figure 5a, that indeed probability dry exhibits seasonal variation with 64.1% of the stations resulting in two SIVR and with only 4.9% of the stations resulting in more than four SIVR indicating random variation. Similar results are obtained for the mean value of the nonzero daily precipitation, given in Figure 5b, with only 8.3% of the stations resulting in more than four SIVR.

304 The results of the SV-Test regarding the shape characteristics of the nonzero daily 305 precipitation, i.e., the L-variation and the L-skewness are depicted, respectively, in Figure 5c and 306 Figure 5d. The first we note is that the profile of the two graphs is completely different from the 307 "benchmark" graph describing the random case in Figure 3; however, the results are not as clear 308 as for the probability dry or for the mean value case. We see that the most common SIVR 309 number is four, both for L-variation and for L-skewness, with 36.9% and 34.5%, respectively. 310 Nevertheless, two or four SIVR (numbers indicating seasonal variation) emerge at 66.2% of 311 stations for L-variation and at 54.5% of stations for L-skewness, while the corresponding value 312 for the random case is much smaller, i.e., 17.6%. Additionally, two SIVR are observed in 29.3% 313 and 19.7% of the records for L-variation and L-skewness, respectively. These percentages are 314 much larger than 1.3%, which corresponds to the random case. Finally, the seasonality signal is 315 it is much stronger for L-variation than for L-skewness, a difference that may attributed in the 316 fact that estimation of L-variation is more robust than L-skewness.

317 **3.5** Why and how much statistics vary?

318 Studying the statistics by hemisphere as well as the results of the SV-Test revealed that seasonal 319 variation occurs not only in probability dry and in the mean value of nonzero precipitation but 320 also in the shape characteristics. This implies that the marginal distribution varies over the 321 months, yet the mechanism of this variation is not clear. Particularly, different aspects of the 322 precipitation process are interrelated. For example, the distributional shape variation may be 323 affected by seasonal variation of the average storm duration. To clarify by an example, let us 324 consider the random variables X and Y representing, respectively, the amount of nonzero 325 precipitation at the daily and at a much finer time scale, e.g., the one-minute scale, and let us 326 assume that the marginal distribution of Y does not have seasonal variation; then the distribution 327 function of X emerges by the *n*-term sum of Y variables where n corresponds to the storm 328 duration in minutes in that particular day. Cleary, if the average storm duration varies per month, then the "average" *n*-term sum will vary too and hence the distribution of X. This issue raised can 329 330 only be answered by an analysis of fine temporal scale data which is not the subject of this 331 particular study.

332 In order to quantify the seasonal variation of the studied statistics per station we define four 333 difference measures relative to the statistic's average value of all months. These measures are 334 illustrated in the sketch of Figure 6 depicting the monthly variation of a statistic. Particularly, we define the *i*-th monthly difference $D_i = V_i - \mu$ as the difference between the *i*-th month statistic's 335 336 value V_i and the average of all V_i denoted as μ . Negative differences (blue lines in the graph) are denoted with $D_{\rm N}$ and their average with $\overline{D}_{\rm N}$; likewise, $D_{\rm P}$ denotes positive differences (red lines 337 in the graph) and $\overline{D}_{\rm p}$ denotes their average. Additionally, $D_{\rm min}$ and $D_{\rm max}$ denote, respectively, the 338 339 minimum and the maximum difference with reference to μ . Note that this analysis in performed 340 for each individual station and does not provide any comparison between different stations.

341 The difference measures \overline{D}_{N} , \overline{D}_{P} , D_{min} and D_{max} are calculated in terms of percentage 342 change (PC) in respect to the average μ , i.e., PC = 100 D/μ with D being any of the four 343 difference measures. The first two measures can be interpreted as the "expected" or the average 344 negative or positive percentage change in reference to the monthly average while the latter two 345 indicate the minimum or maximum percentage change in reference to the monthly average. We 346 calculated the percentage change of these measures for each station and for the four statistics 347 studied. The results are given in Figure 7 in the form of box plots (note that the PC of the 348 negative differences \overline{D}_{N} and D_{min} is given in absolute values for better presentation).

349 A first look in the box plots indicates that the largest monthly variation is observed in the 350 mean value of the nonzero precipitation, followed by the probability dry, next by L-skewness 351 and last by L-variation exhibiting the lowest variability. Particularly, the IQR of the nonzero precipitation mean value, which represents the 50% of the central values, for D_{\min} and D_{\max} 352 353 ranges, respectively, from -45.2% to -22.8% and from 25.5% to 50.6%; these values indicate a 354 large variability around the average. These ranges are lower for the probability dry where the IQR of D_{\min} and D_{\max} ranges, respectively, from -24.3% to -9.2%) and from 8.2% to 19.2%. 355 Regarding L-skewness we observe that 75% of the records have percentage change of D_{\min} and 356 357 D_{max} less than -17.7% and 20.4%, respectively, while the corresponding percentages for the L-358 variation are -9.5% and 10.7%. Comparing the box plots of the distributional shape measures, 359 i.e., the L-variation and L-skewness, with the box plots of the probability dry and of the mean value we observe that in the first two cases \bar{D}_{N} and \bar{D}_{P} vary at a lower level relative to D_{min} and 360 361 D_{max} than in the former two cases. This may indicate that the "expected" difference from the monthly average, expressed by \overline{D}_{N} and \overline{D}_{P} , for L-variation and L-skewness for most of the 362 months is "small"; yet the "extreme" differences, expressed by D_{\min} and D_{\max} , are relatively 363 364 large; or else, this indicates that the marginal distribution of nonzero daily precipitation for most 365 of the months does not vary much in terms of shape.

366 **4.** In search for the "universal" precipitation model

367 4.1 Candidate models

368 The shape characteristics of nonzero daily precipitation, as empirical evidence suggests, vary not 369 only with location but also by month; this implies that the consistent probabilistic modeling of 370 nonzero daily precipitation demands different models for different areas and possibly for 371 different months. So it would be of paramount importance if a single parametric distribution can 372 be used for nonzero daily precipitation for all months and for the whole world. The fact that 373 distributional shape varies excludes, in principle, distributions with fixed shape, thus favoring 374 those with great shape flexibility. Additionally, we deem that a competitive model should also be 375 physically consistent with precipitation, i.e., defined in the positive real axis, and if possible 376 having a theoretical basis. In this direction, in a previous study [19] we used the principle of 377 maximum entropy to derive consistent distributions for geophysical random variables. These 378 entropy derived distribution were tested in their ability to describe the nonzero daily precipitation 379 (but not in a monthly basis) using more than 10,000 stations with very good results.

The distributions derived in the aforementioned study, and also used here are the Burr type XII distribution (BrXII) [26,27] and the Generalized Gamma distribution (GG) [28]. Their probability density functions are given, respectively, by

383
$$f_{\text{BrXII}}(x) = \frac{1}{\beta} \left(\frac{x}{\beta}\right)^{\gamma_1 - 1} \left(1 + \gamma_2 \left(\frac{x}{\beta}\right)^{\gamma_1}\right)^{-\frac{1}{\gamma_1 \gamma_2} - 1} \qquad x \ge 0$$
(0)

384
$$f_{GG}(x) = \frac{\gamma_2}{\beta \Gamma(\gamma_1 / \gamma_2)} \left(\frac{x}{\beta}\right)^{\gamma_1 - 1} \exp\left(-\left(\frac{x}{\beta}\right)^{\gamma_2}\right) \quad x \ge 0 \tag{0}$$

Note that the parameterization we use here for the BrXII is different from the most typical found in the literature; first, it clearly shows its asymptotic behavior (for $\gamma_2 \rightarrow 0$ the Weibull distribution emerges) and second, the two shape parameters are directly related to each of the distribution tails (left and right). Regarding the parameterization of GG distribution we mention that other forms also exist but this is one of the commonly used.

390 Both distributions are very flexible, each comprising one scale parameter $\beta > 0$, and two shape parameters. The shape parameter $\gamma_1 > 0$ controls the behavior of the left tail, i.e., for $\gamma_1 < 1$ 391 392 the distributions are J-shaped while for $\gamma_1 > 1$ they are bell-shaped; the parameter $\gamma_2 > 0$ controls 393 the asymptotic behavior of the right tail, i.e., the "heaviness" of tail and thus the frequency and 394 the magnitude of extreme events. It is noted that although these two distributions have a 395 structural similarity in terms of their parameters, in principle, they differ, i.e., the BrXII distribution is a power-type distribution having finite moments up to order $1/\gamma_2$ while the GG 396 397 distribution is of exponential form with all of its moments finite. Some well-known special cases 398 worth mentioning for the BrXII distribution are the Pareto type II and the Weibull distributions 399 (limiting case), while for the GG distribution, special cases are the Weibull, the Gamma and the 400 Exponential distributions.

401 **4.2** A first approach based on L-moments

There are some useful graphical tools, especially when dealing with a large number of records, which help to provide an overall and general picture of the studied variable from a statistical point-of-view. Such a tool for identifying suitable distributions for the variable under investigation is the L-moments ratio diagram [see e.g., 29,30]. Essentially, this diagram provides a comparison between observed statistics calculated from the records and the theoretical ones emerging by the distribution under investigation. Practically, any pair of L-ratios could be used to form an L-ratio diagram; yet the most common pairs are the L-skewness *vs*. L-variation or the
L-kurtosis *vs*. L-skewness, with the latter being more popular in the literature as L-variation is
not well defined for some distributions, e.g., for distributions with mean value zero or negative.
Nevertheless, as noted, L-variation is well defined for positive random variables and is more
robust than L-kurtosis.

413 L-ratios as functions of the distribution's shape parameters are essentially measures of 414 shape. Thus, in an L-ratio diagram a distribution with none, one or two shape parameters forms, 415 respectively, a point, a line or an area. Consequently, the aforementioned distributions, in any L-416 ratio diagram, form an area (denoted as L-area) whose extent is finite (does not cover the entire 417 plane). Here we use the L-skewness vs. L-variation diagram aiming to form the theoretical L-418 area of the BrXII and the GG distributions and calculate the percentage of the observed L-points 419 that lie within the L-area of each distribution and for each month. An observed point that lies 420 within the distribution's theoretical L-area implies that specific parameter values exist so the 421 distribution can reproduce the first three L-moments. Practically, the theoretical L-area of a distribution is formed using equations of τ_2 and τ_3 . Unfortunately, analytical L-moment 422 423 expressions for the GG distribution do not exist; exception is the first L-moment (identical with 424 the mean value) and is given by

425
$$\lambda_1 = \beta \Gamma\left(\frac{1+\gamma_1}{\gamma_2}\right) / \Gamma\left(\frac{\gamma_1}{\gamma_2}\right) \tag{0}$$

426 where $\Gamma(a) = \int_0^\infty t^{a-1} \exp(-t) dt$ is the Gamma function. In contrast, for the BrXII distribution, 427 solving the L-moments definition integrals [see e.g., ,22], we found the following expressions:

428
$$\lambda_1 = \frac{\beta \gamma_2^{-1/\gamma_1}}{\gamma_1} \mathbf{B}\left(\frac{1}{\gamma_1}, \frac{1-\gamma_2}{\gamma_1\gamma_2}\right) \tag{0}$$

429
$$\tau_2 = 1 - \mathbf{B}\left(\frac{1}{\gamma_1}, \frac{2 - \gamma_2}{\gamma_1 \gamma_2}\right) / \mathbf{B}\left(\frac{1}{\gamma_1}, \frac{1 - \gamma_2}{\gamma_1 \gamma_2}\right) \tag{0}$$

430
$$\tau_{3} = 1 - 2 \frac{B\left(\frac{1}{\gamma_{1}}, \frac{2 - \gamma_{2}}{\gamma_{1}\gamma_{2}}\right) - B\left(\frac{1}{\gamma_{1}}, \frac{3 - \gamma_{2}}{\gamma_{1}\gamma_{2}}\right)}{B\left(\frac{1}{\gamma_{1}}, \frac{1 - \gamma_{2}}{\gamma_{1}\gamma_{2}}\right) - B\left(\frac{1}{\gamma_{1}}, \frac{2 - \gamma_{2}}{\gamma_{1}\gamma_{2}}\right)}$$
(0)

431 where $B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$ is the Beta function. The two parametric equations 432 $\tau_i = g_i(\gamma_1, \gamma_2)$ given in equations (0) and (0) can be used to implicitly determine the L-area. 433 Functions of this form, and in this particular case, can be easily plotted by fixing one parameter 434 to a specific value, varying the other in a dense grid and plotting the resulting (τ_2 , τ_3) points. The 435 method for determining the theoretical L-area covered by the GG distribution is exactly the 436 same, with the only difference that (τ_2 , τ_3) points are calculated by the numerical integration of 437 the L-moments integrals.

438 The theoretical BrXII and GG L-areas are depicted in Figure 8, with several fixed-value 439 parameter lines also plotted. For the BrXII distribution values ranging from 1 to 10 (lower 440 bound) denote fixed γ_1 parameter values while those ranging from 0.1 to 0.9 (upper bound) 441 denote fixed γ_2 parameter values. Similarly, for the GG distribution values ranging from 0.5 to 6 442 (lower bound) denote fixed γ_1 parameter values while those ranging from 0.5 to 10 (within the 443 area) denote fixed γ_2 parameter values. The observed L-points of the nonzero daily precipitation 444 for the month of January are also shown in Figure 8, superimposed over the L-areas (graphs for 445 individual months as well as for the nonzero daily precipitation of all months are given as 446 supplementary material). At each plot empirical points are colored in three ways; the red-colored 447 points lie outside the area; the dark-colored indicate a Bell-shaped distribution; the light-colored 448 indicate a J-shaped distribution. Interestingly, the GG and the BrXII distributions are 449 complementary in the sense that the observed L-points not belonging to one's area belong to the 450 other's, implying that just these two distributions can describe all records analyzed here. Note 451 that both distributions are special cases of the Generalized Beta of the second kind distribution 452 [see e.g., 17,19], but this distribution is more complicated as it comprises one scale and three 453 shape parameters.

454 Particularly, Figure 9 shows the estimated percentages of the observed L-points of monthly 455 daily precipitation lying within the area. We also display the percentages of J- and Bell-shaped 456 distributions that would emerge if the distributions were actually fitted. It is apparent that both 457 distributions, especially the GG distribution, perform very well. For example, the GG 458 distribution describes 99.2% of the observed L-points for the values of all months, while the 459 lowest percentage, observed in January, remains very high, i.e., 94.2%. The BrXII distribution 460 also performs well by managing to describe 90.0% of the observed L-points for the values of all 461 months and with its lowest percentage observed in May with 81.0%. We note that the actual 462 percentages of the observed points that lie within the theoretical areas are expected to be even 463 higher if larger samples were available. Clearly, the variability of the statistics decreases with 464 increasing sample size and thus many points that lie outside the area actually would not if the 465 sample was larger. Actually, this is the reason why the percentage of the observed L-points for 466 the values of all months is higher than those of individual months. Finally, it may seem peculiar 467 that the percentages of J-shaped GG distributions are significantly lower (almost half) compared 468 to those of the BrXII distributions. This implies that for the same record a J- and a Bell-shaped 469 distribution may be fitted equally well in terms of L-moments. Note that a density function f(x)

470 is called J-shaped if the value of f(x) at its lower bound (zero for positive random variables) is 471 the maximum, i.e., $f(0) = \max(f(x))$; otherwise, the distribution is called Bell-shaped. This 472 simple criterion may however be meaningless in several practical situations, e.g., two GG 473 distributions with γ_1 values a little less and a little more than 1 would be characterized, 474 respectively, as J- and Bell-shaped, yet apart from this difference they are almost identical.

475 The previous analysis gave a clear indication that both the GG and the BrXII distributions 476 are very good models for describing precipitation. Yet an important and more specific question 477 that naturally arises is if a single distribution can be used to describe all months within the same 478 station; in order to answer this question an analysis by record has to be performed. To clarify, 479 each record has 12 L-points, one for each month, so the idea is to estimate the number of 480 monthly L-points per station that lie within the theoretical L-area. For example, if all monthly 481 points of a station lie within the distribution's area, then this distribution could be used for all 482 months in this particular station. The results are shown in Figure 10. Evidently, in this test the 483 GG distribution performs much better than the BrXII, as it can be used as an all-month model for 484 78.8% of the stations, a percentage almost double than the corresponding one to the BrXII 485 distribution which is 43.2%. Additionally, the percentage of record in which the GG distribution 486 is suitable for more than ten months is very high, i.e., 95.6% while the corresponding one for the 487 BrXII it has significantly increased to 69.5%.

488 **4.3** The actual fitting

The previous analysis showed that both distributions can describe a very large percentage of the records in terms of the first three L-moments. Additionally, it is very important to study the actual values of the shape parameters, especially of the parameter γ_2 as it controls the extreme behavior. As noted though, the GG distribution does not have analytical L-moments equations 493 while in the BrXII case, where analytical formulas exist, the resulting system of equations 494 between theoretical and sample estimates can only be solved numerically. So it is clear that 495 explicit functions, easily applicable, of the form $\theta = g(\lambda_1, \tau_2, \tau_3)$ that relate any of the distribution's 496 parameter θ with the first three L-moments measures cannot be formed.

497 In order to create a fitting method for both distributions that is based on L-moments and is 498 accurate and fast to apply, we approach the problem inspired by the way engineers and 499 statisticians used to practice in the past (or even at present) using the "good-old" graphical tools 500 (e.g., nomograms). For example, the shape parameters γ_1 and γ_2 can be approximately estimated 501 by placing an observed (τ_2 , τ_3) point within the L-ratio diagram in Figure 8 and do an "eyeball" 502 linear regression using the nearest fixed-value parameter lines surrounding the observed point. 503 Essentially, our approach is an accurate and computerized version of this technique, i.e., the 504 algorithmic "translation" of a (τ_2, τ_3) point to a (γ_1, γ_2) point. The basic idea is to "replace" the 505 initial functions of L-variation and L-skewness, which are highly nonlinear and without 506 analytical expressions in the GG case, with simple linear interpolation functions that can be more 507 easily handled. First, we calculate $\tau_2 = g_2(\gamma_1, \gamma_2)$ and $\tau_3 = g_3(\gamma_1, \gamma_2)$ from the initial expressions (g₂) 508 and g_3 are analytical expressions or integrals numerically estimated) in a very dense and 509 appropriately selected grid of (γ_1, γ_2) points; and second, from the $(\gamma_1, \gamma_2, \tau_2)$ and $(\gamma_1, \gamma_2, \tau_3)$ points we 510 form the bivariate linear interpolation functions $\tau_2 = h_2(\gamma_1, \gamma_2)$ and $\tau_3 = h_3(\gamma_1, \gamma_2)$ (note that any 511 mathematical software creates easily bivariate interpolation functions). Replacing τ_2 and τ_3 in these equations with their counterpart estimates $\,\hat{\tau}_2\,$ and $\,\hat{\tau}_3\,$ we can form a square error norm that 512 can be numerically minimized. Particularly, the estimated shape parameters γ_1 and γ_2 are those 513 514 emerging by the following expression

515
$$(\gamma_1, \gamma_2) = \arg\min_{\gamma_1, \gamma_2} \sum_{j=2}^{3} \left(h_j(\gamma_1, \gamma_2) - \hat{\tau}_j \right)^2$$
(0)

516 Once the parameters γ_1 and γ_2 are estimated for either distribution the trivial scale parameter β 517 can be directly estimated from the corresponding expression of the first L-moment λ_1 given in 518 Eq. (0) and Eq. (0). As a final technical detail we note that we tested the fitting method to 519 millions of random points to assess its accuracy and to define the parameters' range where the 520 method works essentially without estimation error. As we have observed for the GG distribution these ranges are $0.2 \le \gamma_1 \le 10$ and $0.1 \le \gamma_2 \le 10$, while for the BrXII distribution they are 521 $0.2 \le \gamma_1 \le 10$ and $0.001 \le \gamma_2 \le 0.9$. If the fitting procedure resulted in parameters outside these 522 523 ranges it was considered inaccurate.

524 The estimated values of the shape parameters for both distributions are presented in the 525 form of box plots in Figure 11 while some of their basic summary statistics are given in Table 2. 526 Considering the theoretical range of the parameters, i.e., $(0, \infty)$, of both parameters and for both 527 distributions it is apparent that they actually vary in a narrow range as the 95% empirical 528 confidence intervals indicate in Figure 11 (outer fences of the whiskers). For the GG distribution 529 the median of the parameter γ_1 for all months ranges from 1.08 to 1.23 while for all month and 530 for most of the records $\gamma_1 > 1$ indicating bell-shaped densities. The average of all monthly 531 medians of the parameter γ_2 is approximately 0.59 with the majority of records having $\gamma_2 < 1$ 532 indicating a heavier tail than the exponential or the Gamma tail [see also ,21]. The median values 533 of the BrXII γ_1 parameter for all months are close to 1; actually the average of all monthly 534 medians is 0.97, a value very close to the Pareto type II value, i.e., $\gamma_1 = 1$. Additionally, we note 535 that more than 50% of the records have $\gamma_1 < 1$ indicating J-shape densities and verifying also the 536 results presented in Figure 9. Finally, the monthly median values of the γ_2 parameter vary in a narrow range, i.e., form 0.19 to 0.25, while the upper limit in the 95% ECI is for all months
(except January) less than 0.5, indicating finite variance distributions.

539 **4.4 Performance of the models**

540 The GG distribution as the analysis showed is able to describe more records than the BrXII. Yet 541 as the two distributions differ significantly in the behavior of the tail, as the former is of 542 exponential form and the latter is power type, it is useful to compare them in terms of some 543 fitting error measures. Obviously, the comparison is possible only for the samples in which both 544 distributions were fitted. For example Figure 12 presents a probability plot of the fitted 545 distributions to the (nonzero) daily precipitation values of a station (station code CA006158350). 546 Clearly, both distributions fit well and it is evident that the BrXII distribution has a heavier tail 547 and thus for small exceedance probabilities (large return periods) predicts larger values.

In order to evaluate and compare the fitting performance of the distributions we define thefollowing four error measures

551
$$\operatorname{ER-II} = \frac{1}{m} \sum_{i=n-m+1}^{n} \left| \Delta x_{(i)} \right| \tag{0}$$

552
$$\operatorname{ER-III} = \max\left(\left|\Delta x_{(1)}\right|, \dots, \left|\Delta x_{(n)}\right|\right)$$
(0)

553
$$\operatorname{ER-IV} = \frac{\Delta x_{(n)}}{\hat{x}_{(n)}} 100 \tag{0}$$

where $\Delta x_{(i)} = x_{(i)} - \hat{x}_{(i)}$ is the difference between the predicted value $x_{(i)}$ and its corresponding observed one $\hat{x}_{(i)}$ with the index *i* indicating the position in the ordered sample, i.e., $\hat{x}_{(1)} \leq \dots \leq \hat{x}_{(n)}$. The predicted value is estimated by the quantile function of each distribution,

i.e., $x_{(i)} = Q_X(p_i)$, using the corresponding empirical probability according to the Weibull 557 plotting position, i.e., $p_i = i/(n+1)$. Thus, ER-I is the mean value of the absolute differences of 558 559 all sample values and provides an overall measure of fitting performance; ER-II is focused on the 560 last *m* largest sample values and may be seen as a fitting measure to the extreme values or to the 561 tail (here we set m = 10); ER-III is the absolute maximum difference identified between observed 562 and predicted values and does not necessarily correspond to the sample's maximum value; ER-563 IV is focused on the percentage difference between the predicted maximum value and the 564 maximum observed value with negative and positive differences implying, respectively, 565 underestimation or overestimation of the maximum value by the fitted distribution.

566 The results are presented in Figure 13 (box plots of the four error measures for the values of all months) and in Figure 14 (box plots for the individual months). Additionally, Table 3 567 568 shows, for all months and for individual months, the number of records that were actually 569 compared (both distributions fitted) as well as the averages of the error measures. In general, as 570 the box plots and the values of Table 3 reveal, the GG distribution according to all error 571 measures performs better than the BrXII. If we focus on the ER-IV, which estimates the 572 percentage difference between the predicted and the observed maximum value, we note that the 573 GG distribution performs exceptionally well. For example for all months (Figure 13) this 574 estimate is essentially unbiased while the 95% ECI is between -45.6% and 52.2%; in contrast, 575 the BrXII overestimates the maximum on average 28.2% (see Table 3) while the 95% ECI is 576 much wider, i.e., from -35.9% to 120.0%. Yet the performance of the BrXII distribution 577 improves for each specific month separately (Figure 14) where the average overestimation per 578 month for the BrXII is 4.7% (estimated form the values of Table 3) while the GG distribution 579 underestimates on average the maximum value by -2.2%. Finally, the percentage of the records 580 in which the GG distribution was better fitted according to the four error measures are also given 581 in Table 3 while a side-by-side comparison of the two distributions is presented in Figure 15. 582 Apparently, the GG distribution performs better especially according to ER-I which evaluates the 583 overall fitting. Comparing the percentages of the two distributions, shown in Figure 15, we 584 observe that the GG distribution improves even more its performance over the BrXII distribution 585 at the daily precipitation compared to the monthly daily precipitation. This might be an extra 586 argument for the GG distribution as the daily precipitation samples are much larger in size than 587 the monthly samples and thus the parameter estimation is more accurate in this case.

588 5

5. Summary and conclusions

In this study we investigate the seasonal variation of daily precipitation focusing on the properties of its marginal distribution. Two were the major questions we tried to answer: (a) which statistical characteristics of daily precipitation vary the most over the months and how much, and (b) whether or not there is a relatively simple probability model that can describe the nonzero daily precipitation at every month and every area of the world. In order to treat these questions we performed a massive analysis of approximately 170,000 monthly daily precipitation records from more than 14,000 stations from all over the globe.

Regarding the first question we first studied the variation of probability dry and of three representative characteristics of the marginal distribution of nonzero daily precipitation, i.e., the mean value, the L-variation and the L-skewness, in the two hemispheres. In general, a typical sinusoidal-like pattern was revealed (see Figure 2) for all statistics and for both hemispheres, with a surprising exception in the probability dry of the SH where a more complicated picture is observed. Additionally, to explore the monthly variation in detail at each record we proposed and applied a test for seasonality, i.e., the SV-Test. Application of the SV-Test revealed a clear 603 monthly variation in probability dry and in the mean value of nonzero daily precipitation in 604 95.1% and in 91.7%, respectively, of the stations studied (see Figure 5); the corresponding 605 percentages of the shape characteristics, i.e., of L-variation and L-skewness, were 66.1% and 606 54.2%, respectively, these results if combined with the general picture obtained by the analysis 607 in the hemispheres indicate that, in general, the shape characteristic vary too. The monthly 608 variation of those statistics at each station was quantified by various deviation measures with 609 respect to the average of all months (see Figure 7). The analysis showed that the highest monthly 610 variation is observed in the mean value of nonzero precipitation followed by probability dry, L-611 skewness and finally by L-variation, implying that although the shape characteristics vary, their 612 variability is much less than of the mean value and the probability dry.

613 Regarding the second question we tested the performance of two flexible three-parameter 614 distributions: one power-type, the Burr type XII distribution, and one of exponential form, the 615 Generalized Gamma which are generalizations of commonly used two-parameter distributions, 616 e.g., the Pareto, Gamma, Weibull and others. In order to check the suitability of these 617 distributions for the nonzero daily precipitation, first, we used L-moments ratio diagrams to 618 evaluate their potential to describe or reproduce the observed shape characteristics of all records; 619 and second, we actually fitted and estimated the parameters for each distribution and for all 620 records. For the huge number of records analyzed both distributions performed very well. 621 Particularly, the Burr type XII in the worst case, i.e., in November, managed to describe 79.1% 622 of the records (see Figure 9); the corresponding value for the Generalized Gamma distribution 623 was observed in January and was 94.2% while this distribution was able to describe the shape 624 characteristics for all months in 78.8% of the stations (see Figure 10). Finally, the two

distributions were compared to each other using various error measures and the GeneralizedGamma performed better in most of the cases (see Figure 15).

627 The implications of this study are: (a) The marginal distribution of daily precipitation 628 varies over the months and over location suggesting the necessity for a flexible probability 629 model. (b) The seasonal and the spatial variability observed in the shape characteristics points 630 out that the commonly used two-parameter models, e.g., the Gamma, the Weibull, the 631 Lognormal, the Pareto, etc. cannot serve as 'universal" models for the daily precipitation. 632 However, we stress that estimating three parameters is more uncertain than estimating two 633 parameters. Thus, if a more parsimonious model is adequate it should always be preferred over a 634 more complicated one. (c) The density function of daily precipitation may significantly differ not 635 only in its general shape, i.e., J-shaped or Bell-shaped, but also in its tail behavior; this dictates 636 that a "universal" probability model for daily precipitation must have in general two shape 637 parameters, one to control the left tail and one to control the right tail. (d) Two simple models 638 with the above characteristics that perform very well are the Burr type XII distribution and the 639 Generalized Gamma distribution with the latter performing even better than the former providing 640 thus an excellent model choice. (e) Using only these two distributions, having some of their 641 characteristics complementary to each other, we can model the entire data set for all months and 642 all stations. (f) The shape parameter γ_2 of the Generalized Gamma distribution, which controls 643 the right tail and thus the extreme values, for the vast majority of records analyzed is $\gamma_2 < 1$, with 644 1 corresponding to the Gamma distribution; this implies that some of the most commonly used 645 exponential-tail distributions like the Exponential, the Gamma or mixed Exponentials may 646 constitute a dangerous choice and should not be used unjustifiably in practice as they can 647 severely underestimate the magnitude and the frequency of the extreme daily precipitation. (g)

As a rule of thumb, the GG distribution should be the first choice as it is highly likely to provide a good fit to daily precipitation data; if this model is not adequate, the BrXII distribution should be also considered. Finally, given the uncertainty in the estimation of three parameters and the importance of the shape parameter that controls the right tail, in cases where the sample size is small, the mean estimated values could be used a priori, i.e., $\gamma_2 = 0.53$ and $\gamma_2 = 0.22$ for the GG

- and the BrXII distributions, respectively. Additionally, a Bayesian method can be used with prior
- shape parameter distributions based on the statistics provided in Table 2.
- 655
- 656 Acknowledgment We wish to thank Francesco Laio and an anonymous reviewer for their useful
- 657 comments which helped in improving the presentation of this study. This research was partially
- 658 funded by the Greek General Secretariat for Research and Technology through the research
- 659 project "Combined REnewable Systems for Sustainable Energy DevelOpment" (CRESSENDO,
- 660 grant number 5145).

661 **References**

- 662 [1] Smith RL, Schreiber HA. Point Processes of Seasonal Thunderstorm Rainfal 2. Rainfall
 663 Depth Probabilities. Water Resources Research 1974.
- 664 [2] Todorovic P, Woolhiser DA. A stochastic model of n-day precipitation. Journal of Applied
 665 Meteorology 1975;14:17–24.
- [3] Woolhiser D, Roldán J. Stochastic daily precipitation models: 2. a comparison of distributions of amounts. Water Resources Research 1982;18:1461–1468.
- 668 [4] Wilks DS. Multisite generalization of a daily stochastic precipitation generation model.
 669 Journal of Hydrology 1998;210:178–91. doi:10.1016/S0022-1694(98)00186-3.
- [5] Wilks DS. Simultaneous stochastic simulation of daily precipitation, temperature and solar
 radiation at multiple sites in complex terrain. Agricultural and Forest Meteorology
 1999;96:85–101. doi:10.1016/S0168-1923(99)00037-4.
- 673 [6] Buishand TA. Some remarks on the use of daily rainfall models. Journal of Hydrology
 674 1978;36:295–308. doi:10.1016/0022-1694(78)90150-6.
- 675 [7] Bruhn JA, Fry WE, Fick GW. Simulation of Daily Weather Data Using Theoretical
 676 Probability Distributions. Journal of Applied Meteorology 1980;19:1029–36.
 677 doi:10.1175/1520-0450(1980)019<1029:SODWDU>2.0.CO;2.

- 678 [8] Geng S, Penning de Vries FWT, Supit I. A simple method for generating daily rainfall data.
 679 Agricultural and Forest Meteorology 1986;36:363–76. doi:10.1016/0168-1923(86)90014-6.
- 680 [9] Swift LW, Schreuder HT. Fitting Daily Precipitation Amounts Using the SB Distribution.
 681 Monthly Weather Review 1981;109:2535–40. doi:10.1175/1520682 0493(1981)109<2535:FDPAUT>2.0.CO;2.
- [10] Wilson PS, Toumi R. A fundamental probability distribution for heavy rainfall.
 Geophysical Research Letters 2005;32:L14812.
- [11] Biondini R. Cloud Motion and Rainfall Statistics. Journal of Applied Meteorology
 1976;15:205–24. doi:10.1175/1520-0450(1976)015<0205:CMARS>2.0.CO;2.
- 687 [12] Shimizu K. A bivariate mixed lognormal distribution with an analysis of rainfall data.
 688 Journal of Applied Meteorology;(United States) 1993;32.
- [13] Mielke Jr PW. Another Family of Distributions for Describing and Analyzing Precipitation
 Data. Journal of Applied Meteorology 1973;12:275–80.
- [14] Mielke Jr PW, Johnson ES. Three-Parameter Kappa Distribution Maximum Likelihood
 Estimates and Likelihood Ratio Tests. Monthly Weather Review 1973;101:701–7.
- 693 [15] Hosking JRM. The four-parameter kappa distribution. IBM Journal of Research and694 Development 1994;38:251–258.
- [16] Park J-S, Seo S-C, Kim TY. A kappa distribution with a hydrological application. Stoch
 Environ Res Risk Assess 2009;23:579–86. doi:10.1007/s00477-008-0243-5.
- [17] Mielke Jr PW, Johnson ES. Some generalized beta distributions of the second kind having
 desirable application features in hydrology and meteorology. Water Resources Research
 1974;10:223–226.
- [18] Fitzgerald DL. Single station and regional analysis of daily rainfall extremes. Stochastic
 Hydrol Hydraul 1989;3:281–92. doi:10.1007/BF01543461.
- [19] Papalexiou SM, Koutsoyiannis D. Entropy based derivation of probability distributions: A
 case study to daily rainfall. Advances in Water Resources 2012;45:51–7.
 doi:10.1016/j.advwatres.2011.11.007.
- [20] Papalexiou SM, Koutsoyiannis D. The battle of extreme value distributions: A global
 survey on the extreme daily rainfall. Water Resources Research 2012.
 doi:10.1029/2012WR012557.
- [21] Papalexiou SM, Koutsoyiannis D, Makropoulos C. How extreme is extreme? An
 assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences
 Discussions 2012;9:5757–78. doi:10.5194/hessd-9-5757-2012.
- [22] Hosking JRM. L-Moments: Analysis and Estimation of Distributions Using Linear
 Combinations of Order Statistics. Journal of the Royal Statistical Society Series B
 (Methodological) 1990;52:105–24.
- [23] Hosking JRM. Moments or L Moments? An Example Comparing Two Measures of
 Distributional Shape. The American Statistician 1992;46:186–9. doi:10.2307/2685210.
- [24] Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World Map of the Koppen-Geiger climate
 classification updated. Meteorologische Zeitschrift 2006;15:259–63. doi:10.1127/09412948/2006/0130.
- [25] Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate
 classification. Hydrol Earth Syst Sci 2007;11:1633–44. doi:10.5194/hess-11-1633-2007.
- [26] Burr IW. Cumulative Frequency Functions. The Annals of Mathematical Statistics
 1942;13:215–32.

- [27] Tadikamalla PR. A Look at the Burr and Related Distributions. International Statistical
 Review / Revue Internationale de Statistique 1980;48:337–44.
- [28] Stacy EW. A Generalization of the Gamma Distribution. The Annals of Mathematical
 Statistics 1962;33:1187–92.
- [29] Vogel RM, Fennessey NM. L moment diagrams should replace product moment diagrams.
 Water Resources Research 1993;29:1745–1752.
- [30] Peel MC, Wang Q, Vogel RM, McMahon TA. The utility of L-moment ratio diagrams for selecting a regional probability distribution. Hydrological Sciences Journal 2001;46:147–156.
- 732

733 Tables

734 Table 1. Me	an values	and standard	deviation	values c	of the fou	r statistics	studied.
------------------------	-----------	--------------	-----------	----------	------------	--------------	----------

		All	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Northern hemisphere														
D	mean	72.03	73.55	74.23	74.03	73.18	71.05	68.49	67.80	68.97	71.37	74.70	73.68	73.65
I dry	SD	11.19	16.74	15.10	14.24	13.28	12.71	13.48	15.95	15.30	12.78	13.50	16.45	17.36
μ	mean	9.52	7.08	7.18	7.80	8.28	8.99	9.95	10.21	10.11	10.47	10.04	8.73	7.58
	SD	4.67	4.31	4.26	4.25	4.14	4.31	4.86	5.22	4.70	4.94	5.20	4.93	4.57
-	mean	0.59	0.56	0.56	0.56	0.57	0.57	0.58	0.58	0.59	0.59	0.59	0.57	0.57
<i>t</i> ₂	SD	0.04	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05
_	mean	0.46	0.44	0.43	0.43	0.43	0.43	0.44	0.45	0.46	0.46	0.45	0.44	0.44
13	SD	0.05	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06
Southern hemisphere														
$P_{\rm dry}$	mean	77.91	77.73	76.80	78.29	79.69	78.32	76.50	76.84	77.91	78.77	77.74	77.85	78.05
	SD	10.60	14.38	14.34	12.96	11.62	13.35	15.99	17.32	16.79	14.25	12.22	12.06	13.37
μ	mean	9.27	11.09	11.46	10.54	9.06	8.34	7.71	7.21	6.81	7.15	8.21	9.01	10.08
	SD	3.70	4.56	4.47	4.22	3.55	3.22	3.19	2.98	2.62	2.74	3.15	3.53	4.04
-	mean	0.58	0.59	0.59	0.59	0.58	0.58	0.58	0.57	0.56	0.56	0.56	0.56	0.57
<i>t</i> ₂	SD	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05
$ au_{2}$	mean	0.46	0.47	0.47	0.47	0.46	0.46	0.45	0.45	0.44	0.44	0.44	0.44	0.45
<i>t</i> 3	SD	0.06	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.07	0.07	0.07	0.07
							Global							
Р.	mean	74.40	75.24	75.27	75.75	75.80	73.99	71.72	71.44	72.58	74.36	75.92	75.36	75.42
1 dry	SD	11.33	15.97	14.85	13.90	13.04	13.45	15.06	17.10	16.51	13.87	13.08	14.98	16.01
.,	mean	9.42	8.70	8.91	8.90	8.60	8.73	9.05	9.00	8.78	9.13	9.30	8.85	8.59
μ	SD	4.31	4.83	4.83	4.45	3.93	3.92	4.41	4.69	4.31	4.50	4.57	4.42	4.53
Ŧ	mean	0.58	0.57	0.57	0.57	0.57	0.57	0.58	0.58	0.58	0.58	0.57	0.57	0.57
ι2	SD	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
-	mean	0.46	0.45	0.45	0.45	0.44	0.44	0.45	0.45	0.45	0.45	0.44	0.44	0.44
$ au_3$	SD	0.05	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07

_		All	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
_	GG distribution													
	Fit No.	13826	12729	13012	13116	13353	13445	13491	13292	13317	13509	13620	13410	13000
	Parameter γ_1													
_	Q_{50}	1.20	1.23	1.22	1.17	1.13	1.09	1.08	1.09	1.10	1.09	1.10	1.13	1.21
	μ	1.50	1.63	1.59	1.53	1.45	1.39	1.36	1.41	1.43	1.41	1.42	1.49	1.61
	σ	0.94	1.22	1.15	1.07	1.00	0.97	0.94	1.01	1.04	1.02	1.02	1.11	1.20
	$ au_2$	0.29	0.34	0.33	0.32	0.31	0.30	0.30	0.31	0.32	0.31	0.31	0.33	0.34
	$ au_3$	0.38	0.43	0.42	0.42	0.42	0.43	0.43	0.43	0.44	0.44	0.43	0.43	0.42
	Parameter γ_2													
	Q_{50}	0.52	0.54	0.54	0.58	0.61	0.62	0.61	0.60	0.59	0.59	0.60	0.60	0.56
	μ	0.53	0.58	0.58	0.59	0.62	0.62	0.62	0.61	0.60	0.60	0.61	0.63	0.60
	σ	0.22	0.30	0.31	0.28	0.28	0.26	0.27	0.28	0.27	0.27	0.28	0.32	0.31
	$ au_2$	0.23	0.28	0.28	0.26	0.25	0.23	0.23	0.24	0.24	0.23	0.24	0.26	0.28
	$ au_3$	0.06	0.14	0.14	0.08	0.06	0.04	0.08	0.09	0.09	0.10	0.10	0.12	0.13
						But	t XII dist	ribution						
	Fit No.	12744	11900	11827	11810	11555	11460	11544	11737	11878	11768	11503	11203	11551
							Paramete	er γ_1						
	Q_{50}	0.94	1.00	0.98	0.98	0.97	0.96	0.95	0.95	0.95	0.95	0.96	0.99	1.01
	μ	0.96	1.05	1.03	1.01	1.00	0.99	0.98	0.99	0.99	0.98	0.99	1.02	1.05
	σ	0.16	0.24	0.23	0.21	0.18	0.18	0.19	0.21	0.20	0.19	0.19	0.23	0.24
	$ au_2$	0.09	0.12	0.12	0.11	0.10	0.10	0.10	0.11	0.11	0.10	0.10	0.11	0.11
	$ au_3$	0.14	0.21	0.21	0.20	0.18	0.19	0.21	0.22	0.19	0.19	0.16	0.18	0.19
							Paramete	er γ_2						
	Q_{50}	0.21	0.25	0.24	0.22	0.20	0.19	0.19	0.20	0.20	0.19	0.20	0.21	0.24
	μ	0.22	0.25	0.24	0.23	0.22	0.21	0.20	0.21	0.21	0.21	0.21	0.22	0.24
	σ	0.11	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.12	0.12	0.13	0.13
	$ au_2$	0.30	0.30	0.30	0.33	0.35	0.36	0.35	0.35	0.34	0.33	0.33	0.32	0.31
	$ au_3$	0.02	0.05	0.04	0.07	0.09	0.11	0.12	0.12	0.12	0.10	0.09	0.07	0.04

Table 2. Basic summary statistics of the estimated shape parameters of the GG and BrXIIdistributions.

Table 3. Mean values of the error measures evaluating the fitting performance of thedistributions, as well as percentage values of records in which the GG was better fitted compared

to Burr XII.

	All	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Fit No.	12413	10474	10684	10769	10754	10750	10879	10877	11041	11124	10967	10457	10396
Mean values of the error measures for the GG distribution													
ER-I	1.4	1.0	1.0	1.0	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ER-II	14.1	5.5	5.5	5.5	4.9	5.2	5.7	5.9	5.8	5.9	5.5	5.0	5.1
ER-III	38.2	18.9	18.6	19.0	17.0	17.8	20.2	20.1	20.0	20.3	19.5	17.5	17.8
ER-IV	0.7	-1.6	-1.6	-2.2	-2.1	-1.7	-2.7	-1.7	-2.4	-2.7	-3.1	-2.2	-2.2
	Mean values of the error measures for Burr XII distribution												
ER-I	2.2	1.1	1.2	1.1	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
ER-II	25.4	5.8	5.9	5.9	5.2	5.6	6.1	6.3	6.2	6.1	5.8	5.3	5.4
ER-III	62.0	19.8	19.9	20.1	17.9	18.8	21.0	21.3	20.9	20.9	20.1	18.2	18.6
ER-IV	28.2	5.8	5.2	4.5	4.2	4.9	4.2	5.5	4.7	4.1	3.6	4.6	5.0
		Pe	ercentage	the GG	distributio	on better f	itted con	npared to	Burr XI	I (%)			
ER-I	87.0	80.8	80.9	77.9	77.8	76.2	74.6	79.6	77.6	75.4	77.1	78.0	78.4
ER-II	79.2	65.8	66.1	62.9	62.5	63.3	61.3	65.2	63.2	59.3	60.6	63.6	64.9
ER-III	69.5	59.9	60.2	56.6	56.4	56.8	55.1	58.7	56.8	54.1	54.1	58.3	58.6
ER-IV	67.0	55.8	55.8	53.1	53.9	53.3	52.5	55.5	54.2	52.5	51.7	54.9	55.3

Figures

Figure 1. Locations of the 14,157 stations studied.

Figure 2. Estimated statistics of the monthly daily records analyzed; red box plots on the left are

Figure 4. Benchmark values for the SV-Test; the bars indicate the probabilities (the upper number is cumulative) corresponding to specific number of SIVR in the case of 12 randomly
generated numbers (no seasonality).

Figure 5. Results of the SV-Test applied to: (a) the probability dry, (b) mean value (c) Lvariation and (d) L-skewness.

Figure 6. Explanatory sketch of the four difference measures studied.

Figure 7. Box plots depicting the percentage change of the difference measures relative to the
average of all months for the four statistics studied. Each box plot is constructed by the values
determined from the stations studied. Outer fences indicate the 95% ECI.

Figure 8. Observed L-points for the month of January of the 14,157 daily precipitation records studied in comparison to the theoretical L-areas of (a) the BrXII distribution and (b) the GG distribution. Red-colored L-points lie outside the L-area; dark-colored indicate a Bell-shaped distribution; light-colored indicate a J-shaped distribution.

771 Figure 9. Percentage of empirical L-points lying within the L-areas of the GG and the BrXII

distributions.

theoretical L-areas of the GG and the BrXII distributions.

778 Figure 11. Estimated shape parameters of the GG and BrXII distributions using the method of L-

moments.

Figure 12. Probability plot of the fitted distributions to a specific station (station code
CA006158350) using the method of L-moments.

783

Figure 13. Box plots of the error measures that evaluate the fitting performance of the GG andBrXII distributions to daily precipitation of all months.

Figure 14. Box plots of the error measures of the fitting of the GG and BrXII distributions to themonthly daily precipitation records.

Figure 15. Comparison of the fitting performance of the two distributions; the values within the
bars indicate the percentage of stations in which each distribution was better fitted according to

the error measures.