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1. Abstract

A toy model is developed to demonstrate the emergence of antipersistence and
persistence using simple deterministic dynamics. Because of its simplicity, it may
be useful in understanding these behaviours and in avoiding misinterpretation of
more complex natural systems. A hypothetical plain is assumed with water
stored in the soil, which sustains some vegetation. Each year a constant amount of
water enters the soil and the potential evapotranspiration is also constant, but the
actual evapotranspiration varies following the variation of the vegetation cover,
which in turn varies with soil water. The vegetation cover and the soil water
storage are the two state variables of the system. The system dynamics is
expressed by very simple equations. It is demonstrated that the system trajectory,
as seen from synthesized time series, is characterized by antipersistence or
fluctuations around the mean value with fast recovery of the mean. The
fluctuations seem to be periodic but longer series reveal that there is no constant
period. This behaviour reminds time series of phenomena that have been called
"oscillations” such as the El Nino Southern Oscillation. On the other hand, the
series of consecutive peaks of the system storage exhibits large and long
excursions of local average from the overall mean, a behaviour known as long-
term persistence or scaling behaviour. The produced trajectories give the
impression of nonstationary time series but there is nothing nonstationary in the
model, which involves only three parameters constant in time, i.e. the constant
infiltration and potential evaporation rates, and a standardizing parameter for
soil moisture.




2. The toy system and its dynamics

* The toy model refers to a fully deterministic system, deliberately made extremely
simple.

e This system is a natural plain with water stored in the soil, which sustains some
vegetation.

e Each year a constant amount of water I = 250 mm enters the soil and the potential

evapotranspiration is also constant, PET = 1000 mm. The actual evapotranspiration is
E <PET.

e A fraction f of the total plain area is covered by vegetation, and the
evapotranspiration rate in this area equals PET and in all other area is zero
(assuming no route of soil water to the surface), so that in the entire plain, the
average actual evapotranspiration will be

E=PETf

* The system is described by two state variables, which can vary in time: the
vegetation cover f and the soil water s, for which we set s =0 for a certain reference
level, so that s > 0 stands for soil water excess and s < 0 for soil water deficit.

e Ifi=1,2,... denotes time in years, then the water balance equation is
s;,=s;_1+I-PETf,_,
e Iff=1/PET=0.25then E =1=250 mm (input equals output) and the system stays at
an equilibrium; the water stored in the soil stays at a constant value.
e If at some time, f# 0.25, then the state variables will vary in time.




3. System dynamics (2) ,.,

We need one more equation to fully
describe the system; naturally, this should
be sought in the dynamics of grow and
decay of plants, which however may be too
complicated. Here we approach it in an
extremely simplified, conceptual manner.

We set a basic desideratum that f should
increase when s > 0 (there is plenty of soil
water and the vegetation will tend to
expand) and decrease otherwise. A second
desideratum is 0 < f<1.

Such desiderata are fulfilled by the curves
shown in the figure and described by the
equation below it, which takes an input x
and produces an output y, depending on a
parameter g, positive or negative.

If in this equation we substitute f,_, for x, f;
for y, and some increasing function of s;
for a, then we obtain an equation that is
conceptually consistent with our
desiderata.

For the latter (which should be 0 when s;
=0) we set a = (s;_,/s*)°, where s* = 100 mm
is a standardizing constant.
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4. General behaviour

The system produces irregular trajectories, where the vegetation cover f
fluctuates around 0.25 (the equilibrium point) and the soil water s fluctuates
around 0. These fluctuations seem to have a period of roughly 4-5 years but
are not perfectly periodic.
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5. Predictability of the system state

The system is sensitive to initial conditions, i.e. chaotic: a small error of 0.01
mm in the initial storage is magnified to ~500 mm in 60 time steps; thus the
model, despite being simple, cannot give good predictions for long time
horizons.
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6. Long-term system behaviour

The system exhibits a strongly antipersistent behaviour: the plot of moving
average is virtually a horizontal straight line (for comparison, in a purely
random series it is a curly line)

S

Evolution of the
system storage s; (in
mm) of for time up
to 1000

A series of random
numbers in the
interval (-800, 800)
with mean and
standard deviation
equal to those of the
s, series

2000

1500 + - --

1000

500 -

0

-500 -
-1000
-1500 -
-2000

2000

1500 |-

1000

500 +

-500 -
-1000
-1500
-2000

—‘Series of‘storage |

—— Moving average of 30 values

————————————————————————————

H‘ |“l I J

_L

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i‘“l L)

I
’\“ \y m't ;| I”W"”'l[’ MIIH ||'H U " I ”'H””l”"!l ”""l” HH!"[

’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’

T

— Random series

—— Moving average of 30 values

‘ | l HH'I ‘1 ’\" m’l ‘l‘

lll I |11le

Ul L

Hl |l.

\ ]’w ik w' i
‘1‘ "'yl” i 1|n1 ‘\ ”p, i ,r

777777777777777777777777777777777777777777777777777777777777777777777777777777

******************************************************************************

0 100 200 300

400

500

600

700

800

900 1000




9. Quantification of antipersistence

e From the time series x; = x,(i) we construct time series of averages at several scales A
=2,3,...,1.e.x,()=(1/A4) [x,(GA-A+1)+ ... +x,(A)], and estimate the standard
deviations o .

 From a double logarithmic plot of ¢, vs. A we calculate the slope and then the Hurst
coefficient: H=1 + slope.

e H=0.5indicates a purely random

process; 1000 ]
 H<0.5indicates antipersistence; © oo %oy
e H>0.5indicates persistence. & [ . °<>o<>
e Here H=0.02 (strong anti- - o
persistence). ( ° 100 - ‘"."'-
* H should be evaluated at large scales. |
* Because any natural phenomenon has
a positive autocorrelation at small
scales and lags, a very mild slopeis ,,
expected at small scales (as verified
from the figure).
* Thus the fractional Gaussian noise o Series of storage
model, which, by definition, yields = Random series

constant slope for all scales, is not 1 i
physically realistic for antipersistence. 10




7. Is the system periodic? -

From an inspection of either a time

series plot (particularly when a

short part of the series is studied)

or the autocorrelogram, the system

looks periodic.

However, it is not periodic: the
time 7 between consecutive peaks

1s not constant.

The system is
characterized by
antipersistence,
which is different
from periodicity.
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10. Are antipersistent process common in nature?

It is not easy to find antipersistent real world phenomena (persistence is much more
common), except in a few cases, commonly called “oscillations”.

The most widely known is the El Nifio Southern Oscillation (ENSO), a fluctuation of
air pressure and water temperature between the SE and SW Pacific.

Typically it is quantified by the so-called Southern Oscillation Index (SOI), which
expresses the difference in the air pressure between Tahiti (Polynesia) and Darwin
(N. Australia); this difference is typically standardized in monthly scale by monthly
mean and standard deviation.

Here, instead of SOI, we have used the raw time series of the air pressure in Tahiti, to
avoid the artificial effects of taking differences and standardizing.

1011 4 -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

—— Annual series

— 30-year moving average

1015
X

1014 -
Time series 1013 1
of mean
annual air 1012 -
pressure in
Tahiti

1010

1870

1890

1910 1930 1950

1970 1990 2010

Year




11. General properties of the Tahiti air pressure

e The histogram of relative frequencies (v) of the time between consecutive
peaks or consecutive low points (7), constructed for the Tahiti air
pressure annual series, indicates that there is no periodic oscillation; the
interarrival time varies between 2 and 13 years with an average of about
4 years.

e Theplotofo,vs. Aresultsina |
Hurst coefficient: H =1 + slope

= (.20, which indicates
antipersistence.
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12. Conclusions and discussion

* Antipersistence is a property of a process, according to which the mean over a certain
time scale tends to stabilize to the global mean faster than in a random process (the
standard deviation of the time average tends to zero faster than in a random process).

* A typical representative of an antipersistent process is regarded to be the fractional
Gaussian noise with Hurst coefficient H < 0.5; in this process autocorrelation coefficients
for any lag are all negative, which makes the model inconsistent with natural processes.

* The toy model developed helps understand what a physically realistic antipersistent
process is and inspect its basic characteristics.

e A physically realistic antipersistent process has positive autocorrelations for small lags
(and small scales), which for larger lags alternate between negative and positive values.

e This property is common with periodic (cyclostationary) processes but the significant
difference in antipersistence processes is that there is no constant period (e.g. between
consecutive peaks or low points of the time series or of the autocorrelogram).

* On the other hand, the series of consecutive peaks may exhibit large and long excursions
of local average from the overall mean, which indicates long-term persistence
(sometimes incorrectly interpreted as nonstationarity).

* A physically consistent theory of antipersistent processes may assist in understanding
and modelling of phenomena that have been called "oscillations” such as the El Nifio
Southern Oscillation (ENSO); from the analysis of the Tahiti air pressure record, related
to ENSQ, it seems that it has the general properties of an antipersistent behaviour
identified from the study of the toy model.

Acknowledgment: The time series of the air pressure in Tahiti is available online on a monthly scale at
ftp://ftp.bom.gov.au/anon/home/ncc/www/sco/soi/tahitimslp.html






