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Abstract.  A parametric rule for multireservoir system operation is formulated and tested. It 

is a generalization of the well-known space rule to simultaneously account for various system 

operating goals in addition to the standard goal of avoiding unnecessary spills, including: 

avoidance of leakage losses, avoidance of conveyance problems, the impact of the reservoir 

system topology, and assurance of satisfying secondary uses. Theoretical values of the rule’s 

parameters for each one of these isolated goals are derived. In practice, parameters are 

evaluated to optimize one or more objective functions selected by the user. The rule is 

embedded in a simulation model so that optimization requires repeated simulations of the 

system operation with specific values of the parameters each time. The rule is tested on the 

case of the multi-reservoir water supply system of the city of Athens, Greece, which is driven 

by all of the operating goals listed above. Two problems at the system design level are 

tackled. First, the total release from the system is maximized for a selected level of failure 

probability. Second, the annual operating cost is minimized for given levels of water demand 

and failure probability. A detailed simulation model is used in the case study. Sensitivity 

analysis to the rule’s parameters revealed a subset of insensitive parameters that allowed for 

rule simplification. Finally, the rule is validated through comparison with a number of 

heuristic rules also applied to the test case.  
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1. Introduction 

 Planning and management of multiple reservoir systems has been the subject of 

numerous research works and continues to be so. This attention is due to the essential benefits 

arising from reservoir system operation (e.g., hydropower) in combination with the reduction 

of natural risks (e.g., flood control). The problem of reservoir planning and/or management is 

most often stated as an optimal control problem. Its solution is not an easy task due to the 

large number of variables involved, the non-linearity of the system dynamics, the stochastic 

nature of future inflows and other uncertainties of the system (e.g., leakage from reservoirs). 

 Stochastic dynamic programming (SDP) has been repetitively used by many researchers 

to study the problem [Su and Deininger, 1972, 1974; Askew, 1974a, b; Sniedovich, 1979; 

1980a, b; Bras et al., 1973; Stedinger et al., 1984; among others]. SDP could be satisfactory if 

it did not require excessive amounts of computer time and storage. To increase the efficiency 

of the solution algorithm, some researchers have treated the inflows’ stochasticity in an 

analytic way without state space discretization and then applied efficient deterministic 

optimization methods [Wasimi and Kitanidis, 1983; Loaiciga and Mariño, 1985; 

Georgakakos and Marks, 1987]. For example, Georgakakos and Marks [1987] represented 

the reservoir system dynamics in a state space form and proposed an extension of stochastic 

control theory, which they termed Extended Linear Quadratic Gaussian (ELQG). In this way, 

these authors obtained a very efficient algorithm at the expense of an accurate representation 

of the stochastic structure of inflows (i.e., only Gaussian independent inflows were 

considered). In later studies [Georgakakos, 1989] the problem of the representation of the 

stochastic structure of inflows was effectively tackled. Other researchers continued their 

studies in the direction of stochastic dynamic programming with the purpose of remedying its 

deficiencies. Efficient interpolation schemes for dynamic programming (DP) algorithms are 

discussed by Johnson et al. [1993]. Τhe problem of errors resulting from the state space 

discretization in discrete dynamic programming was tackled [Kitanidis and Foufoula-

Georgiou, 1987; Foufoula-Georgiou and Kitanidis, 1988; Foufoula-Georgiou, 1991]. These 

authors proposed Gradient Dynamic Programming, which is based on an interpolation scheme 
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of the cost-to-go function at each stage and reduces the error due to discretization 

significantly.  

 In spite of the large number of optimization techniques available in the literature, 

simulation models still remain the primary tool for reservoir planning and management 

studies in practice. The reason is that simulation models allow a more detailed and faithful 

representation of the system studied than optimization techniques do [Loucks and 

Sigvaldason, 1982]. Moreover, they can be easily combined with synthetically generated 

streamflow sequences [Young, 1967; Loucks et al., 1981, p. 277]. The main drawback of 

simulation is that, unlike optimization, it requires prior specification of the system operating 

policy. To remedy this problem Young [1967] combined use of synthetically generated annual 

inflows into a single reservoir with deterministic dynamic programming, and inferred simple 

parametric rules for the operating policy using regression techniques. Other researches have 

employed optimization methods within simulation models [Evenson and Moseley, 1970; 

Sigvaldason, 1976; Ginn and Houck, 1989; Johnson et al., 1991; Tejada-Guibert et al., 1993]. 

Tejada-Guibert et al. [1993] compared two alternative approaches for defining the operation 

policy of a multireservoir system: (1) interpolation in policy tables derived through SDP, and 

(2) the use of SDP-derived value functions within simulation to optimize the operating policy 

each time a decision is sought; they found this second approach clearly superior. Johnson et 

al. [1991] used a simulation model, which includes heuristic operating rules that are 

optimized within the simulation for each period of operation. The optimization tries to drive 

the real storages as close to the target storages as possible. 

 Operators of reservoir systems have long used heuristic rules that define desired storage 

and release targets. The well-known space rule [Bower et al., 1962] defines storage targets so 

that the empty space in each reservoir is proportional to the expected inflow; this rule is 

applicable to parallel reservoirs for water supply purposes. The NYC rule, used for the water 

supply of New York City, defines storage targets so that the probability of spill from each 

reservoir be equal for all reservoirs [Clark, 1950, 1956]. Johnson et al. [1991] showed how 

heuristic operating policies, including the space rule, can be effectively used in optimization 

models.  
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 The aim of this work is to propose and test a parametric operating rule for a system of 

reservoirs. The parameters of the rule are estimated by optimization, using simulation to 

evaluate the objective function value for each trial set of parameter values. The rule is a 

generalization of, and is motivated by, the space rule to simultaneously account for various 

goals: (1) avoidance of unnecessary spills, (2) avoidance of leakage losses, (3) avoidance of 

conveyance problems, (4) impacts associated with the reservoir system topology, and (5) 

satisfaction of secondary uses. These goals are achieved through parameterizing the rule and 

then optimizing its parameters. For each parameter set a series of simulations of the system 

operation allows system objectives to be evaluated and constraints to be satisfied. Parameters 

are optimized outside the simulation or, else, for each set of parameter values in the 

optimization, a simulation is performed. The three-reservoir system used for the water supply 

of the Greater Athens area, Greece, is selected as a test case. For validation purposes, the 

operating rule is compared with a number of heuristic rules.  

 The paper is organized in four sections. In Section 2, we present the proposed 

parametric operating rule, we derive theoretical values for its parameters in five special cases, 

we discuss other theoretical issues raised, and then we describe the optimization and the 

simulation model used. In Section 3 we analyze an application of this rule for a real-world 

reservoir system and we assess the capabilities of the proposed rule in comparison with 

heuristic operating rules. Section 4 summarizes the proposals and tests made and presents the 

final conclusions.  

2. The parametric rule  

2.1 Description of the rule 

 A system of N reservoirs is assumed for which an operating policy is sought. The policy 

is focused on consumptive water uses such as water supply for domestic and industrial use 

and irrigation. Other uses such as hydropower generation, recreation, or navigation are 

assumed absent or of secondary importance in this study. Our approach, however, can easily 

accommodate such non-consumptive uses. The reservoirs are connected in series or in parallel 



5 

to form a network with any topology. Water is withdrawn from all of them to meet a common 

downstream target release D (equal to the water demand). The continuity equation for each 

reservoir i is given for a certain time period by 

 S Q R Li i i i i i= + − − −BS SP  (1) 

where BSi is the beginning-of-period storage for reservoir i (known), Si is the end-of-period 

storage which is unknown, Qi is the inflow, Ri the total release from the reservoir, Li the total 

losses due to evaporation and leakages, and SPi the reservoir spill. Reference to time interval 

is omitted for convenience. 

 Let V denote the total storage in the system at the end of the time period of interest. In 

the simple case of one reservoir V is completely determined by (1) in which we omit the 

subscript i and replace S with V. The operation of a system of N reservoirs is much more 

complicated as, this time, the state of the system is described by N variables Si, satisfying 

 ∑
i = 1

N
 Si = V (2) 

Assuming that the target release is fulfilled and the inflows, losses, and spills from all 

reservoirs are estimated in some manner, the total end-of-period storage of the system is given 

by 

 V  = ∑
i = 1

N
 (BSi + Qi  − Li  − SPi) − D  (3) 

Thereafter the problem is to determine the releases from all reservoirs such that their sum 

equals D. Equivalently, the problem is to distribute the total volume V into the N reservoirs 

such that (3) is satisfied. This can be done in numerous ways, as the problem has several 

degrees of freedom. We call a specific way to perform this distribution an operating rule. To 

avoid ambiguity, we express the operating rules by means of some quantities S*
i , which stand 

for the target storage for the reservoir i at the end of the period. The real storage Si is generally 

different from the target storage S*
i , because of the physical constraints that were not 
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considered in the determination of S*
i . We propose to distribute V according to the following 

rule 

 S*
i  = ai + bi V (4) 

where ai and bi, i ∈ {1, …, N}, are unknown parameters.  

 There exist 2N parameters for a system of N reservoirs. We note that because of (2) we 

have two constraints on the parameters, i.e., 

 ∑
i = 1

N
 ai  = 0,         ∑

i = 1

N
 bi  = 1 (5) 

and thus the number of unknown parameters is finally 2(N − 1).  

 It will be shown in the next subsection that the rule specified by equation (4) is a 

generalization of the well-known space rule. 

 Having defined the operating rule in the linear form of (4) with parameters ai and bi 

obeying (5), we have introduced a convenient parameterization of the problem. This raises 

important issues regarding the validity of the rule proposed. These are related to: (a) the 

ability of equation (4) to take into account various policies that result from different concerns 

about the system, (b) the need for further mathematical development of the rule to take into 

account physical constraints of the system, and (c) parameter issues such as whether the 

linearity of (4) is appropriate and whether the number of parameters is sufficient. These issues 

are discussed in the following subsections. 

2.2 Justification of the rule’s form 

 In this subsection we study five particular operating policies, which result from different 

concerns about the system properties and objectives. In each case we deal with one isolated 

objective of the system such as the minimization of spills or losses. To be able to obtain the 

operating rule for each case as an analytical solution, based on a theoretical objective 

function, we do not consider all physical constraints of the system at this stage. At a later 

stage we will incorporate the physical constraints in the rule. The five cases examined do not 
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exhaust all possible concerns about the reservoir system operation, but they are indicative of 

the form such policies can take. As we will see, in all cases the result is the linear rule (4) with 

the particular values of coefficients ai and bi dependent on the main concern chosen. This 

justifies the linear form of (4) as a generalization of various operating rules. 

1. Restriction of spills. Assume that the primary concern is to avoid unnecessary spills from 

one reservoir while others still have empty space. This rule is appropriate for the refill cycle 

of the reservoirs or, equivalently, the wet season. Spills are more likely to be avoided when 

more empty space is left for the reservoirs with larger expected cumulated inflows up to the 

end of their refill cycle. It has been shown [Sand, 1984; Johnson et al., 1991] that the 

minimum expected value of the total spills of the system corresponds to the case that the 

probability of spill is the same for each reservoir, i.e., 

 prob(CQi ≥ Ki − Si) = constant for all i (6) 

where CQi is the cumulative inflow to reservoir i from the end of the current period to the end 

of the refill cycle, Ki is the storage capacity of reservoir i, and prob( ) denotes probability. 

Johnson et al. [1991] showed that, under the assumption that the distribution of CQi / E[CQi] 

(with E[ ] denoting expectation) is the same for each reservoir i, (6) results in 
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 (7) 

This is the well known space rule, which consists in keeping equal for all reservoirs the ratio 

of the empty space to the expected cumulative inflow for the rest of the refill cycle. Equation 

(7) can be well rewritten in the form of (4) for each i with values of parameters 

 ai = Ki − bi ∑
j = 1

N
 Kj  ,          bi = 

E[CQi]

 ∑
j = 1

N
 E[CQj]  

 (8) 
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If the reservoirs are all located in a region with the same climatic regime, the ratios bi of (8) 

do not vary significantly from one month to another as demonstrated in Figure 5 for the case 

study. Thus, quantities ai and bi of (8) can be considered as time-invariant. 

 Furthermore, the assumption that the distribution of CQi / E[CQi] is the same for all 

reservoirs is not obligatory to get the linear rule (4), as different assumptions can result in the 

same equation. For example, if all CQi have Gaussian distributions, one can easily obtain that 

(6) results again in (4) with ai and bi given by equations slightly different from (8). 

2. Restriction of losses. Very often the leakages from reservoirs are not negligible, especially 

if the reservoirs are natural lakes on a karstic background. It is also likely that evaporation 

losses are of main concern, especially if we consider natural shallow lakes. Thus, let us 

assume that the losses due to leakage and evaporation are of much more importance when 

compared with spills. The losses due to leakage are commonly a function of head and those 

due to evaporation are a function of the surface area of the reservoir. Given the reservoir 

storage-elevation and area-elevation relationships, we can express the total losses of this kind 

as a function of storage, i.e., 

 Li = li (Si) (9) 

If our concern is to minimize losses, using algebra and some rather general assumptions 

(functions li(Si) increasing and concave, which holds for almost any reservoir; see Appendix 

A1 in microform supplement), we find (see also Appendix A1) that the most efficient rule is 

the one that stores all water V at the reservoir m whose losses lm(V) is minimum among those 

of other reservoirs li(V). Mathematically, this is expressed again by the linear equation (4) but 

with coefficients ai = 0 for all i, bm = 1 for the specific reservoir m whose value lm(V) is 

minimum among all other li(V), and bi = 0 for all other i (except for i = m). 

3. Ensuring conveyance. A third rule will be considered for periods with low system storage. 

In such periods the main concern is not avoiding reservoir spill but to make withdrawals so as 

not to drive one or more reservoirs empty while demand cannot be satisfied from the 

remaining reservoirs due to limited conveyance capacity. In such a case, it is straightforward 

that the optimal distribution is such that the storage in each reservoir is proportional to the 
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conveyance capacity of the relative aqueduct. This rule is expressed by the same linear rule 

(4) but with coefficients  

 ai = 0,           bi = 
Ci

∑
j = 1

N
 Cj

 (10) 

for all i, where Ci is the conveyance capacity of the aqueduct through which the release from 

reservoir i is made. 

4. Effect of topology. In the above cases all reservoirs were assumed implicitly as 

topologically equivalent, e.g., each of them is located at a different river or branch of river 

and they are all connected by separate aqueducts with the consumption location. However, in 

many cases there appear differences in topology of the reservoir system that may affect 

greatly the operating rule. Let us consider for example the case where the reservoirs form a 

cascade along the same river. In such a case, the spills of all reservoirs but the most 

downstream one are not a loss for the system. Moreover, for energy saving reasons (e.g., 

minimization of pumping) it may be a gain for the system to store the water as far upstream as 

possible. In addition, it is always possible to move the water from upstream to downstream if 

necessary, while the opposite needs pumping. Thus, a good operating rule for such a case 

would be to keep the water at the most upstream reservoir (if feasible), leaving the 

downstream reservoirs empty. Mathematically, this is expressed by the same linear rule (4) 

with coefficients ai = 0 for all i, bm = 1 for the most upstream reservoir m, and bi = 0 for all 

other i (except for i = m).  

5. Secondary water uses. In many cases, apart from the main water use, there are some 

secondary water uses in the neighborhood of each reservoir (e.g., irrigation, satisfaction of 

environmental demands, etc.). In such cases, we want to avoid situations where some 

reservoirs are almost empty, while others are almost full. Thus, we can set a rule that stores 

the water proportionally to cumulative local water demand for consumptive use CLDi, in 

order to balance the satisfaction of all local uses. This leads again to the linear rule (4) with 



10 

 ai = 0,      bi = 
E[CLDi]

 ∑
j = 1

N

 E[CLDj]  
 (11) 

 for all i.  

 We have seen that in each of the above simple situations the operation rule has always 

the linear form (4) with parameters ai and bi given by different simple equations for each case. 

In real-world situations we have to deal with more than one such concerns (or goals) 

simultaneously. In these situations, we can keep the formalism and parameterization of the 

linear rule, but the parameters ai and bi are no longer determined by simple equations such as 

the above, because the objective function is not simple enough to be treated analytically. The 

parameterization of the rule allows for estimation of parameters using simulation via sampling 

and search procedures [Loucks et al., 1981, p. 65]. Before we proceed to the description of the 

models for simulation and optimization it is necessary to incorporate physical constraints into 

the linear rule in order for it to be operational for real-world situations.  

2.3 Further development of the rule and parameter issues 

 In introducing equation (4) we have ignored the physical constraints, which demand that 

the storage cannot be negative nor can it exceed the reservoir capacity. To correct this 

inconsistency we modify (4) so that 

 S´*
i  = 

⎩⎪
⎨
⎪⎧

 

0  ai + bi V < 0

ai + bi V     0 ≤ ai + bi V ≤ Ki 

Ki  ai + bi V > Ki

 (12) 

However, this creates another inconsistency as the quantities S´*
i  defined by (12) may no 

longer add up to V. Several adjustment procedures can be used, the most refined being the 

transformation of straight lines of (4) into broken lines. Here, we adopt another procedure that 

is computationally simpler. We distribute the departure V − ∑j = 1
N

 S´*
j  proportionally to the 

quantity S´*
i  (1 − S´*

i /Ki) so that (S´*
i  = 0) maps to (S´´*

i  = 0), and (S´*
i  = Ki) maps to (S´´*

i  = Ki). 
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In this way, the adjustment procedure does not affect the cases where the reservoir i was 

found by (12) to be either empty or full. Thus, we get the final target storage S´´*
i  by 

 S´´*
i  = S´*

i  + 
S´*

i  (1 − S´*
i /Ki)

 ∑
j = 1

N

 S´*
j (1 − S´*

j /Kj)
 
⎝⎜
⎜⎛

⎠⎟
⎟⎞V − ∑

j = 1

N

 S´*
j  = S´*

i  ⎣⎢
⎡

⎦⎥
⎤1 + φ (1 − S´*

i /Ki)   (13) 

with 

 φ  :=  

V − ∑
j = 1

N

 S´*
j

 ∑
j = 1

N

 S´*
j (1 − S´*

j /Kj)
 (14) 

We note that, under certain circumstances (e.g., for φ lying outside of the interval [−1, 1]), 

(13) may lead to values of S´´*
i  that still violate the physical constraints. These circumstances 

are described in detail in the Appendix A2 (in microform supplement) along with an iterative 

algorithm to obtain S´´*
i  such that 0 ≤ S´´*

i  ≤ Ki in all cases. We emphasize that the final 

operating rule, expressed by means of S´´*
i , is completely determined from the initial 

parameters ai and bi. An example of an initial rule expressed in terms of S*
i  along with its 

corresponding final rule expressed in terms of S´´*
i  is given in Figure 6 for the case study 

described in section 3. 

 Having introduced the full mathematical description of the rule proposed, several issues 

concerning the rule’s parameters are raised: (a) Is the linear form (4) of the rule adequate or 

we need a more complicated nonlinear form? (b) Is the number of parameters in the rule (two 

parameters per reservoir) adequate or we need more or fewer parameters? (c) Do we need to 

introduce a seasonal variation of the parameters? 

 It is difficult to answer to these questions in a strict mathematical sense. However, we 

will attempt to give some detailed but rather intuitive answers. The answer to the question (a) 

is threefold. First, as we have shown in subsection 2.2, the linear form is justified for several 

simple cases. Second, the operational form of the rule is not strictly linear since the 



12 

corrections (12) and (13) introduce strong nonlinearity as demonstrated in the example of 

Figure 6, where the final target storages and their initial values are compared. The initial 

linear form is in fact used as an efficient way to parameterize the problem using two 

parameters for each reservoir. Third, the physical constraints of a reservoir system strongly 

modify the form of any initial rule, no matter which this specific form is. Different initial 

rules thus have very similar final operational forms. To demonstrate that numerically, we can 

experiment using a quadratic rule, instead of the linear, i.e., 

 S*
i  = ai΄ + bi΄ V + ci΄V2 (15) 

where ai΄, bi΄, ci΄ are parameters for each reservoir i. Experimenting with different sets of 

parameters ai and bi of equation (4) we can find a parameter set of this linear rule such that the 

final rules (after introducing corrections for constraints) of both the linear and quadratic form 

are very close to each other. A comparison of the two rules (linear and quadratic) is illustrated 

in Appendix A3 (microform supplement) for the quadratic rule with the highest possible 

curvature, where the final forms are almost indistinguishable (the overall root mean square 

error, normalized by the respective reservoir capacity, is less than 0.1%). 

 The above discussion already gives some indication of the adequacy of the number of 

parameters (question (b)): the use of three parameters per reservoir instead of two essentially 

makes no difference. We could also consider reducing the number of parameters to one 

parameter per reservoir, thus formulating the rule as a homogeneous line of the form Si = bi V. 

To test this, we approximated  a quadratic and a linear nonhomogeneous rule with a linear 

homogeneous rule (see Appendix A3 in microform supplement). In both cases we obtained 

approximations of the final operational rules with overall root mean square error less than 

10%, although the initial rules differed by as much as 100%. This suggests that the rule may 

be satisfactory for practical applications even in its reduced homogeneous form. However, to 

develop a clearer idea of the adequacy of the number of parameters, we must assess the 

sensitivity of the objective function to some parameters. As it will be shown in the section 3, 

in our test case we started by using two parameters per reservoir (ai and bi) and found that the 

optimum of the objective function was practically insensitive to ai, which indicates that one 
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parameter per reservoir suffices. This, however, cannot be transferred to any reservoir system 

without prior investigation.  

 Question (c) concerns another form of nonlinearity which can be introduced through 

seasonal variation of the parameters. First we note that in systems consisting of reservoirs 

with very high capacities that perform overyear regulation, there is no reason to consider 

target storages dependent on the season, as the overyear variation of storage is more important 

than the within-the-year variation. In systems with smaller capacities, it seems reasonable to 

have the target storages dependent on the season. However, the parametric rule implicitly 

contains such a dependence of the target storages on V. This is particularly true for reservoirs 

with considerable drawdown in the dry season. In such cases V takes large values only in the 

wet season. We note, though, that intermediate values of V are normally attained twice a year: 

once during the refill period and once during the drawdown period. It may be beneficial to 

distribute among the reservoirs the same total volume V in a different way in each of the two 

periods. This means that the use of two parameters sets for the rule, one for the refill and one 

for the drawdown period, may be advantageous. For simplicity, the parameters ai and bi are 

considered in this study as time-invariant and constant for each reservoir. However, the 

approach proposed can be directly modified to include two parameter sets, but this will 

require more computations due to the doubling of the number of parameters. 

2.4 The optimization model 

 As described above, our proposal in this paper is to consider the coefficients ai and bi of 

the operating rule as unknown parameters and determine them by optimization. Their values 

are optimized in the following way: 

 (1) A simulation model of the reservoir system operation is built together with a multi-

variate stochastic model of the system’s inflows. A long series of synthetic inflows is 

generated and is passed into the simulation model to evaluate the objective function of the 

optimization model described in point (2) below. 

 (2) An optimization method is used to determine ai and bi. At each evaluation of the 

objective function, one or more simulations of the system operation (depending on the 
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constraints of the optimization) for the whole operation period are performed. Thus, in our 

case, simulation is embedded in the optimization algorithm. 

 To formulate the objective function of the optimization model we consider two typical 

problems. In the first problem the objective is to maximize the target release of the system for 

a given reliability level. For example, this is the objective in the first three simple cases 

examined in subsection 2.2, which can be represented by a common objective function. 

Mathematically this is expressed by 

 maximize D = f1(a, b) (16) 

where a = (a1, …, aN)T and b = (b1, …, bN)T. The constraint for this optimization is related 

with a total reliability measure that the system should have, i.e., 

 prob 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 ∑
i = 1

N
 Ri = D  = α  (17) 

where α is the reliability level. For example if α = 0.95 the above equation means that in a 

simulated period of 2000 years the total release equals the target release D during 1900 years 

(95%), whereas we allow 100 years (5%) where the target release is not completely satisfied. 

The failure probability α' corresponds to the case of partial satisfaction of the demand and α' 

= 1�−�α. Apparently, failure occurs in cases that release targets are not physically 

achievable.  

 In the second problem our concern is the cost of conveyance (or the profit, in cases of 

energy production). This is, for example, our concern for the fourth case examined in 

subsection 2.2. In this problem we can formulate the objective function as  

 minimize   E 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 ∑
i = 1

N
 ci(Ri)  = f2(a, b) (18) 

where ci(Ri) is the cost paid for conveying the quantity Ri to the consumption location 

(negative in case of energy production) and expectation is taken over the releases. Equation 

(17) still remains a constraint for (18).  
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 Other concerns of the system may lead to different objective functions (single or 

multivariate), or different constraints. In this paper, we consider only the above two problems 

with single-objective optimizations having the form of equations (16) and (18). 

2.5 The simulation of the system operation 

 As we have seen previously, the optimization process involves a certain number of 

simulations of the system operation. In each simulation, trial values of the parameters ai and bi 

are used. At each time period of simulation the following computations are performed: 

(a) The end-of-period storage in the system V is estimated from (3).  

(b)  The target storages S*
i  are obtained from (4). Then, these are corrected according to 

equations (12) and (13) to give the final values of the target storages S΄΄*
i
. 

(c)  The releases from each reservoir are determined so as to meet the target storages S΄΄*
i
 

while also satisfying 

 0 ≤ ≤R Ci i  (19) 

In case that releases Ri are outside the limits set by (19) they are set equal to these limits and 

the remainder from the total target release is redistributed among the remaining reservoirs. 

(d) The spill from each reservoir i is given by 

 SP BSi i i i i iQ R L K= + − − −max{ , ( )}0  (20) 

In some cases this procedure may require an iteration. Initially, to estimate V in step (a) 

spills are assumed zero. If nonzero spills are derived from (20), V is re-evaluated based on 

those spills, and the whole procedure is repeated again. Finally, the simulation model may 

include other equations that determine leakages and safety storages. Examples are discussed 

in the next section in the presentation of the case study. 
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3. Case study 

3.1 The reservoir system for water supply of the Greater Athens area and its 

simulation 

 The reservoir system of Greater Athens is used to supply water mainly for domestic and 

industrial use to the metropolitan area of Athens. It comprises two main reservoirs (Figure 1): 

(1) the Mornos Reservoir with an active storage capacity of 643 hm3, and (2) the natural Lake 

Iliki with a storage capacity of 587 hm3. A small reservoir near Athens, the Marathon 

Reservoir with a storage capacity of 41 hm3 is also part of the system. This reservoir is 

considered full all the time for emergency situations. Major water transfer works are: (a) the 

Mornos aqueduct of some 200 km long which carries water from the Mornos Reservoir to 

Athens and comprises a number of different hydraulic works, for example 70 km of tunnels, 

and (b) the Iliki Aqueduct from Iliki to the Marathon Reservoir, which is some 60 km long. 

The growing water demand and the system’s vulnerability to drought during the severe 

drought of 1989-90, which was followed by six years with low flows except for 1990-91 

[Nalbantis et al., 1994] led public authorities to decide to construct a new reservoir (Evinos) 

with a dam at the site of Aghios Dimitrios on the Evinos River just west of the Mornos River 

Basin. Water from the new reservoir will be diverted to the neighboring Mornos Reservoir 

and from there to Athens via the Mornos Aqueduct. The storage capacity of the reservoir is 

small (104 hm3) as compared to that of the Mornos Reservoir. On the other hand, inflows to 

the new reservoir are of a magnitude comparable to that of the inflows to the Mornos 

Reservoir. As a result, Mornos Reservoir will be the main storage work for the Evinos river 

flows, as well. A map with the reservoir system is given in Figure 1, while a schematic layout 

is sketched in Figure 2, where, also, the technical characteristics of the system are annotated. 

Mean values, standard deviations and lag-one autocorrelation coefficients for monthly inflows 

to the three main reservoirs (Evinos, Mornos and Iliki) of the system are given in Table 1.  

 Water from the western part of the system (Evinos and Mornos reservoirs) flows to 

Athens via gravity. Contrary to this, water from Lake Iliki has to be pumped. Another 
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important feature of the system is that Lake Iliki lies on a karstic geologic formation that 

causes significant leakages. These depend strongly on the water surface elevation of the lake 

and may equal half of the annual inflow for high elevations. Analysis of historical data 

established two distinct leakage-elevation relationships: a first one for the dry period (April 

through September) and a second one for the wet period (October through March). The 

relationship for the dry period is given by  

 LL = 0.01242 Z2 − 0.999 Z + 17.46 + e (21) 

where LL is the monthly leakage in hm3 and Z is the water elevation of the lake in m. For the 

wet period the following relationship was found 

 LL = 0.01242 Z2 − 0.999 Z + 22.16 + e (22) 

In both equations (21) and (22), a random term e is added to account for discrepancies from 

the deterministic LL-Z relationship. For this term, E[e] = 0 while its standard deviation σe =  

2.64 hm3 for the dry period and σe = 5.96 hm3 for the wet period. These two statistics are used 

to produce simulated values of leakages through random generation of e that are added to the 

deterministic part in equations (21) and (22) during simulation.  

 For the Mornos Reservoir leakages are concentrated in a limited area of the reservoir 

and are rather small as compared to those of Lake Iliki. They are effectively modeled via the 

following linear relationship 

 L ZL = × −−22 865 10 384 23. ( . ) ,   Z ≥ 384.2 m (23) 

  Apart from water supply to the Greater Athens area, the system provides water for 

irrigation of the Kopais Plain in the Boeotia district. This secondary water use is fixed by 

decree at 50 hm3 per annum but may be reduced in case of water shortages in the water supply 

of Athens.  

 In the simulation model of the system operation, an arrangement has been made for 

keeping safety storages against possible damages to the system aqueducts. For the case of 

damage to the Mornos Aqueduct, a sufficient volume of water is always kept in Lake Iliki to 
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satisfy water demand for water supply of Athens and irrigation of the Kopais Plain for six 

months to come. Minimum inflow to Lake Iliki as well as the storage in the Marathon 

Reservoir, are considered to contribute to safety storage. Owing to the large dead volume of 

the Mornos Reservoir (119 hm3), which can be pumped in emergency situations, and to the 

absence of local water uses from that reservoir, no such safety concern was necessary for the 

case of damage to the Iliki aqueduct. 

 The annual target release D is expressed in hm3 per year. In the calculations, this is first 

transformed into a monthly mean value Dm (= D / 12), which, in turn, is distributed 

throughout the months of the year via the water demand distribution coefficients 

 dj = 
Dj
Dm

 (24) 

where dj and Dj are respectively the water demand distribution coefficient and the target 

release for month j (j = 1, 2, 3, …, 12). Water demand distribution coefficients for both the 

water supply of the Greater Athens area and the irrigation of Kopais Plain are given in Table 

2.  

3.2 Brief review of the model used for synthetic inflow generation 

 A multivariate stochastic model was used for generation of inflows. The model 

generates the runoff of the three basins and the concurrent rainfall depths at the three 

reservoirs simultaneously. In addition, it generates the evaporation depths from the three 

reservoirs simultaneously but with no reference to the concurrent rainfall and runoff. These 

generations result in equivalent water depths, while the corresponding volume quantities are 

determined during the system simulation, given the variation of the reservoir areas. For each 

of the two cases (concurrent rainfall and runoff, and evaporation) we start with the generation 

of annual quantities, which is performed by a multivariate AR(1) model. Then these quantities 

are disaggregated into monthly depths as the monthly step was proven sufficient for the 

system simulation. The disaggregation is performed using the Dynamic Disaggregation 

Model (DDM) [Koutsoyiannis, 1992]. This model preserves the first three marginal moments 

of the lower-level (monthly) variables, the lag-one autocorrelation coefficients and the lag-
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zero cross-correlation coefficients. We note that the test hydrologic system for the 

development of DDM was the same system as the present application and thus the interested 

reader is referred to Koutsoyiannis [1992] for a detailed description of the model and its 

performance. 

3.3 Results 

 The proposed method was applied in two real-world problems related to the water 

supply system of Greater Athens. In the first problem (Problem 1) the ultimate development 

of the system is studied. Specifically, the maximum possible system release is sought by 

taking no account of the operating cost (i.e., for pumping). In the second problem (Problem 2) 

the system operation is studied for a level of development lower than the ultimate, considering 

this time the related economic aspects. Specifically, a target release level is assumed less than 

the maximum that is estimated in Problem 1, and the minimization of the operating cost is 

sought. 

 In Problem 1, the total target release from the system, D, is maximized for a selected 

level of failure probability. The objective function to be maximized is given by (16) while 

constraint (17) must also be satisfied. The adopted level of the probability of failure for the 

water supply system of Greater Athens is α' = 1% [Koutsoyiannis and Xanthopoulos, 1990], a 

value that provides a high level of security. So, during the optimization process, the point 

(a, b) in the parameter space, which yields the maximum target release for α' = 1%, is sought. 

However, the simulation of the system operation for a specific set of parameter values yields 

α' for a given water demand D. To avoid an excessive number of simulations with large 

computing times we followed a procedure with two steps. In Step 1 a level of target release D 

is selected and parameters are estimated that minimize the probability of failure or, otherwise, 

maximize the system reliability 

 maximize  prob 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

 ∑
i = 1

N
 Ri = D  = f1΄(a, b) (25) 

with the constraint 
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 D = constant (26) 

 Step 2 simply involves finding a target release that gives the desired level of reliability 

with the parameter values already estimated in Step 1. The basic hypothesis behind this two-

step optimization lies in the fact that (16) and (17) can be interchanged as far as their role as 

objective function and constraint is concerned. This is reasonable when the assumed level of 

target release in Step 1 does not differ significantly from the target release estimated in Step 2, 

a condition that must be checked a posteriori.  

 All simulations are based on a synthetic data set for a period of 2000 hydrological years. 

Nine hydrological variables are simulated, i.e., three reservoirs (Evinos, Mornos, Iliki) × three 

variables (runoff, precipitation, evaporation).  

 The main focus of this work is to explore the features of the approach associated with 

the parameterization of the proposed reservoir system operating rule, and not to establish an 

efficient optimization algorithm. Our purpose is served better by using the uniform grid 

method of parameter optimization already described in classical texts [Loucks et al., 1980, pp. 

65-68]. In this study, the method is applied in the form of successive steps or iterations with 

grids that are nested to each other and become progressively finer. In this method, the 

objective function is evaluated via simulation at all the grid points of the parameter space that 

satisfy constraints (5). The algorithm starts by dividing the interval of variation P1(p) of each 

parameter p with an interval divider δ1 to obtain the initial (coarsest) grid. Then, we construct 

a second grid with finer resolution by taking a smaller interval P2(p) of each parameter p only 

in the vicinity of the optimum and dividing it by a divider δ2. This is considered as the first 

iteration. The algorithm proceeds in this way for a number of iterations M until convergence 

to one or more optima. Note that simulation runs are performed for M + 1 grids. The 

convergence criterion depends on the objective function to be optimized. For equation (25) of 

Step 1 of Problem 1, iterations are stopped when maximum difference of failure probability 

values within a grid drops below the critical value ε1 = 0.002. This is chosen as a small 

multiple of 0.0005 which is the minimum probability level that can be calculated for a period 

of simulation of 2000 years.  
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 In our study, the parameter set is six-dimensional, i.e., (a1, a2, a3, b1, b2, b3), where 

indexes 1, 2 and 3 correspond to Evinos, Mornos and Iliki, respectively, but owing to 

equations (5) this is reduced to a four-dimensional problem. Preliminary tests showed little 

sensitivity to parameters ai (i = 1, 2, 3). One example is given in Table 3 for a particular set of 

parameters b = (0.20, 0.80, 0.00) and D = 700 hm3. This table shows that results are 

insensitive to parameters a and the rule proposed was initially overparameterized, at least for 

our case study. 

 Given the results of the sensitivity analysis and the discussion for the number of 

parameters presented in subsection 2.3, we opted to proceed to the optimization of parameters 

bi (i = 1, 2, 3) by selecting constant values for ai, i.e., ai = 0 (i = 1, 2, 3), or, equivalently, to 

use the homogeneous instead of the complete linear rule. In this case the parameter space is 

initially three-dimensional with 0 ≤ bi ≤ 1 (i = 1, 2, 3), and is restricted to two-dimensional 

given that (5) holds. The results are presented in Table 4. In Figure 3 we depict the results of 

the initial (coarsest) grid in contours with equal probability of failure for the space of 

parameters bi that is mapped to an equilateral triangle. We observe that: (a) the probability of 

failure follows a rather smooth and continuous curved surface; (b) this surface is not 

symmetrical with respect to the sides of the triangle, which is explained by the different 

conditions of the three reservoirs; (c) the lowest values of the surface correspond to b3 = 0 

which is explained by the high leakages of Lake Iliki (the zero value means that we withdraw 

water from Iliki as much as possible); and (d) there is a flat area with minimum probability 

(equal to 1.4%) rather than a single point; and (e) further investigation of this area is needed 

for the selection final parameter set.  

 After three iterations, we obtained the final grid. The flat area already detected in the 

initial grid was proved larger and no probability less than 1.4% appears. The flat area is 

advantageous as it provides flexibility: any point with α' = 1.4% could be chosen. The 

selection of the final parameter set was based on engineering criteria. We have chosen the 

point with the lowest value of b1, which corresponds to conveying as much possible water 

from the Evinos to the Mornos reservoir. The idea behind is to store water as closer to Athens 
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as possible for safety reasons. Thus, the final parameters set is (a, b) = [(0, 0, 0)T, (0.08, 0.88, 

0.04)T]. In Table 4 we depict the main characteristics of the optimization process.  

 The optimization process for Problem 1 is completed with Step 2 of the overall 

procedure; the final maximum target release for α' = 1.0% is estimated at 690 hm3 per year, a 

value very close to that of Step 1 (700 hm3).  

 The second problem we faced involves minimizing operating costs for a given level of 

target release and a level of system reliability. The problem is formulated so as to optimize the 

objective function (18) with the constraints (17) and (26). Water from the western part of the 

system (the Evinos-Mornos subsystem) flows to Athens via gravity while water from Iliki is 

pumped. Consequently, operating cost of the Evinos and Mornos works can be neglected if 

compared to cost from Iliki. Furthermore, the cost of pumping is a linear function of 

withdrawals R3 from Iliki. So, the objective function (18) becomes  

 minimize   E[R3] =  f2(a, b) (27) 

As in Problem 1, the uniform grid method is applied with parameters ai = 0 (i = 1, 2, 3) and 

parameters bi satisfying (5). The procedure here tries, for a given target release D, to get a 

solution that is closer to satisfying constraint (17) while at the same time optimizing f2 in (27).  

 The results are presented in Table 4. The values of the objective function for the initial 

(coarsest) grid are also shown in Figure 4 where we have drawn contours of equal probability 

of failure and of equal values of the objective function. We observe that the general shape of 

the surface of probability is quite similar to that of Figure 3 and has its minimum values in the 

same region (although the absolute values of probability are different in the two figures). This 

figure allows us to localize the area where the contour with probability of failure 1% passes, 

i.e., where the constraint (17) is valid. Guided by this we constructed a finer grid and so on. 

The criterion to stop the iteration was to obtain improvements of the objective function that 

are less than a certain critical value ε2 in relative terms. In our case ε2 = 0.005. Table 4 

summarizes the results. The final set of optimal parameters is (a, b) = [(0,0,0)T, (0.106, 0.291, 

0.603)T]. The value of the objective function is E[R3] =104 hm3. Note that this value is 78 hm3 
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lower than the corresponding value for Problem 1 (182 hm3). We can also easily notice that 

the optimal parameter set of Problem 2 is clearly different from that of Problem 1.  

 To validate the rule proposed we compared the above results with those obtained by 

heuristic rules with no parameters to be optimized. These are: (a) the well known space rule 

expressed by (8), (b) the leakage rule as described in subsection 2.2, and (c) the conveyance 

rule given by (10). We have tested all three rules applied throughout the year as well as 

combinations of them applied separately for the dry and wet season, as shown in Table 6 

(except for three combinations that had no meaning).  

 The comparison is performed only for Problem 1 since in this problem we can find the 

maximum target release from the system that corresponds to a failure probability equal to 1%. 

The application of the above heuristic rules to Problem 2 is not possible because, in that case, 

there is no degree of freedom: once the target release is fixed the failure probability is also 

fixed and cannot be made equal to its desired level (1% in our case).  

 For each one of the three basic heuristic rules we estimated the values of the parameters 

in equation (4). First, the parameter values for the space rule are estimated. From Figure 5 we 

conclude that ratios E CQ E CQ[ ]/ [ ]i jj

N

=∑ 1
 are nearly constant for all months with mean values 

0.313, 0.297 and 0.390 for Evinos, Mornos and Iliki respectively. With these values we obtain 

from (8) the values of (a, b) shown in Table 5. The graphical representation of the space rule 

is given in Figure 6, in comparison with the optimized rules of Problems 1 and 2. The 

parameter sets for all other heuristic rules, determined from the corresponding equations of 

subsection 2.2, as well as those obtained by optimizing the parametric rule for Problems 1 and 

2, are shown also in Table 5. We observe that: (a) in all rules the parameters ai are zero except 

for the space rule, (b) the parameter b3 for Lake Iliki optimized for Problem 1 (parametric 

rule) takes a value similar to that of the leakage rule, (c) the parameters bi for the Evinos and 

Mornos reservoirs optimized for Problem 1 are not well approximated by anyone of the 

heuristic constant-parameter rules.  

 In Table 6 we depict the annual target release corresponding to the 1% failure 

probability for each one of the rules tested. These results allow us to make the following 

observations and interpretations. First, the space rule, applied throughout the year (Case 1), 
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gives a total annual release of 620 hm3, which is by 70 hm3 less than that obtained by our 

method. This is expected since the avoidance of spills results in storing water mainly in the 

Mornos and Iliki reservoirs thus leading to high leakage losses especially from Iliki. Second, 

the introduction of the leakage rule in the dry season while the space rule is still used in the 

wet season (Case 2) does not improve the results. In this case the leakage rule tries to store all 

water of the dry season in the Evinos reservoir while, in the previous wet period, this was 

almost emptied by the space rule to keep empty space for the significant inflows from the 

Evinos basin. Due to the very low inflows in the dry season, no sensitivity to the introduction 

of the leakage rule is revealed. Third, the introduction of the conveyance rule in the dry 

season while the space rule is still used in the wet season (Case 3) gives a small improvement 

of 8 hm3 with regard to the previous case. We note that the conveyance rule tries to store more 

water in the Evinos-Mornos subsystem thus producing a beneficial result. Fourth, the leakage 

rule used throughout the year (Case 4) performs better than the space rule and the 

combination of the latter with the leakage rule. In this case the leakage rule tries keep the 

Evinos reservoir full for both seasons. In the wet season this is perfectly possible due to high 

inflows but at the expense of a significant risk of spillage. However, the Mornos reservoir is 

left relatively empty although it does not leak significantly (as compared to Iliki). Fifth, the 

leakage rule used throughout the year (Case 4) has a slightly better performance in 

comparison with the space rule combined with the conveyance rule (Case 3). Again here, the 

introduction of the leakage rule in the wet season proved beneficial. Sixth, the performance of 

the leakage rule when combined with the conveyance rule in the dry season (Case 5) 

improved very slightly in comparison with the leakage rule throughout the whole year (Case 

4). We notice the same beneficial result of the use of the conveyance rule in the dry season 

although the improvement is minor. Seventh, the use of the conveyance rule throughout the 

year (Case 6) has the maximum performance from all other rules tested (Cases 1-5). As said 

before this rule tries to store more water in the Evinos-Mornos subsystem which happens to 

have large conveyance capacity. By coincidence, the same subsystem has also lower leakage 

losses. As a result, the two effects are combined to improve the performance but this is 

undoubtedly a fortuitous situation. 
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 Comparing the results from all six rules or combinations thereof (Cases 1-6) with those 

of the parametric rule proposed (Case 7) we observe that in all cases the parametric rule gives 

significantly better results. We note that our parametric rule tries to store water mainly in the 

Mornos reservoir leaving small quantities to the other two reservoirs; this behavior is not 

encountered by any of the heuristic rules tested. 

 As mentioned above, the heuristic rules without parameters subject to optimization are 

not suitable for problems such as Problem 2 examined here. However, for illustrative 

purposes we give results only for the space rule in this case. Simulations with this rule and a 

level of target release of 600 hm3 gave a probability of failure equal to 0.6% and a mean 

annual release from Iliki 127 hm3.  

4. Summary and conclusions 

 A parametric rule for multireservoir system operation is formulated and tested. It can be 

considered a generalization of the well-known space rule, which aims at avoiding unnecessary 

spills in one reservoir while others still have empty space. The proposed rule is much more 

general in the sense that, in addition to the spill-avoidance objective, it simultaneously 

accounts for various other system operating goals: avoidance of leakage losses, avoidance of 

conveyance problems, impacts of the reservoir system topology, and satisfaction of 

downstream secondary uses. The rule is parameterized so that it contains two parameters for 

each reservoir. Theoretical values of the parameters are derived for each one of the above 

isolated goals. Since many real-world problems involve more than one of these goals, 

parameters are evaluated numerically to optimize one or more objective functions that are 

selected by the user. The rule drives a simulation model of the reservoir system, which is 

embedded in a scheme that optimizes the rule’s parameters.  

 The parametric rule proposed is tested on the case of the water supply system of the city 

of Athens, Greece, comprising three main reservoirs on three separate water basins. Its 

complexity and idiosyncrasies make the system ideal as a test system, since many of the 

operating goals examined theoretically appear in this case study. Two problems are tackled in 

this case study. First, the ultimate development of the system is considered and the total 
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release from the system is maximized for a selected level of system reliability. Second, an 

intermediate development of the system is sought and the pumping cost is minimized for a 

given reliability and a given level of target release less than that obtained in the first problem. 

A detailed simulation model on a monthly time scale has been used in the analyses. This 

included a generation model of synthetic annual hydrological data and a model for 

disaggregation of annual values into monthly values. Also, it included models describing 

system losses such as leakages and evaporation. The system’s operating details such as the 

maintenance of safety storages were also taken into consideration. It appeared that the 

parametric rule proposed has proved satisfactory in tackling the problem of finding the 

capabilities of a reservoir system on a long-term basis. Through its parameterization, it 

effectively accommodates various system operating goals into a single objective function. 

Insensitivity to a subset of the parameters was revealed in the case study, which allowed 

further simplification of the rule and restriction of the dimension of the parameter space to 

half the initial value.  

Finally, the rule proposed is validated through comparison with other heuristic rules that 

satisfy specific goals (avoidance of spills, leakage losses and conveyance problems). In all 

cases, the proposed parametric rule was superior in its performance. Of course, storage and 

release trajectories obtained are not “optimal” in the absolute mathematical sense as the 

trajectories must comply with a simple parametric relation. Nevertheless, once optimized, the 

proposed rule is very simple mathematically to apply even by a non-expert user and is 

therefore recommended for situations with long-term studies of reservoir systems.  
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Table 1 Mean values (m, in hm3), standard deviations (s, in hm3) and lag one autocorrelation 

coefficients (r) of monthly inflows to the reservoirs of the Athens water supply system.  

 Evinos Mornos Iliki* 

Record 

period  

1961-63, 1970-88 1951-56, 1963-68, 

1979-88 

1960-64, 1968-76, 

1977-88 

 m  s r m  s r m  s r 

October 7.2 6.5 0.32 12.2 13.9  0.16 20.1 10.1 0.59 

November 30.4 23.5 0.17 31.0 22.9 0.32 25.3 9.4 0.65 

December 60.0 47.1 0.49 48.8 28.1 0.01 44.3 37.5 0.46 

January 48.3 34.6 0.19 51.9 32.3 0.25 52.5 28.5 0.60 

February 56.4 32.0 0.75 48.1 25.8 0.31 53.1 20.7 0.59 

March 47.8 27.1 0.0 39.9 14.3 0 .23 63.3 18.3 0.26 

April 34.0 12.2 0.29 33.4 9.7 0.73 40.4 21.5 0.78 

May 18.5 7.1 0.60 24.1 10.5 0.78 18.9 14.5 0.80 

June 8.2 3.1 0.73 13.5 5.9 0.48 3.8 5.4 0.45 

July 4.7 1.5 0.81 6.4 3.8 0.0 0.4 1.0 0.54 

August 3.1 0.8 0.68 5.3 3.1 0.20 1.3 2.6 0.47 

September 2.9 0.9 0.11 4.8 2.9 0.75 9.9 6.8 0.56 

Year 321.5 111.2 0.17 319.1 77.9 0.03 333.4 115.8 0.0 

*Inflow from B. Kifissos River (not including inflow from Iliki’s own basin)  
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Table 2 Monthly water demand distribution coefficients dj (j = 1,2..., 12) (%) for the Athens 

water supply system.  

 Water supply of Athens Irrigation of Kopais Plain 

October 8.75 0.00 

November 7.75 0.00 

December 7.75 0.00 

January 7.17 0.00 

February 6.58 0.00 

March 7.42 0.00 

April 7.58 2.58 

May 8.67 7.17 

June 9.33 17.58 

July 10.08 39.84 

August 9.75 32.83 

September 9.17 0.00 

Annual sum 100.00 100.00 
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Table 3 Sensitivity analysis of the failure probability α' of the Athens water supply system to 

parameters ai (i = 1,2,3) for Step 1 of the optimization process, in the case of maximization of 

the expected annual total release from the system (Problem 1). The annual target release is 

700 hm3. Parameters bi are held constant: b1 = 0.20 for Evinos, b2 = 0.80 for Mornos and b3 = 

0.00 for Iliki. 

Test No Parameters ai α' (%) 

 Evinos Mornos Iliki  

1 0 −500 500 1.40 

2 0 −400 400 1.40 

3 0 −300 300 1.40 

4 0 −200 200 1.40 

5 0 −100 100 1.40 

6 0 0 0 1.40 

7 100 −400 300 1.40 

8 100 −300 200 1.40 

9 100 −200 100 1.40 

10 100 −100 0 1.40 

Table 4 Summary of results of the optimization process for Problem 1 (Step1) and Problem 2.  

 Problem 1 (Step 1) Problem 2 

Mean annual target release (hm3) 700 600 

Number of iterations M 3 6 

Initial interval for bi [0, 1] [0, 1] 

Interval divider δj (j = 1,..., M) 2* 2 

Critical value for stopping 0.002 0.005 

Final failure probability (%) 1.40 1.00 

Mean annual abstraction from Lake Iliki E[R3] (hm3) 182 104 

*For all iterations except the first where δ1 = 5.  
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Table 5 Parameter values for various heuristic operating rules and the optimized proposed 

rule. 

 Evinos Mornos Iliki 

Rule a1 (hm3) b1 a2 (hm3) b2  a3 (hm3) b3 

Space −315 0.313 247 0.297 68 0.390 

Leakage 0 1 0 0 0 0 

Conveyance 0 0.377 0 0.377 0  0.246 

Parametric, Problem 1 0 0.080 0 0.880 0 0.040 

Parametric, Problem 2 0 0.106 0 0.291 0 0.603 

 

Table 6 Annual target release satisfied with 1% failure probability for various heuristic 

operating rules and the optimized proposed rule (Problem 1). The rules are applied throughout 

the year or by season.  

 Rule  
Case 

Throughout the 

year 

Wet season Dry season 
Annual target 

release (hm3) 

1 S   620 

2  S L 620 

3  S C 628 

4 L   633 

5  L C 635 

6 C   652 

7 P   690 

S= space rule, L = leakage rule, C = conveyance rule, P = parametric rule proposed 
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Figure 1 Layout of the Athens water supply system. 
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Figure 2 Schematic representation of the Athens water supply system. Characteristic data of 

the system are annotated: for rivers, the watershed area and the mean annual reservoir inflow; 

for reservoirs, the minimum and maximum water level, and the active storage capacity; for 

aqueducts, the length and conveyance capacity; for other components, the characteristic water 

levels. 
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Figure 3 Contours of equal probability of failure α' (%) of the Athens water supply system 

for the first (coarsest) grid of Step 1 of the optimization process of Problem 1. The annual 

target release is 700 hm3. Parameters ai are zero for all reservoirs. 
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Figure 4 Contours of equal probability of failure α' (%) of the Athens water supply system 

(continuous lines) and of equal mean annual abstraction from Lake Iliki E[R3] in hm3 (dashed 

lines) for the first (coarsest) grid of the optimization process in Problem 2. The annual target 

release is 600 hm3. Parameters ai are zero for all reservoirs. 
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Figure 5 Ratios of cumulative monthly inflows into each one of the three reservoirs to the 

system cumulative monthly inflows (bi in (8)). Cumulative inflows are considered up to the 

end of the refill cycle. Displayed values for the months of the refill cycle (October to April) 

are averages for the common period (for all reservoirs) of data availability (1979-80 to 1987-

88). Continuous, dashed and dotted lines correspond to Evinos, Mornos and Iliki reservoirs, 

respectively. 
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Figure 6 Graphical representation of operating rules for (a) the final parameter set of Problem 
1, (b) the final parameter set of Problem 2, and (c) the parameter set of the space rule. Solid 
lines with rhombi, squares and circles correspond to reservoirs 1, 2 and 3 (Evinos, Mornos 
and Iliki), respectively and represent the adjusted rule (equation (13)). Dashed lines represent 
the initial linear rule (equation (4)). 


