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Abstract. Unit hydrograph identification by the parametric approach is based on the assumption of 
a proper analytical form for its shape, using a limited number of parameters. This paper presents 
various suitable analytical forms for the instantaneous unit hydrograph, originated from known probability 
density functions or transformations of them. Analytical expressions for the moments of area of these 
form versus their definition parameters are theoretically derived. The relation between moments and 
specific shape characteristics are also examined. Two different methods of parameter estimation are 
studied, the first being the well-known method of moments, while the second is based on the minimization 
of the integral error between derived and recorded flood hydrographs. The above tasks are illustrated 
with application examples originated from case studies of catchments in Greece. 
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probability distribution function, method of moments, optimization. 
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catchment area 
definition parameters (generally a is a scale parameter, while b and c are 
shape parameters) 
coefficient of variation 
skewness coefficient 
net rainfall duration 
probability density function (PDF) 
cumulative (probability) distribution function (CDF) 
objective function 
net rainfall depth 
unit (net) rainfall depth (= 10 ram) 
net hyetograph 
standardized net hyetograph (SNH) 
n th central moment of the standardized net hyetograph 
surface runoff hydrograph 
standardized surface runoff hyrograph (SSRH) 
n th central moment of the standardized surface runoff hydrograph 
S-curve derived from a unit hydrograph of duration D 
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standardized S-curve (SSC) 
time 
flood duration of the unit hydrograph UD(t ) 
flood duration of the instantaneous unit hydrograph Uo(t ) (= right bound 
of the function Uo(t)) 
IUH lag time (defined as the time from the origin to the center of area 
of IUH or SIUH) 
time from the origin to the center of the area of the net hyetograph 
time from the origin to the center of the area of the surface runoff hydrograph 
time from the origin to the peak of IUH (or SIUH) 
unit hydrograph for rainfall of duration D (DUH) 
instantaneous unit hydrograph (IUH) 
standardized instantaneous unit hydrograph (SIUH) 
nth central moment of area of IUH 
nth moment of IUH about the origin 
nth moment of IUH about the right bound (when exists) 
surface runoff volume 
volume corresponding to the unit hydrograph 

1. Introduction 

Common mathematical approaches to model synthesis, include (1) discretization 
techniques, i.e. determination of the model in a finite number of discrete points, 
and (2) parametric techniques, i.e. the assumption of a proper analytical form for 
the model, with a limited number of parameters, and the estimation of these 
parameters by means of known restrictions and/or the optimization of an objective 
function. 

Both the above approaches have been used for the unit hydrograph (UH) synthesis. 
The first has become the most common method and is based on linear analysis 
(matrix inversion technique - O'Donnell (1986)). The second was founded by Nash 
(1959), who showed that the moments of the area of the instantaneous unit 
hydrograph (IUH) can be easily derived from recorded hydrographs and simul- 
taneous rainfall records. Nash also studied several suitable two-parameter analytical 
forms to represent the shape of the IUH, the most common being the gamma- 
PDF form. The parametric approach has also been used in synthetic unit hydrograph 
derivations, with the most common analytical forms being the triangular and the 
gamma-PDF. 

The first approach is generally considered as more accurate, because of the 
considerable number of points defining the UH, while the second uses a very limited 
number of parameters (2 or 3) for UH shape representation. In fact, in the parametric 
approach the inaccuracies due to the limited number of parameters are minor when 
compared with the uncertainties of the whole process of UH derivation from recorded 
data, which are met in the areal rainfall estimation, the establishment of the stage- 



UNIT HYDROGRAPH IDENTIFICATION 109 

discharge relationship, baseflow separation, and, finally, separation and time 
distribution of rainfall losses. 

Moreover, it is often very difficult or almost impossible to find recorded flood 
events which originated from entirely uniform over the catchment rainfall. Finally, 
the assumption of the catchment linearity is not strictly valid and the catchment 
response is not unique. Because of the above uncertainties, it is a very common 
practice in the formation of design flood hydrographs, to consider a unit hydrograph 
more severe than that derived from flow records (e.g. by reducing the time to 
peak by 2/3, see Sutcliffe (1978)). 

The above discussion indicates that the parametric method, although seemingly 
less accurate than the standard linear method, can be a good approximation to 
the unit hydrograph identification of real-world catchments, since the inaccuracies 
introduced by the use of a limited number of parameters are minor. Moreover, 
the parametric method has some advantages which will be discussed later. 

Problems associated with the application of the parametric approach are the 
selection of the proper analytical form for the UH representation and, mainly, 
the method for parameter estimation. These problems are systematically examined 
throughout this study. 

2. Definitions and General Relations 

Let Uo(t ) be the unit hydrograph for a net rainfall of duration D (DUH). The 
instantaneous unit hydrograph Uo(t) corresponds to the case where D = 0. We 
denote by V 0 the surface runoff volume corresponding to the unit rainfall with 
depth H0 = 10 mm, that is 

f? f0 Vo = UD(t ) dt = Uo(t) dt  = Ho'A, 

where T O and T o are large enough time intervals, referred to as flood durations 
(theoretically, the right bounds for the functions UD(t ) and Uo(t), respectively, which 
can be equal to ~), and A the catchment area. Now we define the function 

u(t) = Uo(t) / Vo (1) 

which will be referred to as standardized instantaneous unit hydrograph (SIUH). 
This is a positive function, with the dimension (time) -1, which has the property 

or°U(t) d t =  1" (2) 

In general, u(t) is a single peaked function. The time to peak, tp, and the peak 
value, Up = u(tp), are the main characteristics of SIUH. 

Furthermore, let SD(t ) be the S-curve (DSC) derived from the DUH, which 
corresponds to a rainfall intensity equal to Ho/D, and of infinite duration. The 
DSC is related to DUH by 

Up( t )  : SD( t )  - S ~ ( t - D )  (3) 
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and to IUH by 

1 fot SD(t)  : ~  Uo(t ) dt. 

Additionally, we define the function 

s( t )  = s D ( t  ) • ( D / V o )  

DEMETRIS KOUTSOYIANNIS AND THEMISTOCLE XANTHOPOULOS 

(4) 

(5) 
which is dimensionless, independent of the duration D, and has the properties 

s(O) : O,  s(To) : 1. (6) 

This function will be referred to as the standardized S-curve (SSC). SSC and SIUH 
are related by 

s( t )  = jo t u(t)  dt ,  (7) 

ds(t) 
u ( t )  - (8) 

dt 

Finally, let U n be the nth central moment of area of the function u(t), U" n the 
nth moment about the origin, and U n the nth moment about the right bound T o 
(if it exists). These are defined by 

f0 0 g n = ( t - t u ) n  u(t) dt ,  (9) 

f0 r° U£ = t n u(t)  a t ,  (10) 

U n = f T° ( T o - t )  n u(t)  dt .  (11) 

where t U = U'~ is the distance of the center of the area of SIUH from the origin, 
known as lag time. (Note the term (To-t) in (11), which is opposite to the usual.) 

Each family of moments can theoretically determine the complete shape of SIUH, 
when an infinite number of them is known. In reality, only a limited number can 
be estimated, but nevertheless, this limited number holds substantial information 
about the shape, which is very helpful for IUH identification. 

Given a specific analytical form of SIUH, it is an easy matter to derive the 
DUH for any duration D. This can be done by a subsequent application of Equations 
(7), (5) and (3). 

3. Analytical  Forms for the SIUH Representation 

The functions u(t) and s(t) are mathematically similar to the families of probability 
density functions (PDFs) and distribution functions (CDFs). Those single-peaked 
PDFs, which are left-bounded by zero, are ideal for the representation of the SIUH. 
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Normally they should have a right bound, too, but this is not necessarily considered 
as a strict theoretical requirement, since all PDFs tend to zero for large values. 

Eight particular analytical forms have been systematically examined in this study 
- all of them originating from know probability density functions (PDFs) of their 
transformations. They have two or three parameters and are left-bounded by zero 
or double-bounded. These forms are described below. In their analytical expressions, 
a generally denotes a scale parameter, while b and c denote shape parameters. 
The expressions of their main features (theoretically derived in the present study, 
except those of well-known functions) are summarized in Tables I and II. 

1. Double Triangular (DT) (double-bounded/two-parameter) 
This form is, in fact, a single triangle consisting of two successive triangular PDFs 
(thus, the characterization 'double'), the first with a negative skewness and the 
second with a )ositive one. The SIUH is expressed by 

2 t / a ,  0 <~ t /a  ~ b, 
ab 

u ( t )  = 

2 ( 1 - t / a ) ,  b<~t/a<~ l. 
a(1-b)  

The double-triangular form has been widely used for the expression of synthetic 
unit hydrographs (for example, see Sutcliffe (1978)), but not so much for the IUH 
itself. 

(12) 

2. Gamma (I') (left-bounded/two-parameter) 
This form has been suggested by Nash (1959), and is the most common for the 
IUH analytical expression, either synthetic or from recorded data. Its analytical 
expression is 

(t/a)b-1 e-t/a 
u(t)= , t>~O. (13) 

aE(b) 

3. Log-Normal (LN) (left-bounded/two-parameter) 
This form was also suggested by Nash (1959); its analytical expression is 

u ( t ) -  1 exp - - t~>0.  (14) 
t(rcb)l/2 

4. Weibull (W) (left-bounded/two-parameter) 
Originating from the Weibull distribution function, we get the following form for 
SSC 

s(t) = 1 -- e (t/a)b, l ~  O. (15) 
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5. Beta (B) (double-bounded/three-parameter) 
Beta density function with an extra scale parameter, a-- To, can give a nice form 
for the SIUH representation, that is 

( t /a)b 1 (l_t/a)C-1 
u( t )=  , O<~t<~a. (16) 

aB(b,c) 

6. Double-Power (DP) (double-bounded/three-parameter) 
This term is used to describe the following three-parameter function 

s(t) = [1 - ( 1 - t / a ) b ]  c, t ~ O. (17) 

The simplicity of the SSC analytical expression, as well as the one for SIUH (see 
Table II) is remarkable. This form has been extracted from a similar CDF suggested 
by Kumaraswamy (1980). 

7. Shifted Log-Pearson III (SLP) (left-bounded/three-parameter) 
The usual logarithmic transformation, (x = lnt) applied to the Pearson type-III 
distribution, 

cb(x-d)b- I  e-C(x-d) 
f ( x ) -  , x ) d (18) 

r(b) 

is not proper for the SIUH expression, since t = e x ranges in [e d, ~). In order 
to decrease the lower bound to zero, we apply the following shifted logarithmic 
transformation 

x = ln(t  + e d) 
and get 

c b [ ln( t /a+l)]  b-1 
u ( t ) = - - -  , t >~ O. (19) 

aF(b) ( t / a + l )  c+l 

where a = e d is a scale parameter. 

8. Minus Log-Pearson III (MLP) (double-bounded/three-parameter) 
This form also originates from the Pearson type-III distribution, by applying the 
minus logarithmic transformation, i.e. x = - ln  t, which gives 

c b 
u(t) - ( t / a ) c - l [ - l n ( t / a ) ]  b-l,  0 <~ t <~ a, (20) 

aF(b)  

where a = e d is a scale parameter. 

4. Comparison of the Analytical Forms 

Since the definition parameters of the above-described forms (a, b, c) are not 
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Fig. 1. Skewness coefficient versus coefficient of variation, for the two parameter forms. Relation between 
definition parameters and coefficients of variation and skewness, for the double-power (DP) form. 

comparable ,  it is preferable to use the first three moments  ( tu,  (.72, U3) instead, 

which can be expressed in terms of the defini t ion parameters  (Tables I and  II). 

The derivative dimensionless  descriptors 

coefficient of var ia t ion  C v = (UD 1/2 / t u 
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and  

skewness coefficient C s = U3 / (U2) 3/2 

are the best indicators  for the compar ison.  
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The two-parameter forms have a fixed relation between C v 

C s = 2 C  v 

for the gamma form and 

c ,  = 3 c~ + c~ 3 

and Cs, i.e. 

119 

(21) 

(22) 

for the log-normal form, while the relations for the other two forms have no simple 
analytical expressions. All four relations are plotted in Figure 1, from which we 
conclude that the double triangular form gives the lowest value of C s for a given 
value of Cv, and the log-normal gives the highest. 

The domain of C v and C s for the three-parameter forms differs from one form 
to another. In particular, in the case of the beta form, it is easily shown that this 
domain extends below curve (21) corresponding to the gamma form. In the shifted 
log-Pearson form, the domain extends above curve (21) and exceeds curve (22), 
corresponding to the log-normal form (see Figure 2). In the double-power form, 
the domain is quite similar to that of the beta form, but with an extension above 
curve (21) (see Figure 1). Finally, the minus log-Pearson form has the widest domain, 
extending below curve (22) (see Figure 3). The above observations and Figures 
1 to 3 are quite helpful for the selection of the ideal form. 

Systematic examination of the various SIUH shapes for specified values of the 
first three moments (or parameters tg,  C v and Cs), showed that, generally, the 
shapes are quite similar. Figures 4 and 5 illustrate the variation of the two main 
characteristics (the time to peak and the peak discharge) of the SIUH and the 
DUH for the duration D=tu ,  respectively, versus the variation of coefficients C v 

and C s. Due to the similarity of the various shapes, it is difficult to distinguish 
the curves for each separate form. Thus, in most cases, one single curve for each 
value of C v has been drawn in Figures 4 and 5. This curve represents all the three- 
parameter forms. The characteristics of the two-parameter forms are also in 
agreement with these curves. An exception to this is the double-triangular form, 
yielding to a deviating higher peak of SIUH, due to the discontinuity in its derivative. 
The deviation, however, reduces in the case of DUH, which is of more practical 
interest. 

The above discussion shows that all the examined forms are of a similar 
performance for the SIUH representation. It is obvious that the three-parameter 
forms are more adjustable, while the two-parameter forms are simpler. The selection 
of a specific form may be based on the values of the descriptors C v and C s (see 
section 5. The simplicity of the form may also be considered. We note that the 
double-triangular, Weibull and double-power forms have simpler expressions for 
both u(t) and s(t) functions. Calculations do not require the use of computers or 
statistical tables. From the other side, the double-triangular, gamma, log-normal 
and beta forms have simpler relations between their moments and their definition 
parameters. This is of interest when parameters are estimated from moments. 

A final observation at this point drawn from Figure 5, is that the magnitude 
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of the peak discharge of the IUH or DUH increases with the decrease of the coefficient 
of variation as well as with the increase of the skewness coefficient. 

5. Parameter Estimation by the Method of Moments 

We assume that the IUH identification is based on recorded rainfall and runoff 
data of the catchment and not on various catchment characteristics. 

Let I(t) be the net hyetograph of a recorded rainfall event and Q(t) is the 
corresponding surface runoff hydrograph derived from the recorded data. Dividing 
the above functions with the total net rainfall depth, H, and the total surface runoff 
volume, V, respectively, we get the standardized net hyetograph i(t) and the 
standardized surface runoff hydrograph q(t). Furthermore, let t I and tQ be the times 
from the origin to the centers of area of i(t) and q(t), respectively, and I n and 
Qn on the n th central moments of i(t) and q(t). 

Nash (1959) showed that the moments of SIUH are related to the above moments 
by 

t U = t Q -  ti, (23) 

U2 = Q2 - 12, (24) 

U3 = Q3 - 13. (25) 

Somewhat more complex relations exist for moments of higher orders. 
These relations permit a simple calculation of the SIUH moments which can 

then determine the definition parameters of a specific SIUH form. 
The whole process of the SIUH identification using this method, consists of the 

following steps: 

(1) Calculate the moments of i(t) and q(t); 
(2) calculate the moments of u(t) using (23) through (25); 
(3) calculate the descriptors C v and Cs; 
(4) select an analytical form, which is proper for C v and Cs; 
(5) calculate the definition parameters of the selected form. 

The equations in Tables I and II, relating the SIUH's moments and descriptors 

to the definition parameters, should be used for step 5 of the process. Double- 
triangular, gamma, log-normal and beta forms are the simplest to be used with 
this method. The other analytical forms require the use of a numerical procedure 
for the solution of equations. The nomographs of Figures 1, 2 and 3 support the 
form selection in step 4 and may replace the numerical methods of equation solving 
in step 5, when there is no need for high accuracy. 

The real problem with this method is that the SIUH's moments calculated from 
separate recorded rainfall/runoff events usually differ to a remarkable degree. One 
solution to that problem, oriented towards the derivation of a mean unit hydrograph, 
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is obtained by taking the average of each moment. The obtained parameters of 
the SIUH can then be modified in order to get more severe unit hydrographs, 
to be used in design floods. 

6. Parameter Estimation by the Method of Least Integral Square Error 

The method of moments is the simplest parameter estimation procedure, but it 
is not the only obtainable one, since other methods could also be set up for this 
aim. 

The method proposed here is oriented towards the minimization of an objective 
function, defined as the integral square error between the recorded runoff hydrograph 
and the derived, with the use of the selected analytical form, convoluted runoff 
hydrograph. This objective function can be formulated as 

m 

g(a, b, c) ~ (Qi-  , 2 = Q i ) ,  (26) 
i - 1  

where g( ) is the objective function, a, b, c are the parameters of the SIUH, which 
in this point are considered as decision variables (the method can be applied for 
more than three parameters, as well), i is a time index, Qi is the ordinate of the 
recorded surface runoff hydrograph, Q*i is the corresponding ordinate of the 
convoluted surface runoff hydrograph and m is a sufficiently large integer constant. 

We note that g( ) is a convex function and neither itself nor its derivatives can 
have simple analytical forms. Thus, the analytical optimization methods cannot 
be applied here. The minimization of g( ) is carried out through a proper iterative 
numerical procedure. In each iteration, a set of values of the parameters is assumed 
and the value of the objective function is calculated, as described in the following 
four steps: 

(1) Calculate SIUH and SSC for the assumed set of parameters; 
(2) calculate the unit hydrograph for the appropriate rain duration, using (5) 

and (3); 
(3) calculate the flood hydrograph by convolution of the unit bydrograph and 

the recorded net hyetograph; 
(4) calculate the integral error betwen recorded and convoluted flood hydrographs, 

by (26). 

A fully general algorithm, in Pascal programming language, has been developed 
for the above minimization procedure, which systematically executes the required 
iterations. It seems like the bisection algorithm used for the equation solving, but 
uses three successive points of each (decision) variable, in the way that the middle 
point corresponds to the lowest value of g ( ) .  There are no restrictions on the 
number of decision variables, but the addition of more variables exponentially 
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increases the required number of computations. Thus, the algorithm is time- 
consuming, but its generality is considerable. In the examined problem, the use 
of double-triangular, Weibull, or double-power forms speeds up computations 
because of the simplicity of the functions s(t) in these forms. 

This method produces better results than the method of moments, and this will 
be verified later on. The method can be easily extended to the case where more 
than one recorded flood hydrograph is available. In this case, the objective function 
should be defined as the total error for all hydrographs. 

7. Advantages of the Parametric Approach 

As was pointed out in the introduction, the parametric approach is, in general, 
less accurate than the standard linear approach, but it has certain advantages. The 
first advantage is its simple and secure numerical computations (though the 
mathematical background may seem somewhat complicated). 

Not only is the limited number of parameters a handicap, but it can also be 
advantageous in some cases, especially when we need to establish the relationship 
between the unit hydrograph and catchment characteristics. Such a relationship 
assists the unit hydrograph derivation in neighbouring ungauged catchments. 

The preselection of a smooth analytical form for the representation of IUH, 
guarantees a smooth unit hydrograph and S-curve. Thus, the parametric method 
can also be applied to the smoothing of a DUH, derived by the usual linear method, 
in order to avoid the problems that frequently appear when a DUH is converted 
from one duration to another (negative ordinates, unexpected successive peaks etc.). 

Finally, the main advantage of the parametric approach is the possibility of 
applying it to large catchments where the usual linear method fails. 

8. Application Examples from Case Studies 

The first example is taken from the study of the Thessalia Basin, middle Greece 
(Xanthopoulos et al., 1988). One of the aims of the study was the derivation of 
design floods in several sites of the basin. Because of the inadequate equipment 
at the basin, the unit hydrograph derivation has been based mainly on the data 
of one sub-basin of the Pinios river (Sarakina) with an area of 1061 km 2. A preliminary 
investigation of recorded flood hydrographs and simultaneous charts of the two 
rainfall recorder stations of the sub-basin, produced six flood events which were 
suitable for analysis. The large catchment area and the inadequate number of rain 
recording stations inhibited the use of the usual linear method for the unit hydrograph 
derivation. Furthermore, the parametric method was superior in the examined 
problem, because of the need to transfer Sarakina's unit hydrograph to other sites 
of the basin. 

The method of moments was used for the parameter estimation. The moments 
of SIUH were computed by Equations (23) to (25). As shown in Table III, moments 
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Table III. SIUH moment  from six flood events at Sarakina Basin 

SIUH moment  Min. value Max. value Average value 

t U (h) 3.50 9.75 6.84 
U 2 (h 2) 9.15 24.42 14.78 
U 3 (h 3) 6.34 47.95 31.66 
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computed from separate events display large deviations amongst them, apparently 
due to the unmeasured spatial nonuniformity of rainfall over a large catchment 
area. 

The coefficient of variation, calculated from the average moments, is C v =0.563 

and the skewness coefficient C s - 0.557. These values normally support the selection 
of the double-triangular or Weibull form (see Figure 1), but because of the major 
severity of the design floods, the log-normal form was finally selected. The parameters 
of that form, calculated by the relations of Table I are b = 0.55 and a = 1.79. 
The flood hydrographs of the six events were reconstructed by convolution of the 
1-hour DUH (obtained by (5) and (3)), and the related hyetographs. Comparisons 

between them and the corresponding recorded hydrographs gave relatively satis- 
factory results, the deviations being unavoidable because of the large ranges of 
the SIUH's moments. Figure 6 illustrates two of these comparisons concerning 
the cases of minimum and maximum deviations. 

A second example is oriented towards the comparison between unit hydrographs 
derived by each of the above parameter estimation methods. The data in this example 
come from the study of Ajak stream, northern Greece (Koutsoyiannis e t  a l . ,  1982). 
The catchment area upstream of the examined Iliolousto dam site is 252 km 2. The 
unit hydrograph was derived by the usual linear method from four recorded flood 

events. One of these events (14-15 August 1981) was used here to develop this 
example. The moments of SIUH, computed from this event by (23) through (25) 
are t g = 5.30 h, U2 = 5.02 h 2 and U 3 = 13.04 h 3, which give C v = 0.423 and C s 

= 1.159. The double power form is suitable for these values and has been selected. 
The parameters calculated by the method of moments are a = 116.9, b = 61.0 
and c = 9.15. The parameters calculated by the least-square error method are quite 
different: a = 203.9, b = 160.0 and c = 25.75. The square error is 188.2 for the 
first case and 41.6 for the second. The 1-h DUHs for both cases are plotted in 
Figure 7, in comparison with the one derived by linear analysis. This figure shows 
that the method of moments underestimates the peak flow and that the least-square 
error method is superior. 

9. Conclusions 

(1) The parametric approach gives a good approximation to a catchment's unit 
hydrograph, although it uses a limited number of parameters. The uncertainties 
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Fig. 6. Comparison between recorded flood hydrographs at Pinios, site Sarakina, and convoluted 
hydrographs, using the log-normal form, concerning the events with (A) minimum and (B) maximum 
deviation. Parameters were calculated by the method of moments. 
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Fig. 7. Comparison between 1-h unit hydrographs of Ajak stream at lliolousto site, derived by (A) 
the usual linear method, (B) the parametric approach with the method of moments, and (C) the parametric 
approach with the least-square error method. All unit hydrographs have been derived from one flood 
event, which occurred on 14-15 August 1981. 

of this approach are mainly due to different catchment behaviour in different flood 
events, as well as inaccuracies in preliminary data processing (such as baseflow 
and rainfall losses separation), and secondary due to the limited number of parameters 
used. 

(2) The advantages of this approach are the simple numerical computatons 
required for the UH identification and its ability to be applied to large gauged 
catchments, where the standard method fails. The approach assists the unit 
hydrograph derivation in ungauged catchments. 

(3) Eight different suitable analytical forms for the instantaneous unit hydrograph 
are presented in this paper, accompanied by complete analytical expressions and 
nomographs required for the application. Two different methods of parameter 
estimation are studied, the first being the well-known method of moments, while 
the second is based on the minimization of the integral error between derived and 
recorded flood hydrographs. 

(4) When the method of moments is used for the parameter estimation, those 
IUHs with a smaller variation coefficient and larger skewness coefficient, yield higher 
peak discharges. From the examined two-prameter analytical forms, the log-normal 
one yields the highest peak discharge, when parameters are calculated from the 
first two moments. The three-parameter forms give quite similar unit hydrographs, 
no matter which particular form is used. 

(5) The parameter estimation method based on the integral square error gives 
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more accurate results, particularly in the estimation of the peak discharge, but 
its application procedure is more complicated than that of the method of moments. 
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