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Abstract 6 

To characterize the seasonal variation of the marginal distribution of daily precipitation, it is 7 

important to find which statistical characteristics of daily precipitation actually vary the most 8 

from month-to-month and which could be regarded to be invariant. Relevant to the latter issue is 9 

the question whether there is a single model capable to describe effectively the nonzero daily 10 

precipitation for every month worldwide. To study these questions we introduce and apply a 11 

novel test for seasonal variation (SV-Test) and explore the performance of two flexible 12 

distributions in a massive analysis of approximately 170,000 monthly daily precipitation records 13 

at more than 14,000 stations from all over the globe. The analysis indicates that: (a) the shape 14 

characteristics of the marginal distribution of daily precipitation, generally, vary over the 15 

months, (b) commonly used distributions such as the Exponential, Gamma, Weibull, Lognormal, 16 

and the Pareto, are incapable to describe “universally” the daily precipitation, (c) exponential-tail 17 

distributions like the Exponential, mixed Exponentials or the Gamma can severely underestimate 18 

the magnitude of extreme events and thus may be a wrong choice, and (d) the Burr type XII and 19 

the Generalized Gamma distributions are two good models, with the latter performing 20 

exceptionally well. 21 
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1. Introduction 24 

“O, wind, if winter comes, can spring be far behind?”— P.B. Shelley 25 

Most geophysical processes exhibit seasonal variation, which implies an underlying regular 26 

pattern, which potentially enables a degree of predictability, utilizing the periodic changes of the 27 

process’s coarse behavior with time. This is exactly why it is important to correctly characterize 28 

the seasonal variability of geophysical processes. Among those, precipitation is one of the most 29 

important since it affects human lives significantly. Seasonality does not necessarily refer to the 30 

four standard seasons of the temperate zones, but it generally describes the within year 31 

variability. An effective scale to characterize seasonality is the monthly scale. Generally, 32 

planning and management of water resources systems, particularly those involving water supply 33 

(e.g. for irrigation) must take seasonality into account. 34 

 Precipitation may be represented as a stochastic process with two components: its marginal 35 

probability distribution and its dependence structure. We can reasonably expect these 36 

components to vary periodically if we study precipitation at any subannual time scale. 37 

Furthermore, it is rational to assume that the daily time scale is the finest time scale in which the 38 

seasonality could be studied without complications, because precipitation at subdaily scales may 39 

also be affected by earth’s daily rotation (the daily cycle). In practice, estimating and trying to 40 

reproduce the statistical characteristics of precipitation on a daily basis can be a laborious task 41 

and, most importantly, can have questionable reliability as the estimation of the various 42 

characteristics will be based on small samples. For this reason, daily precipitation is typically 43 

studied and modeled on a monthly basis assuming that within a specific month its statistical 44 

characteristics remain essentially invariant. Consequently, the daily precipitation process can be 45 

decomposed into 12 different processes with fixed month-to-month correlations and fixed 46 



monthly marginal distribution. Here we are not concerned with the autocorrelation structure but 47 

we focus on the monthly variation of the marginal distribution of the daily precipitation. 48 

 The marginal distribution of daily precipitation belongs to the so-called mixed type 49 

distributions and comprises two parts: a discrete part describing the probability dry and 50 

mathematically expressed as a probability mass concentrated at zero, and a continuous part 51 

spread over the positive real numbers describing probabilistically the amount or the intensity of 52 

nonzero precipitation. The probability dry, in general, can be easily assessed from empirical data 53 

as the ratio of the number of dry days over the total number of days, while the continuous part is 54 

usually modeled by a parametric continuous distribution fitted to nonzero values. Yet this 55 

distribution is not unique and in practice, as a literature review reveals, various distributions have 56 

been used for the nonzero daily precipitation. For example the Exponential distribution [e.g., 57 

1,2], mixed Exponentials [e.g., 3–5], the Gamma distribution [e.g., 6–8], the Weibull distribution 58 

[e.g., 9,10], the Lognormal distribution [e.g., 9,11], mixed Lognormals [12], power-type 59 

distributions like the two-, three- and four-parameter Kappa distributions [13–16], generalized 60 

Beta distributions [17], as well as the Generalized Pareto [e.g., 18] for peaks over threshold, and 61 

probably many more. 62 

 A question that can be raised based on the aforementioned studies and on many more is 63 

whether or not all of these distributions, some completely different with each other in structure, 64 

are indeed suitable for describing the probability of non-zero daily precipitation or they have 65 

prevailed and become popular for reasons such as simplicity. Additionally, most of these studies 66 

are of local character, i.e., they are based on the analysis of a limited number of precipitation 67 

records and from specific areas of the world. The exceptions are very few, e.g. in a study by 68 

Papalexiou and Koutsoyiannis [19] daily precipitation was analyzed in more than 10,000 stations 69 



worldwide. In practice, in most cases precipitation in modeled using exponential-type 70 

distributions like the Exponential distribution, the Gamma or mixed Exponentials. These, 71 

however, might not be adequate if the actual distribution of nonzero precipitation has a heavier 72 

tail than those light tail distributions and consequently may severely underestimate the 73 

magnitude and the frequency of extreme events. Actually, two recent studies [20,21], where 74 

daily precipitation extremes were analyzed in more than 15,000 stations worldwide, revealed that 75 

most of the records cannot be described by exponential-tail distributions but rather by 76 

distributions with heavier tails. 77 

  In this study the seasonal variation of the marginal distribution function of daily 78 

precipitation is analyzed to find which statistical characteristics of daily precipitation actually 79 

vary the most from month to month and which could be regarded to be invariant. Relevant to the 80 

latter issue is the question whether there is a single model capable to describe effectively the 81 

nonzero daily precipitation for every month and at every area of the world. Obviously these 82 

questions cannot be answered by local analyses. Therefore, here we perform a massive analysis 83 

approximately at 170,000 monthly daily precipitation records from more than 14,000 stations 84 

from all over the globe. 85 

2. The data 86 

The original database we use here is the Global Historical Climatology Network-Daily database 87 

(version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily) which comprises thousands of daily 88 

precipitation records from stations all around the globe. Nevertheless, we use only a part of these 89 

records as many of them are very short in length, contain a large percentage of missing values, or 90 

have values of questionable accuracy which are assigned with various quality flags (details on 91 

quality flags can be found in the website given above). For these reasons and in order to create a 92 



robust subset of records with ensured quality we chose only those having: (a) record length 93 

longer than 50 years, (b) missing values less than 20% and, (c) values assigned with quality flags 94 

less than 0.1%. As an additional measure to ensure the quality of the data we deleted all values 95 

assigned with flags “G” (failed gap check) or “X” (failed bounds check) as these flags are used 96 

for unrealistically large values. Fortunately, only 594 records in total had such values and 97 

typically no more than one or two values per record. The resulting subset comprises 15,137 98 

stations. 99 

 Although this study concerns the monthly daily precipitation we analyze also the daily 100 

precipitation of all months as in some cases, especially for design purposes, we are not interested 101 

about the month that an event occurs but just on its exceedance probability or else on its return 102 

period. In this case monthly daily values can be merged and treated as represented by a single 103 

random variable (note that the term “daily precipitation” refers to daily precipitation values of all 104 

months while the term “monthly daily precipitation” refers to the daily precipitation values of 105 

individual months). From each station we formed 13 different records, one for all daily values 106 

and 12 for the monthly daily values, resulting in a total of 196,781 different records. 107 

Nevertheless, some months for stations located in very dry areas have very few nonzero 108 

precipitation values or even none so that estimation of the various important statistics would be 109 

highly uncertain or even impossible (e.g., estimation of L-skewness needs at least three values). 110 

To overcome this problem we constrained the minimum sample size of monthly nonzero 111 

precipitation values; so among the 15,137 records initially chosen we finally selected those 112 

having at least 20 nonzero values for each month resulting in a total of 14,157 stations and 113 

consequently 169,884 monthly daily records were formed. The locations of these stations and 114 

their corresponding lengths in years are given in the map of Figure 1. Note that in some areas the 115 



map cannot provide the clear picture of the record length distribution. For example in the USA, 116 

the network of stations is very dense and inevitably points overlap, so that, below the layer of 117 

points representing high record lengths, other points exist representing smaller records lengths. 118 

3. Seasonal variation 119 

3.1 Statistics studied 120 

To assess the seasonal variation of daily precipitation we study representative statistics of the 121 

marginal distribution on a monthly basis. Additionally, in order for the study to be more 122 

complete as well as for comparison purposes we estimated these statistics for the daily 123 

precipitation values of all months too (indicated with “All” in the figures). Particularly, we 124 

studied: (a) the probability dry, (b) the mean value, (c) the L-variation, and (d) the L-skewness. 125 

The probability dry expresses the discrete part of the marginal distribution and is simply 126 

estimated as the ratio of dry days to total days. The latter three are statistics for the continuous 127 

part of the marginal distribution describing the nonzero precipitation, which are calculated using 128 

only nonzero precipitation values.  129 

 The mean value of nonzero precipitation is a classical measure of central tendency while 130 

L-variation τ2 = λ2/λ1 and L-skewness τ3 = λ3/λ2, defined as ratios of L-moments λi [22], are 131 

dimensionless measures of the distributional shape. L-ratios are preferable over ratios based on 132 

the classical moments like the coefficients of skewness and kurtosis as they exhibit better 133 

statistical properties, e.g., they are more robust [see e.g., 23]. Additionally, L-kurtosis (defined as 134 

τ4 = λ4/λ2) is also commonly used as a measure of shape, yet for positive random variables L-135 

variation is well defined and actually is more robust and more convenient as it is bounded in 136 

[0,1]. Usually, L-variation or even the classical coefficient of variation (defined as the ratio of 137 

standard deviation to the mean value) are interpreted as standardized measures of variance; 138 



indeed, they express, respectively, the value of the second L-moment λ2 and the value of the 139 

standard deviation of a distribution having mean value equal to 1. Yet for positive random 140 

variables, where actually these coefficients are meaningful, both depend on the distribution’s 141 

shape parameters only or are constants if the distribution does not have shape parameters, and 142 

thus, they are essentially measures of distributional shape. 143 

 As already noted, we anticipate from our experience the probability dry to vary over the 144 

months in most areas of the world. Additionally, it may seem obvious that the monthly mean 145 

value of daily precipitation (including zero values) will vary too as it is directly related to 146 

probability dry, e.g., a larger number of rainy days on average in a month logically will increase 147 

the monthly mean (estimated as the record’s total monthly precipitation divided by the total 148 

number of month’s days). However, it is not that evident that the mean value of the monthly 149 

nonzero daily precipitation (estimated as the record’s total monthly precipitation divided by the 150 

total number of the month’s rainy days) will vary over the months (during rainy days it could be 151 

possible to rain on average the same amount irrespective of the month). Finally, our perception 152 

on precipitation may lead us to assume that extreme precipitation varies with season, e.g., it is 153 

well-known that specific weather mechanisms, responsible for extreme precipitation, are linked 154 

with specific seasons. Consequently, this may imply that the shape characteristics of 155 

precipitation distribution change over seasons, as the distribution’s shape, particularly the right 156 

tail, controls the frequency and the magnitude of extreme events. Yet this assumption may be 157 

false as extreme precipitation may emerge by a change in the scale or else in the variance of 158 

precipitation and not necessarily by a change in its shape characteristics. For these reasons 159 

whether or not the distributional shape characteristics vary with season needs to be investigated 160 

and verified. 161 



3.2 Variation in the hemispheres 162 

Northern Hemisphere (NH) and Southern Hemisphere (SH) have opposite seasons and thus, it is 163 

reasonable to assume that natural processes under seasonal variation exhibit different behavior 164 

between the two hemispheres. This may be generally valid, especially for processes like the 165 

surface temperature, yet precipitation is a more complex process that may be affected more by 166 

regional climate conditions. For example, the celebrated Köppen climate classification [see e.g., 167 

24,25], which classifies climate according to the annual and monthly average temperature and 168 

precipitation, defines several different types and subtypes of climate for each hemisphere. Thus, 169 

different precipitation patterns may appear even in adjacent areas of the same hemisphere. 170 

 Nevertheless, a first coarse approach that could provide a general picture is to present the 171 

seasonal variation of the statistics by hemisphere. Among the 14,157 stations analyzed, 8447 172 

belong in the NH and 5710 in the SH. The aforementioned statistics, i.e., the probability dry, 173 

mean value, L-variation and L-skewness, were calculated for the monthly daily precipitation of 174 

each station; their averages and standard deviations are given, for each hemisphere and 175 

additionally for the whole globe, in Table 1. Furthermore, a better picture is provided by the box 176 

plots given in Figure 2 which present these statistics on a monthly basis and for each hemisphere. 177 

The left (red) box plots are for the NH while the right (gray) are for the SH while the box plot’s 178 

inner lower and upper fences that define the box indicate, respectively, the 25% and 75% 179 

empirical quantile points and thus define the empirical interquartile range (IQR) or the 50% of 180 

the central values. The line within the box indicates the median, while the lower and upper 181 

fences of the whiskers indicate, respectively, the 5% and 95% empirical quantile points or else 182 

they define the 90% empirical confidence interval (ECI) of the studied statistics. It should be 183 

clear that results presented for each hemisphere express the average and standard deviation 184 



values of the stations analyzed in each hemisphere and may not be representative values for the 185 

whole hemisphere (especially in the SH where stations are situated in few areas). Estimation of 186 

representative hemisphere values, if possible, would demand spatial integration which is out of 187 

the scope of this study. 188 

 As we see in Figure 2, the probability dry in NH exhibits the typical behavior we have in 189 

our minds for NH, i.e., dry summer months and wet winter months. Particularly, if we focus on 190 

the median of each box plot it exhibits a sinusoidal-like variation, so it seems that most stations 191 

in NH have this pattern. Surprisingly, the corresponding pattern in SH is not clear at all; if we 192 

focus on the median, although it resembles a sinusoidal-like function, clearly, it is not the 193 

familiar and the anticipated one as it has three “local” peaks, i.e., in January, April and August. 194 

We also note that the IQR seems to vary irregularly and does not follow the variation of the 195 

median. Of course, this does not imply the absence of seasonality in probability dry in the SH, as 196 

this result can easily emerge if we assume several different patterns for the studied stations. Also, 197 

it is interesting that the variation of the median in both hemispheres is not very large, especially 198 

in the SH, yet the range of the 90% ECI is very wide expressing the large variation of probability 199 

dry around the world. 200 

 The mean value of the nonzero precipitation in both hemispheres, as Figure 2 shows, 201 

exhibits a clear seasonal pattern, which reminds that of the surface temperature. Specifically, NH 202 

and SH show essentially a contrasting behavior to each other, yet in terms of seasons the 203 

behavior is the same, i.e., the warm months in both hemispheres are those with the highest 204 

average nonzero daily precipitation. This behavior though is not in full correspondence as in NH 205 

the minimum and the maximum mean values (comparing the medians) are, respectively, in 206 

January and in September, while the corresponding values in the SH are observed, respectively, 207 



in August and in February. Remarkably, for the NH the average nonzero daily precipitation 208 

pattern is in contrast with probability dry implying greater precipitation depths in rainy days of 209 

dry months than of wet months. Yet this is not absolutely precise as the driest moths are from 210 

June to August while those with the highest average of nonzero daily precipitation are from July 211 

to September; additionally, the lowest value in probability dry is in July while the peak average 212 

value is in September. This contrast seems not to be valid for the SH as the probability dry 213 

exhibits an irregular pattern. 214 

 Figure 2 also reveals a marked monthly variation pattern for L-variation and L-skewness. 215 

Similarly to the average of nonzero daily precipitation, both statistics exhibit a contrasting 216 

behavior between the two hemispheres; but again, comparing the medians, high and low values 217 

are observed, respectively, at warm and cold months. A comparison between the two shape 218 

statistics shows that L-variation and L-skewness in SH show an almost identical pattern with the 219 

only difference being in the lowest value which is observed one month later for L-skewness. 220 

Additionally, L-variation in NH takes its lower values around February while L-skewness around 221 

April. Generally, the monthly variation of both statistics (based on their medians) is small, i.e., in 222 

both hemispheres L-variation and L-skewness range, respectively, from 0.55 to 0.6 and from 223 

0.42 to 0.47. However, the IQR or the 90% ECI is much wider in the SH compared to NH. 224 

Comparing the shape statistics with the mean value of daily precipitation, we note an agreement 225 

in the general pattern in SH, while in NH especially for L-skewness the difference in the patterns 226 

is significant. 227 

3.3 A simple test to identify seasonal variation 228 

All previous comparisons based on the monthly box plots of the statistics indicate clear seasonal 229 

variation patterns; a surprising exception is the probability dry of the SH. Nevertheless, both the 230 



IQR and the 90% ECI of all those statistics are much wider allowing at least theoretically a 231 

portion of the stations studied to have different patterns than the characteristic one indicated by 232 

the medians in Figure 2. 233 

 As mentioned, we intuitively anticipate some characteristics of daily precipitation like the 234 

probability dry to vary with season, yet this it is not self-evident, e.g., for distributional shape 235 

measures like L-variation and L-skewness. When dealing with a small number of records it is 236 

relatively easy to assess if a statistic varies with season using simple means, e.g., a plot of the 237 

statistic vs. month would reveal the variation pattern. Yet when dealing with thousands of 238 

stations, an “eyeball” technique would be insufficient or even subjective. For this reason we form 239 

here a simple test to assess and quantify the seasonal variation of the various statistics we 240 

investigate. 241 

 Seasonal variation evokes sinusoidal-like functions; however, even if a statistic is expected 242 

to obey a sinusoidal-like law, its sample counterpart may deviate significantly from the 243 

anticipated law due to sample variability commonly caused either by sampling uncertainty, 244 

particularly for small samples, or by non-robust estimators, or even from local weather 245 

characteristics modifying the expected behavior in some months. This implies that a precise 246 

sinusoidal variation may not be common to observe and thus a test based on these characteristics 247 

would be inflexible and probably with doubtful efficacy. For this reason, we propose here a non-248 

parametric test allowing for the statistic under investigation to deviate from the exact sinusoidal 249 

form. 250 

 The seasonal variation test (SV-Test) is described in the following steps: (a) the desired 251 

statistic is calculated for each month, (b) the numbers 1 and −1 are assigned, respectively, to 252 

monthly values smaller and larger than the median of all months, (c) this sequence is rotated 253 



until the first and the last value have different signs, (d) this sequence is split into sub-sequences 254 

consisting of identical-value runs (SIVR), (e) the number of SIVR is calculated.  255 

 Note that step (c) is necessary to simplify the test and estimate less benchmark values by 256 

the Monte Carlo process described in sequence. Particularly, if step (c) is not applied then two 257 

cases should be studied, i.e., one when the sign between the first and last value differs, and one 258 

when it is the same. Given that six values will equal 1 and six −1 (that emerges by the definition 259 

of the median value) it can be proven that if the sign differs then the number of feasible SIVR 260 

that a sequence consisting 1 and −1 can be split is 2, 4, 6, 8, 10 or 12 if all values are alternating. 261 

In the other case an odd number of SIVR would emerge, i.e., 3, 5, 7, 9 or 11. Also, step (c) 262 

ensures that the resulting number of SIVR is the minimum, e.g., a sequence starting and ending 263 

with the same sign having 11 SIVR if it is rotated in order the first and last sign to differ it will 264 

have 10 SIVR. 265 

 The resulting number of SIVR quantifies seasonality. If the considered statistic exhibits a 266 

sinusoidal-like seasonal variation the SV-Test will result exactly in two SIVR. Figure 3 depicts 267 

an explanatory sketch of the SV-Test showing the monthly values of a statistic after rotation so 268 

that the first and the last value are in opposite sides of the median; even though the statistic does 269 

not resemble exactly a sinusoidal law, the application of the test results in two SIVR revealing 270 

the seasonality that is visually apparent. We could also expect that four SIVR still reveal 271 

seasonal variation as they could easily emerge if the statistic’s sample estimates are sensitive, 272 

e.g., if the December’s value in the graph of Figure 3 was above the median, then four SIVR 273 

would result. It seems reasonable to assume that a larger resulting number of SIVR indicates 274 

random variation or a variation that does not resemble the “familiar” seasonal variation.  275 



 One could argue that the previous interpretation of the resulting number of SIVR is 276 

subjective, e.g., it could be assumed that two or four SIVR could easily emerge even if there is 277 

no seasonal variation due to randomness. Thus, in order to make the SV-Test complete we need 278 

benchmark values for reference and comparison. The idea is to find the probability for each 279 

feasible number of SIVR to emerge in the case where the variation of a statistic is random. 280 

Theoretically, this problem can be solved analytically using combinatorics, yet it is not that easy; 281 

in contrast a Monte Carlo approach can easily provide the answer. In this direction, we apply a 282 

Monte Carlo simulation summarized in three simple steps: (a) we generate 10
6
 samples 283 

consisting of 12 random numbers each, (b) we apply the SV-Test to estimate the resulting 284 

number of SIVR for each sample, and (c) we calculate the probability for each feasible number 285 

of SIVR as the ratio of the times that this number of SIVR emerged to total number of samples 286 

(10
6
).  287 

 The results are graphically depicted in Figure 4 where the first number above the bars 288 

indicates the probability for a specific SIVR number to occur and the second number above the 289 

bars indicates the cumulative probability, e.g., the probability for up to four SIVR to occur is 290 

17.6%. Accordingly, if a statistic varies randomly the probability for two SIVR is only 1.3% and 291 

for four is 16.3%, while the most probable numbers of SIVR are six and eight with probabilities 292 

43.3% and 32.5%, respectively. This implies that if the studied statistic does not exhibit seasonal 293 

variation then application of the test will result in more than two SIVR with probability 98.7% 294 

and in more than four SIVR with probability 82.4%, and thus, we can safely assume that not only 295 

two but also four SIVR indicate seasonal variation. 296 



3.4 Application of the test 297 

We applied the SV-Test for each station and for the four aforementioned statistics with the 298 

results presented in Figure 5. The SV-Test verifies, as we see in Figure 5a, that indeed 299 

probability dry exhibits seasonal variation with 64.1% of the stations resulting in two SIVR and 300 

with only 4.9% of the stations resulting in more than four SIVR indicating random variation. 301 

Similar results are obtained for the mean value of the nonzero daily precipitation, given in Figure 302 

5b, with only 8.3% of the stations resulting in more than four SIVR.  303 

 The results of the SV-Test regarding the shape characteristics of the nonzero daily 304 

precipitation, i.e., the L-variation and the L-skewness are depicted, respectively, in Figure 5c and 305 

Figure 5d. The first we note is that the profile of the two graphs is completely different from the 306 

“benchmark” graph describing the random case in Figure 3; however, the results are not as clear 307 

as for the probability dry or for the mean value case. We see that the most common SIVR 308 

number is four, both for L-variation and for L-skewness, with 36.9% and 34.5%, respectively. 309 

Nevertheless, two or four SIVR (numbers indicating seasonal variation) emerge at 66.2% of 310 

stations for L-variation and at 54.5% of stations for L-skewness, while the corresponding value 311 

for the random case is much smaller, i.e., 17.6%. Additionally, two SIVR are observed in 29.3% 312 

and 19.7% of the records for L-variation and L-skewness, respectively. These percentages are 313 

much larger than 1.3%, which corresponds to the random case. Finally, the seasonality signal is 314 

it is much stronger for L-variation than for L-skewness, a difference that may attributed in the 315 

fact that estimation of L-variation is more robust than L-skewness. 316 

3.5 Why and how much statistics vary? 317 

Studying the statistics by hemisphere as well as the results of the SV-Test revealed that seasonal 318 

variation occurs not only in probability dry and in the mean value of nonzero precipitation but 319 



also in the shape characteristics. This implies that the marginal distribution varies over the 320 

months, yet the mechanism of this variation is not clear. Particularly, different aspects of the 321 

precipitation process are interrelated. For example, the distributional shape variation may be 322 

affected by seasonal variation of the average storm duration. To clarify by an example, let us 323 

consider the random variables X and Y representing, respectively, the amount of nonzero 324 

precipitation at the daily and at a much finer time scale, e.g., the one-minute scale, and let us 325 

assume that the marginal distribution of Y does not have seasonal variation; then the distribution 326 

function of X emerges by the n-term sum of Y variables where n corresponds to the storm 327 

duration in minutes in that particular day. Cleary, if the average storm duration varies per month, 328 

then the “average” n-term sum will vary too and hence the distribution of X. This issue raised can 329 

only be answered by an analysis of fine temporal scale data which is not the subject of this 330 

particular study. 331 

 In order to quantify the seasonal variation of the studied statistics per station we define four 332 

difference measures relative to the statistic’s average value of all months. These measures are 333 

illustrated in the sketch of Figure 6 depicting the monthly variation of a statistic. Particularly, we 334 

define the i-th monthly difference i iD V μ   as the difference between the i-th month statistic’s 335 

value Vi and the average of all Vi denoted as μ. Negative differences (blue lines in the graph) are 336 

denoted with DN and their average with ND ; likewise, DP denotes positive differences (red lines 337 

in the graph) and PD  denotes their average. Additionally, Dmin and Dmax denote, respectively, the 338 

minimum and the maximum difference with reference to μ. Note that this analysis in performed 339 

for each individual station and does not provide any comparison between different stations.  340 

 The difference measures ND , PD , Dmin and Dmax are calculated in terms of percentage 341 

change (PC) in respect to the average μ, i.e., PC 100 /D μ  with D being any of the four 342 



difference measures. The first two measures can be interpreted as the “expected” or the average 343 

negative or positive percentage change in reference to the monthly average while the latter two 344 

indicate the minimum or maximum percentage change in reference to the monthly average. We 345 

calculated the percentage change of these measures for each station and for the four statistics 346 

studied. The results are given in Figure 7 in the form of box plots (note that the PC of the 347 

negative differences ND  and Dmin is given in absolute values for better presentation). 348 

 A first look in the box plots indicates that the largest monthly variation is observed in the 349 

mean value of the nonzero precipitation, followed by the probability dry, next by L-skewness 350 

and last by L-variation exhibiting the lowest variability. Particularly, the IQR of the nonzero 351 

precipitation mean value, which represents the 50% of the central values, for Dmin and Dmax 352 

ranges, respectively, from −45.2% to −22.8% and from 25.5% to 50.6%; these values indicate a 353 

large variability around the average. These ranges are lower for the probability dry where the 354 

IQR of Dmin and Dmax ranges, respectively, from −24.3% to −9.2%) and from 8.2% to 19.2%. 355 

Regarding L-skewness we observe that 75% of the records have percentage change of Dmin and 356 

Dmax less than −17.7% and 20.4%, respectively, while the corresponding percentages for the L-357 

variation are −9.5% and 10.7%. Comparing the box plots of the distributional shape measures, 358 

i.e., the L-variation and L-skewness, with the box plots of the probability dry and of the mean 359 

value we observe that in the first two cases ND  and PD  vary at a lower level relative to Dmin and 360 

Dmax than in the former two cases. This may indicate that the “expected” difference from the 361 

monthly average, expressed by ND  and PD , for L-variation and L-skewness for most of the 362 

months is “small”; yet the “extreme” differences, expressed by Dmin and Dmax, are relatively 363 

large; or else, this indicates that the marginal distribution of nonzero daily precipitation for most 364 

of the months does not vary much in terms of shape. 365 



4. In search for the “universal” precipitation model 366 

4.1 Candidate models 367 

The shape characteristics of nonzero daily precipitation, as empirical evidence suggests, vary not 368 

only with location but also by month; this implies that the consistent probabilistic modeling of 369 

nonzero daily precipitation demands different models for different areas and possibly for 370 

different months. So it would be of paramount importance if a single parametric distribution can 371 

be used for nonzero daily precipitation for all months and for the whole world. The fact that 372 

distributional shape varies excludes, in principle, distributions with fixed shape, thus favoring 373 

those with great shape flexibility. Additionally, we deem that a competitive model should also be 374 

physically consistent with precipitation, i.e., defined in the positive real axis, and if possible 375 

having a theoretical basis. In this direction, in a previous study [19] we used the principle of 376 

maximum entropy to derive consistent distributions for geophysical random variables. These 377 

entropy derived distribution were tested in their ability to describe the nonzero daily precipitation 378 

(but not in a monthly basis) using more than 10,000 stations with very good results. 379 

 The distributions derived in the aforementioned study, and also used here are the Burr type 380 

XII distribution (BrXII) [26,27] and the Generalized Gamma distribution (GG) [28]. Their 381 

probability density functions are given, respectively, by 382 
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Note that the parameterization we use here for the BrXII is different from the most typical found 385 

in the literature; first, it clearly shows its asymptotic behavior (for 2 0γ   the Weibull 386 

distribution emerges) and second, the two shape parameters are directly related to each of the 387 

distribution tails (left and right). Regarding the parameterization of GG distribution we mention 388 

that other forms also exist but this is one of the commonly used. 389 

 Both distributions are very flexible, each comprising one scale parameter β > 0, and two 390 

shape parameters. The shape parameter γ1 > 0 controls the behavior of the left tail, i.e., for γ1 < 1 391 

the distributions are J-shaped while for γ1 > 1 they are bell-shaped; the parameter γ2 > 0 controls 392 

the asymptotic behavior of the right tail, i.e., the “heaviness” of tail and thus the frequency and 393 

the magnitude of extreme events. It is noted that although these two distributions have a 394 

structural similarity in terms of their parameters, in principle, they differ, i.e., the BrXII 395 

distribution is a power-type distribution having finite moments up to order 1/γ2 while the GG 396 

distribution is of exponential form with all of its moments finite. Some well-known special cases 397 

worth mentioning for the BrXII distribution are the Pareto type II and the Weibull distributions 398 

(limiting case), while for the GG distribution, special cases are the Weibull, the Gamma and the 399 

Exponential distributions. 400 

4.2 A first approach based on L-moments 401 

There are some useful graphical tools, especially when dealing with a large number of records, 402 

which help to provide an overall and general picture of the studied variable from a statistical 403 

point-of-view. Such a tool for identifying suitable distributions for the variable under 404 

investigation is the L-moments ratio diagram [see e.g., 29,30]. Essentially, this diagram provides 405 

a comparison between observed statistics calculated from the records and the theoretical ones 406 

emerging by the distribution under investigation. Practically, any pair of L-ratios could be used 407 



to form an L-ratio diagram; yet the most common pairs are the L-skewness vs. L-variation or the 408 

L-kurtosis vs. L-skewness, with the latter being more popular in the literature as L-variation is 409 

not well defined for some distributions, e.g., for distributions with mean value zero or negative. 410 

Nevertheless, as noted, L-variation is well defined for positive random variables and is more 411 

robust than L-kurtosis. 412 

 L-ratios as functions of the distribution’s shape parameters are essentially measures of 413 

shape. Thus, in an L-ratio diagram a distribution with none, one or two shape parameters forms, 414 

respectively, a point, a line or an area. Consequently, the aforementioned distributions, in any L-415 

ratio diagram, form an area (denoted as L-area) whose extent is finite (does not cover the entire 416 

plane). Here we use the L-skewness vs. L-variation diagram aiming to form the theoretical L-417 

area of the BrXII and the GG distributions and calculate the percentage of the observed L-points 418 

that lie within the L-area of each distribution and for each month. An observed point that lies 419 

within the distribution’s theoretical L-area implies that specific parameter values exist so the 420 

distribution can reproduce the first three L-moments. Practically, the theoretical L-area of a 421 

distribution is formed using equations of τ2 and τ3. Unfortunately, analytical L-moment 422 

expressions for the GG distribution do not exist; exception is the first L-moment (identical with 423 

the mean value) and is given by 424 
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    is the Gamma function. In contrast, for the BrXII distribution, 426 

solving the L-moments definition integrals [see e.g., ,22], we found the following expressions: 427 
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where    
1 11

0
B , 1 d

baa b t t t
   is the Beta function. The two parametric equations 431 

1 2( , )i iτ g γ γ  given in equations (0) and (0) can be used to implicitly determine the L-area. 432 

Functions of this form, and in this particular case, can be easily plotted by fixing one parameter 433 

to a specific value, varying the other in a dense grid and plotting the resulting (τ2, τ3) points. The 434 

method for determining the theoretical L-area covered by the GG distribution is exactly the 435 

same, with the only difference that (τ2, τ3) points are calculated by the numerical integration of 436 

the L-moments integrals.  437 

 The theoretical BrXII and GG L-areas are depicted in Figure 8, with several fixed-value 438 

parameter lines also plotted. For the BrXII distribution values ranging from 1 to 10 (lower 439 

bound) denote fixed γ1 parameter values while those ranging from 0.1 to 0.9 (upper bound) 440 

denote fixed γ2 parameter values. Similarly, for the GG distribution values ranging from 0.5 to 6 441 

(lower bound) denote fixed γ1 parameter values while those ranging from 0.5 to 10 (within the 442 

area) denote fixed γ2 parameter values. The observed L-points of the nonzero daily precipitation 443 

for the month of January are also shown in Figure 8, superimposed over the L-areas (graphs for 444 

individual months as well as for the nonzero daily precipitation of all months are given as 445 

supplementary material). At each plot empirical points are colored in three ways; the red-colored 446 



points lie outside the area; the dark-colored indicate a Bell-shaped distribution; the light-colored 447 

indicate a J-shaped distribution. Interestingly, the GG and the BrXII distributions are 448 

complementary in the sense that the observed L-points not belonging to one’s area belong to the 449 

other’s, implying that just these two distributions can describe all records analyzed here. Note 450 

that both distributions are special cases of the Generalized Beta of the second kind distribution 451 

[see e.g., 17,19], but this distribution is more complicated as it comprises one scale and three 452 

shape parameters. 453 

 Particularly, Figure 9 shows the estimated percentages of the observed L-points of monthly 454 

daily precipitation lying within the area. We also display the percentages of J- and Bell-shaped 455 

distributions that would emerge if the distributions were actually fitted. It is apparent that both 456 

distributions, especially the GG distribution, perform very well. For example, the GG 457 

distribution describes 99.2% of the observed L-points for the values of all months, while the 458 

lowest percentage, observed in January, remains very high, i.e., 94.2%. The BrXII distribution 459 

also performs well by managing to describe 90.0% of the observed L-points for the values of all 460 

months and with its lowest percentage observed in May with 81.0%. We note that the actual 461 

percentages of the observed points that lie within the theoretical areas are expected to be even 462 

higher if larger samples were available. Clearly, the variability of the statistics decreases with 463 

increasing sample size and thus many points that lie outside the area actually would not if the 464 

sample was larger. Actually, this is the reason why the percentage of the observed L-points for 465 

the values of all months is higher than those of individual months. Finally, it may seem peculiar 466 

that the percentages of J-shaped GG distributions are significantly lower (almost half) compared 467 

to those of the BrXII distributions. This implies that for the same record a J- and a Bell-shaped 468 

distribution may be fitted equally well in terms of L-moments. Note that a density function f (x) 469 



is called J-shaped if the value of f (x) at its lower bound (zero for positive random variables) is 470 

the maximum, i.e.,  (0) max ( )f f x ; otherwise, the distribution is called Bell-shaped. This 471 

simple criterion may however be meaningless in several practical situations, e.g., two GG 472 

distributions with γ1 values a little less and a little more than 1 would be characterized, 473 

respectively, as J- and Bell-shaped, yet apart from this difference they are almost identical.  474 

 The previous analysis gave a clear indication that both the GG and the BrXII distributions 475 

are very good models for describing precipitation. Yet an important and more specific question 476 

that naturally arises is if a single distribution can be used to describe all months within the same 477 

station; in order to answer this question an analysis by record has to be performed. To clarify, 478 

each record has 12 L-points, one for each month, so the idea is to estimate the number of 479 

monthly L-points per station that lie within the theoretical L-area. For example, if all monthly 480 

points of a station lie within the distribution’s area, then this distribution could be used for all 481 

months in this particular station. The results are shown in Figure 10. Evidently, in this test the 482 

GG distribution performs much better than the BrXII, as it can be used as an all-month model for 483 

78.8% of the stations, a percentage almost double than the corresponding one to the BrXII 484 

distribution which is 43.2%. Additionally, the percentage of record in which the GG distribution 485 

is suitable for more than ten months is very high, i.e., 95.6% while the corresponding one for the 486 

BrXII it has significantly increased to 69.5%. 487 

4.3 The actual fitting 488 

The previous analysis showed that both distributions can describe a very large percentage of the 489 

records in terms of the first three L-moments. Additionally, it is very important to study the 490 

actual values of the shape parameters, especially of the parameter γ2 as it controls the extreme 491 

behavior. As noted though, the GG distribution does not have analytical L-moments equations 492 



while in the BrXII case, where analytical formulas exist, the resulting system of equations 493 

between theoretical and sample estimates can only be solved numerically. So it is clear that 494 

explicit functions, easily applicable, of the form θ = g(λ1,τ2,τ3) that relate any of the distribution’s 495 

parameter θ with the first three L-moments measures cannot be formed. 496 

 In order to create a fitting method for both distributions that is based on L-moments and is 497 

accurate and fast to apply, we approach the problem inspired by the way engineers and 498 

statisticians used to practice in the past (or even at present) using the “good-old” graphical tools 499 

(e.g., nomograms). For example, the shape parameters γ1 and γ2 can be approximately estimated 500 

by placing an observed (τ2,τ3) point within the L-ratio diagram in Figure 8 and do an “eyeball” 501 

linear regression using the nearest fixed-value parameter lines surrounding the observed point. 502 

Essentially, our approach is an accurate and computerized version of this technique, i.e., the 503 

algorithmic “translation” of a (τ2,τ3) point to a (γ1,γ2) point. The basic idea is to “replace” the 504 

initial functions of L-variation and L-skewness, which are highly nonlinear and without 505 

analytical expressions in the GG case, with simple linear interpolation functions that can be more 506 

easily handled. First, we calculate τ2 = g2(γ1,γ2) and τ3 = g3(γ1,γ2) from the initial expressions (g2 507 

and g3 are analytical expressions or integrals numerically estimated) in a very dense and 508 

appropriately selected grid of (γ1,γ2) points; and second, from the (γ1,γ2,τ2) and (γ1,γ2,τ3) points we 509 

form the bivariate linear interpolation functions τ2 = h2(γ1,γ2) and τ3 = h3(γ1,γ2) (note that any 510 

mathematical software creates easily bivariate interpolation functions). Replacing τ2 and τ3 in 511 

these equations with their counterpart estimates 2τ̂  and 3τ̂  we can form a square error norm that 512 

can be numerically minimized. Particularly, the estimated shape parameters γ1 and γ2 are those 513 

emerging by the following expression 514 
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Once the parameters γ1 and γ2 are estimated for either distribution the trivial scale parameter β 516 

can be directly estimated from the corresponding expression of the first L-moment λ1 given in 517 

Eq. (0) and Eq. (0). As a final technical detail we note that we tested the fitting method to 518 

millions of random points to assess its accuracy and to define the parameters’ range where the 519 

method works essentially without estimation error. As we have observed for the GG distribution 520 

these ranges are 10.2 10γ   and 20.1 10γ  , while for the BrXII distribution they are 521 

10.2 10γ   and 20.001 0.9γ  . If the fitting procedure resulted in parameters outside these 522 

ranges it was considered inaccurate. 523 

 The estimated values of the shape parameters for both distributions are presented in the 524 

form of box plots in Figure 11 while some of their basic summary statistics are given in Table 2. 525 

Considering the theoretical range of the parameters, i.e., (0, ∞), of both parameters and for both 526 

distributions it is apparent that they actually vary in a narrow range as the 95% empirical 527 

confidence intervals indicate in Figure 11 (outer fences of the whiskers). For the GG distribution 528 

the median of the parameter γ1 for all months ranges from 1.08 to 1.23 while for all month and 529 

for most of the records γ1 > 1 indicating bell-shaped densities. The average of all monthly 530 

medians of the parameter γ2 is approximately 0.59 with the majority of records having γ2 < 1 531 

indicating a heavier tail than the exponential or the Gamma tail [see also ,21]. The median values 532 

of the BrXII γ1 parameter for all months are close to 1; actually the average of all monthly 533 

medians is 0.97, a value very close to the Pareto type II value, i.e., γ1 = 1. Additionally, we note 534 

that more than 50% of the records have γ1 < 1 indicating J-shape densities and verifying also the 535 

results presented in Figure 9. Finally, the monthly median values of the γ2 parameter vary in a 536 



narrow range, i.e., form 0.19 to 0.25, while the upper limit in the 95% ECI is for all months 537 

(except January) less than 0.5, indicating finite variance distributions. 538 

4.4 Performance of the models 539 

The GG distribution as the analysis showed is able to describe more records than the BrXII. Yet 540 

as the two distributions differ significantly in the behavior of the tail, as the former is of 541 

exponential form and the latter is power type, it is useful to compare them in terms of some 542 

fitting error measures. Obviously, the comparison is possible only for the samples in which both 543 

distributions were fitted. For example Figure 12 presents a probability plot of the fitted 544 

distributions to the (nonzero) daily precipitation values of a station (station code CA006158350). 545 

Clearly, both distributions fit well and it is evident that the BrXII distribution has a heavier tail 546 

and thus for small exceedance probabilities (large return periods) predicts larger values. 547 

 In order to evaluate and compare the fitting performance of the distributions we define the 548 

following four error measures 549 
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where ( ) ( ) ( )
ˆΔ i i ix x x  is the difference between the predicted value x(i) and its corresponding 554 

observed one ( )
ˆ

ix  with the index i indicating the position in the ordered sample, i.e., 555 

(1) ( )
ˆ ˆ, , nx x  . The predicted value is estimated by the quantile function of each distribution, 556 



i.e.,  ( ) ii Xx Q p , using the corresponding empirical probability according to the Weibull 557 

plotting position, i.e.,      /   1 ip i n  . Thus, ER-I is the mean value of the absolute differences of 558 

all sample values and provides an overall measure of fitting performance; ER-II is focused on the 559 

last m largest sample values and may be seen as a fitting measure to the extreme values or to the 560 

tail (here we set m = 10); ER-III is the absolute maximum difference identified between observed 561 

and predicted values and does not necessarily correspond to the sample’s maximum value; ER-562 

IV is focused on the percentage difference between the predicted maximum value and the 563 

maximum observed value with negative and positive differences implying, respectively, 564 

underestimation or overestimation of the maximum value by the fitted distribution. 565 

 The results are presented in Figure 13 (box plots of the four error measures for the values 566 

of all months) and in Figure 14 (box plots for the individual months). Additionally, Table 3 567 

shows, for all months and for individual months, the number of records that were actually 568 

compared (both distributions fitted) as well as the averages of the error measures. In general, as 569 

the box plots and the values of Table 3 reveal, the GG distribution according to all error 570 

measures performs better than the BrXII. If we focus on the ER-IV, which estimates the 571 

percentage difference between the predicted and the observed maximum value, we note that the 572 

GG distribution performs exceptionally well. For example for all months (Figure 13) this 573 

estimate is essentially unbiased while the 95% ECI is between −45.6% and 52.2%; in contrast, 574 

the BrXII overestimates the maximum on average 28.2% (see Table 3) while the 95% ECI is 575 

much wider, i.e., from −35.9% to 120.0%. Yet the performance of the BrXII distribution 576 

improves for each specific month separately (Figure 14) where the average overestimation per 577 

month for the BrXII is 4.7% (estimated form the values of Table 3) while the GG distribution 578 

underestimates on average the maximum value by −2.2%. Finally, the percentage of the records 579 



in which the GG distribution was better fitted according to the four error measures are also given 580 

in Table 3 while a side-by-side comparison of the two distributions is presented in Figure 15. 581 

Apparently, the GG distribution performs better especially according to ER-I which evaluates the 582 

overall fitting. Comparing the percentages of the two distributions, shown in Figure 15, we 583 

observe that the GG distribution improves even more its performance over the BrXII distribution 584 

at the daily precipitation compared to the monthly daily precipitation. This might be an extra 585 

argument for the GG distribution as the daily precipitation samples are much larger in size than 586 

the monthly samples and thus the parameter estimation is more accurate in this case. 587 

5. Summary and conclusions 588 

In this study we investigate the seasonal variation of daily precipitation focusing on the 589 

properties of its marginal distribution. Two were the major questions we tried to answer: (a) 590 

which statistical characteristics of daily precipitation vary the most over the months and how 591 

much, and (b) whether or not there is a relatively simple probability model that can describe the 592 

nonzero daily precipitation at every month and every area of the world. In order to treat these 593 

questions we performed a massive analysis of approximately 170,000 monthly daily precipitation 594 

records from more than 14,000 stations from all over the globe. 595 

 Regarding the first question we first studied the variation of probability dry and of three 596 

representative characteristics of the marginal distribution of nonzero daily precipitation, i.e., the 597 

mean value, the L-variation and the L-skewness, in the two hemispheres. In general, a typical 598 

sinusoidal-like pattern was revealed (see Figure 2) for all statistics and for both hemispheres, 599 

with a surprising exception in the probability dry of the SH where a more complicated picture is 600 

observed. Additionally, to explore the monthly variation in detail at each record we proposed and 601 

applied a test for seasonality, i.e., the SV-Test. Application of the SV-Test revealed a clear 602 



monthly variation in probability dry and in the mean value of nonzero daily precipitation in 603 

95.1% and in 91.7%, respectively, of the stations studied (see Figure 5); the corresponding 604 

percentages of the shape characteristics, i.e., of L-variation and L-skewness, were 66.1% and 605 

54.2%, respectively, these results if combined with the general picture obtained by the analysis 606 

in the hemispheres indicate that, in general, the shape characteristic vary too. The monthly 607 

variation of those statistics at each station was quantified by various deviation measures with 608 

respect to the average of all months (see Figure 7). The analysis showed that the highest monthly 609 

variation is observed in the mean value of nonzero precipitation followed by probability dry, L-610 

skewness and finally by L-variation, implying that although the shape characteristics vary, their 611 

variability is much less than of the mean value and the probability dry. 612 

 Regarding the second question we tested the performance of two flexible three-parameter 613 

distributions: one power-type, the Burr type XII distribution, and one of exponential form, the 614 

Generalized Gamma which are generalizations of commonly used two-parameter distributions, 615 

e.g., the Pareto, Gamma, Weibull and others. In order to check the suitability of these 616 

distributions for the nonzero daily precipitation, first, we used L-moments ratio diagrams to 617 

evaluate their potential to describe or reproduce the observed shape characteristics of all records; 618 

and second, we actually fitted and estimated the parameters for each distribution and for all 619 

records. For the huge number of records analyzed both distributions performed very well. 620 

Particularly, the Burr type XII in the worst case, i.e., in November, managed to describe 79.1% 621 

of the records (see Figure 9); the corresponding value for the Generalized Gamma distribution 622 

was observed in January and was 94.2% while this distribution was able to describe the shape 623 

characteristics for all months in 78.8% of the stations (see Figure 10). Finally, the two 624 



distributions were compared to each other using various error measures and the Generalized 625 

Gamma performed better in most of the cases (see Figure 15).  626 

 The implications of this study are: (a) The marginal distribution of daily precipitation 627 

varies over the months and over location suggesting the necessity for a flexible probability 628 

model. (b) The seasonal and the spatial variability observed in the shape characteristics points 629 

out that the commonly used two-parameter models, e.g., the Gamma, the Weibull, the 630 

Lognormal, the Pareto, etc. cannot serve as ‘universal” models for the daily precipitation. 631 

However, we stress that estimating three parameters is more uncertain than estimating two 632 

parameters. Thus, if a more parsimonious model is adequate it should always be preferred over a 633 

more complicated one. (c) The density function of daily precipitation may significantly differ not 634 

only in its general shape, i.e., J-shaped or Bell-shaped, but also in its tail behavior; this dictates 635 

that a “universal” probability model for daily precipitation must have in general two shape 636 

parameters, one to control the left tail and one to control the right tail. (d) Two simple models 637 

with the above characteristics that perform very well are the Burr type XII distribution and the 638 

Generalized Gamma distribution with the latter performing even better than the former providing 639 

thus an excellent model choice. (e) Using only these two distributions, having some of their 640 

characteristics complementary to each other, we can model the entire data set for all months and 641 

all stations. (f) The shape parameter γ2 of the Generalized Gamma distribution, which controls 642 

the right tail and thus the extreme values, for the vast majority of records analyzed is γ2 < 1, with 643 

1 corresponding to the Gamma distribution; this implies that some of the most commonly used 644 

exponential-tail distributions like the Exponential, the Gamma or mixed Exponentials may 645 

constitute a dangerous choice and should not be used unjustifiably in practice as they can 646 

severely underestimate the magnitude and the frequency of the extreme daily precipitation. (g) 647 



As a rule of thumb, the GG distribution should be the first choice as it is highly likely to provide 648 

a good fit to daily precipitation data; if this model is not adequate, the BrXII distribution should 649 

be also considered. Finally, given the uncertainty in the estimation of three parameters and the 650 

importance of the shape parameter that controls the right tail, in cases where the sample size is 651 

small, the mean estimated values could be used a priori, i.e., γ2 = 0.53 and γ2 = 0.22 for the GG 652 

and the BrXII distributions, respectively. Additionally, a Bayesian method can be used with prior 653 

shape parameter distributions based on the statistics provided in Table 2. 654 
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 732 

Tables 733 

Table 1. Mean values and standard deviation values of the four statistics studied. 734 

 
 

All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Northern hemisphere 

Pdry 
mean 72.03 73.55 74.23 74.03 73.18 71.05 68.49 67.80 68.97 71.37 74.70 73.68 73.65 

SD 11.19 16.74 15.10 14.24 13.28 12.71 13.48 15.95 15.30 12.78 13.50 16.45 17.36 

μ 
mean 9.52 7.08 7.18 7.80 8.28 8.99 9.95 10.21 10.11 10.47 10.04 8.73 7.58 

SD 4.67 4.31 4.26 4.25 4.14 4.31 4.86 5.22 4.70 4.94 5.20 4.93 4.57 

τ2 
mean 0.59 0.56 0.56 0.56 0.57 0.57 0.58 0.58 0.59 0.59 0.59 0.57 0.57 

SD 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 

τ3 
mean 0.46 0.44 0.43 0.43 0.43 0.43 0.44 0.45 0.46 0.46 0.45 0.44 0.44 

SD 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 

Southern hemisphere 

Pdry 
mean 77.91 77.73 76.80 78.29 79.69 78.32 76.50 76.84 77.91 78.77 77.74 77.85 78.05 

SD 10.60 14.38 14.34 12.96 11.62 13.35 15.99 17.32 16.79 14.25 12.22 12.06 13.37 

μ 
mean 9.27 11.09 11.46 10.54 9.06 8.34 7.71 7.21 6.81 7.15 8.21 9.01 10.08 

SD 3.70 4.56 4.47 4.22 3.55 3.22 3.19 2.98 2.62 2.74 3.15 3.53 4.04 

τ2 
mean 0.58 0.59 0.59 0.59 0.58 0.58 0.58 0.57 0.56 0.56 0.56 0.56 0.57 

SD 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 

τ3 
mean 0.46 0.47 0.47 0.47 0.46 0.46 0.45 0.45 0.44 0.44 0.44 0.44 0.45 

SD 0.06 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.07 0.07 0.07 0.07 

Global 

Pdry 
mean 74.40 75.24 75.27 75.75 75.80 73.99 71.72 71.44 72.58 74.36 75.92 75.36 75.42 

SD 11.33 15.97 14.85 13.90 13.04 13.45 15.06 17.10 16.51 13.87 13.08 14.98 16.01 

μ 
mean 9.42 8.70 8.91 8.90 8.60 8.73 9.05 9.00 8.78 9.13 9.30 8.85 8.59 

SD 4.31 4.83 4.83 4.45 3.93 3.92 4.41 4.69 4.31 4.50 4.57 4.42 4.53 

τ2 
mean 0.58 0.57 0.57 0.57 0.57 0.57 0.58 0.58 0.58 0.58 0.57 0.57 0.57 

SD 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

τ3 
mean 0.46 0.45 0.45 0.45 0.44 0.44 0.45 0.45 0.45 0.45 0.44 0.44 0.44 

SD 0.05 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 



 735 

Table 2. Basic summary statistics of the estimated shape parameters of the GG and BrXII 736 

distributions. 737 

 
All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

GG distribution 

Fit No. 13826 12729 13012 13116 13353 13445 13491 13292 13317 13509 13620 13410 13000 

Parameter γ1 

Q50 1.20 1.23 1.22 1.17 1.13 1.09 1.08 1.09 1.10 1.09 1.10 1.13 1.21 

μ 1.50 1.63 1.59 1.53 1.45 1.39 1.36 1.41 1.43 1.41 1.42 1.49 1.61 

σ 0.94 1.22 1.15 1.07 1.00 0.97 0.94 1.01 1.04 1.02 1.02 1.11 1.20 

τ2 0.29 0.34 0.33 0.32 0.31 0.30 0.30 0.31 0.32 0.31 0.31 0.33 0.34 

τ3 0.38 0.43 0.42 0.42 0.42 0.43 0.43 0.43 0.44 0.44 0.43 0.43 0.42 

Parameter γ2 

Q50 0.52 0.54 0.54 0.58 0.61 0.62 0.61 0.60 0.59 0.59 0.60 0.60 0.56 

μ 0.53 0.58 0.58 0.59 0.62 0.62 0.62 0.61 0.60 0.60 0.61 0.63 0.60 

σ 0.22 0.30 0.31 0.28 0.28 0.26 0.27 0.28 0.27 0.27 0.28 0.32 0.31 

τ2 0.23 0.28 0.28 0.26 0.25 0.23 0.23 0.24 0.24 0.23 0.24 0.26 0.28 

τ3 0.06 0.14 0.14 0.08 0.06 0.04 0.08 0.09 0.09 0.10 0.10 0.12 0.13 

Butt XII distribution 

Fit No. 12744 11900 11827 11810 11555 11460 11544 11737 11878 11768 11503 11203 11551 

Parameter γ1 

Q50 0.94 1.00 0.98 0.98 0.97 0.96 0.95 0.95 0.95 0.95 0.96 0.99 1.01 

μ 0.96 1.05 1.03 1.01 1.00 0.99 0.98 0.99 0.99 0.98 0.99 1.02 1.05 

σ 0.16 0.24 0.23 0.21 0.18 0.18 0.19 0.21 0.20 0.19 0.19 0.23 0.24 

τ2 0.09 0.12 0.12 0.11 0.10 0.10 0.10 0.11 0.11 0.10 0.10 0.11 0.11 

τ3 0.14 0.21 0.21 0.20 0.18 0.19 0.21 0.22 0.19 0.19 0.16 0.18 0.19 

Parameter γ2 

Q50 0.21 0.25 0.24 0.22 0.20 0.19 0.19 0.20 0.20 0.19 0.20 0.21 0.24 

μ 0.22 0.25 0.24 0.23 0.22 0.21 0.20 0.21 0.21 0.21 0.21 0.22 0.24 

σ 0.11 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.13 

τ2 0.30 0.30 0.30 0.33 0.35 0.36 0.35 0.35 0.34 0.33 0.33 0.32 0.31 

τ3 0.02 0.05 0.04 0.07 0.09 0.11 0.12 0.12 0.12 0.10 0.09 0.07 0.04 

 738 



Table 3. Mean values of the error measures evaluating the fitting performance of the 739 

distributions, as well as percentage values of records in which the GG was better fitted compared 740 

to Burr XII. 741 

 All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Fit No. 12413 10474 10684 10769 10754 10750 10879 10877 11041 11124 10967 10457 10396 

Mean values of the error measures for the GG distribution  

ER-I 1.4 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

ER-II 14.1 5.5 5.5 5.5 4.9 5.2 5.7 5.9 5.8 5.9 5.5 5.0 5.1 

ER-III 38.2 18.9 18.6 19.0 17.0 17.8 20.2 20.1 20.0 20.3 19.5 17.5 17.8 

ER-IV 0.7 -1.6 -1.6 -2.2 -2.1 -1.7 -2.7 -1.7 -2.4 -2.7 -3.1 -2.2 -2.2 

Mean values of the error measures for Burr XII distribution 

ER-I 2.2 1.1 1.2 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 

ER-II 25.4 5.8 5.9 5.9 5.2 5.6 6.1 6.3 6.2 6.1 5.8 5.3 5.4 

ER-III 62.0 19.8 19.9 20.1 17.9 18.8 21.0 21.3 20.9 20.9 20.1 18.2 18.6 

ER-IV 28.2 5.8 5.2 4.5 4.2 4.9 4.2 5.5 4.7 4.1 3.6 4.6 5.0 

Percentage the GG distribution better fitted compared to Burr XII (%) 

ER-I 87.0 80.8 80.9 77.9 77.8 76.2 74.6 79.6 77.6 75.4 77.1 78.0 78.4 

ER-II 79.2 65.8 66.1 62.9 62.5 63.3 61.3 65.2 63.2 59.3 60.6 63.6 64.9 

ER-III 69.5 59.9 60.2 56.6 56.4 56.8 55.1 58.7 56.8 54.1 54.1 58.3 58.6 

ER-IV 67.0 55.8 55.8 53.1 53.9 53.3 52.5 55.5 54.2 52.5 51.7 54.9 55.3 
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Figures 743 

 744 

Figure 1. Locations of the 14,157 stations studied. 745 



 746 

Figure 2. Estimated statistics of the monthly daily records analyzed; red box plots on the left are 747 

for the NH; gray boxplots on the right are for the SH; outer fences indicate the 90% ECI. 748 

 749 

Figure 3. Explanatory sketch of the seasonal variation test; values above and below the median 750 

are denoted, respectively, with 1 and −1. 751 



 752 

Figure 4. Benchmark values for the SV-Test; the bars indicate the probabilities (the upper 753 

number is cumulative) corresponding to specific number of SIVR in the case of 12 randomly 754 

generated numbers (no seasonality). 755 

 756 

Figure 5. Results of the SV-Test applied to: (a) the probability dry, (b) mean value (c) L-757 

variation and (d) L-skewness. 758 



 759 

Figure 6. Explanatory sketch of the four difference measures studied. 760 

 761 

Figure 7. Box plots depicting the percentage change of the difference measures relative to the 762 

average of all months for the four statistics studied. Each box plot is constructed by the values 763 

determined from the stations studied. Outer fences indicate the 95% ECI. 764 



 765 

Figure 8. Observed L-points for the month of January of the 14,157 daily precipitation records 766 

studied in comparison to the theoretical L-areas of (a) the BrXII distribution and (b) the GG 767 

distribution. Red-colored L-points lie outside the L-area; dark-colored indicate a Bell-shaped 768 

distribution; light-colored indicate a J-shaped distribution. 769 



 770 

Figure 9. Percentage of empirical L-points lying within the L-areas of the GG and the BrXII 771 

distributions. 772 



 773 

Figure 10. Percentage of records vs. the number of monthly L-points per station lying within the 774 

theoretical L-areas of the GG and the BrXII distributions. 775 



 776 

 777 

Figure 11. Estimated shape parameters of the GG and BrXII distributions using the method of L-778 

moments. 779 

 780 

Figure 12. Probability plot of the fitted distributions to a specific station (station code 781 

CA006158350) using the method of L-moments. 782 



 783 

Figure 13. Box plots of the error measures that evaluate the fitting performance of the GG and 784 

BrXII distributions to daily precipitation of all months. 785 



 786 

Figure 14. Box plots of the error measures of the fitting of the GG and BrXII distributions to the 787 

monthly daily precipitation records. 788 



 789 

Figure 15. Comparison of the fitting performance of the two distributions; the values within the 790 

bars indicate the percentage of stations in which each distribution was better fitted according to 791 

the error measures. 792 
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