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Abstract 

According to the traditional notion of randomness and uncertainty, natural phenomena are 

separated into two mutually exclusive components, random (or stochastic) and deterministic. 

Within this dichotomous logic, the deterministic part supposedly represents cause-effect 

relationships and, thus, is physics and science (the “good”), whereas randomness has little 

relationship with science and no relationship with understanding (the “evil”). We argue that 

such views should be reconsidered by admitting that uncertainty is an intrinsic property of 

nature, that causality implies dependence of natural processes in time, thus suggesting 

predictability, but even the tiniest uncertainty (e.g., in initial conditions) may result in 

unpredictability after a certain time horizon. On these premises it is possible to shape a 

consistent stochastic representation of natural processes, in which predictability (suggested by 

deterministic laws) and unpredictability (randomness) coexist and are not separable or 

additive components. Deciding which of the two dominates is simply a matter of specifying 

the time horizon of the prediction. Long horizons of prediction are inevitably associated with 

high uncertainty, whose quantification relies on understanding the long-term stochastic 

properties of the processes.  

 

                                                 
* Invited contribution by D. Koutsoyiannis, recipient of the EGU Henry Darcy Medal 2009. 
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Αἰών παῖς ἐστι παίζων πεσσεύων. Παιδός ἡ βασιληίη. (Time is a child playing, throwing dice. 

The ruling power is a child’s; Heraclitus; ca. 540‐480 BC; Fragment 52) 

I am convinced that He does not throw dice. (Albert Einstein, in a letter to Max Born in 1926) 

1 What is randomness? 

In his foundation of the modern axiomatic theory of probability, A. N. Kolmogorov (1933) 

avoided defining randomness. He used the notions of random events and random variables in 

a mathematical sense but without explaining what randomness is. Later, in about 1965, A. N. 

Kolmogorov and G. J. Chaitin independently proposed a definition of randomness based on 

complexity or absence of regularities or patterns (which could be reproduced by an 

algorithm). Specifically, a series of numbers is random if the smallest algorithm capable of 

specifying it to a computer has about the same number of bits of information as the series 

itself (Chaitin, 1975; Kolmogorov, 1963, 1965, Kolmogorov and Uspenskii, 1987, from 

Shiryaev, 1989). Interestingly, Chaitin proved that, although randomness can be precisely 

defined in this manner and can even be measured, there cannot be a proof that a given real 

number (regarded as a series of its digits) is random.  

 The move from this mathematical abstraction of a real number to the realm of real 

physical phenomena is not straightforward. Here, commonly, randomness is contrasted to 

determinism. The movement of planets is a typical example of a deterministic phenomenon, 

whereas that of dice is thought to be random. This reflects a dichotomous logic, according to 

which there exist two mutually exclusive types of events or processes—deterministic and 

random (or stochastic). Such dichotomy is perceived either on ontological or on 

epistemological grounds. In the former perception the natural events are thought to belong, in 

their essence, to these two different types, whereas in the latter it is regarded convenient to 

separate them into these types, where processes that we do not understand or explain are 

considered random. When a classification of a specific process into one of these two types 

fails—and it usually does, except in a few cases such as the above examples of planets and 

dice—then a separation of the process into two different, usually additive, parts is typically 

devised. This perception has been dominant in geosciences, including hydrology. This 

thinking proceeds so as to form a reductionist hierarchy. Thus, each of the parts may be 

further subdivided into subparts (e.g., deterministic subparts such as periodic and aperiodic or 

trends). This dichotomous logic is typically combined with a manichean perception, in which 

the deterministic part supposedly represents cause-effect relationships and reason and thus is 
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physics and science (the “good”), whereas randomness has little relationship with science and 

no relationship with understanding (the “evil”). The random part is also characterized as 

“noise”, in contrast to the deterministic “signal”. “Noise” is a contaminant that causes 

uncertainty, a kind of illness that should be remedied or eliminated.  

 Probability theory and statistics, which traditionally provided the tools for dealing with 

randomness and uncertainty, have been regarded by some as the “necessary evil”, but not as 

an essential part of physical sciences. This view has also affected hydrology and geophysics, 

particularly in the last couple of decades. Some tried to banish probability from hydrology, 

replacing it with deterministic sensitivity analysis and fuzzy-logic representations. Others 

attempted to demonstrate that irregular fluctuations observed in natural processes are au fond 

manifestations of underlying deterministic dynamics with low dimensionality, thus rendering 

probabilistic descriptions unnecessary.  

 Some of the above views and recent developments are simply flawed because they 

make erroneous use of probability and statistics, which, remarkably, provide the tools for such 

analyses. The entire underlying logic is just a false dichotomy. To see this, it suffices to recall 

that P.-S. Laplace, perhaps the most famous proponent of determinism in the history of 

philosophy of science (cf. Laplace’s demon), is, at the same time, one of the founders of 

probability theory. According to Laplace (1812), “probability theory is, au fond, nothing but 

common sense reduced to calculus”*. This harmonizes with J. C. Maxwell’s view that “the 

true logic for this world is the calculus of Probabilities” (Maxwell, 1850). Recently, the same 

view was epigrammatically formulated in the title of E. T. Jaynes’s (2003) book “Probability 

Theory: The Logic of Science”.  

 We argue that the dominant dichotomous logic reflects a naïve and inconsistent view of 

randomness. It cannot help us see the unity of Nature. Are the movement of planets and that 

of dice qualitatively different natural phenomena? Do they not obey the same physical laws? 

Abandoning this logic and seeking a more consistent view, we propose to identify 

randomness with unpredictability. Randomness exists in processes that we may understand, 

we may explain, but we cannot predict.† In other words, randomness and determinism (which, 

in turn, could be identified with predictability) coexist in the same process, but are not 

separable or additive components. It is a matter of specifying the time horizon of prediction to 

decide which of the two dominates. This view, which will be illustrated in the sequel, is 

                                                 
* Original in French: «la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul». 
† According to Niels Bohr, “Prediction is difficult, especially of the future”. 
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consistent with Kolmogorov’s and Chaitin’s views of mathematical randomness, as well as 

with Karl Popper’s (1992) indeterministic world view.  

 In identifying randomness with unpredictability, the latter is meant in deterministic 

terms: Any specific prediction algorithm is not able to accurately calculate the future state of a 

system and thus there is uncertainty. If, in our attempt to predict the future, we are not able to 

know the precise state, we could lower our target and try to know how high or low the 

uncertainty is. Quantification of uncertainty is a useful target and a feasible one. Naturally, it 

is achieved by means of probability. The classical definition of probability, i.e., the ratio of 

the favourable outcomes of a specified event to the number of possible outcomes, has several 

logical problems and does not help to study natural processes. Rather, we should follow the 

Kolmogorov (1933) system, in which probability is a normalized measure, i.e., a function that 

maps sets (areas where the unknown quantities lie) to real numbers. An event A is just a set 

(of elements called elementary events) to which a probability, i.e., a number P(A) in the 

interval [0, 1], is assigned. The notion of a random variable, i.e., a single-valued function x of 

the set of all elementary events (so that to each elementary event ξ it maps a real number 

x(ξ)), is central in this system, and is associated with a probability distribution function (F(x) 

:= P{x ≤ x})* and a probability density function (f(x) := dF(x)/dx). The notion of a random 

variable allows probabilization of uncertainty, typical in Bayesian statistics (not to be 

confused with the lately abused term of “Bayesian beliefs”). 

2 Emergence of randomness from determinism 

To illustrate that randomness coexists with determinism and that the two do not imply 

different types of mechanisms, or different parts or components in the time evolution, we will 

study a toy model of a caricature hydrological system. The system, shown in Figure 1, and its 

toy model are designed intentionally to be simple. A large piece of land is considered, on 

which water infiltrates and is stored in the soil (without distinction from groundwater), from 

where it can transpire though vegetation. Except infiltration, transpiration and water storage in 

the soil, no other hydrological processes are considered. To simplify the system, no change is 

                                                 
* Some texts distinguish random variables, which are functions, from their values, which are numbers, by 

denoting them with upper case and lower case letters, respectively. Since this convention has several problems 

(e.g., the Latin x and the Greek χ, if put in upper case, are the same symbol X), other texts do not distinguish the 

two at all, thus creating other type of ambiguity. Here we follow another convention, in which random variables 

are underscored and their values are not. 
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imposed to its external “forcings”. That is, the rates of infiltration φ΄ and potential 

transpiration τ΄p are assumed constant in time. The toy model is constructed assuming discrete 

time, denoted as i = 1, 2, ..., and that in each time unit ∆t (say, “year”), the input is φ := φ΄∆t = 

250 mm and the potential output τp := τ΄p ∆t = 1000 mm. The internal state variables, which 

are allowed to vary in time, are two, thus shaping a two-dimensional (2D) dynamical system: 

the fraction of the land that is covered by vegetation, vi (0 ≤ vi ≤ 1) and the soil water storage 

xi. The latter is measured above a certain datum, so that it can take positive values up to some 

upper bound α (assuming that water above α spills as runoff) or negative values without a 

bound (i.e., –∞ ≤ xi ≤ α). The constant α is assumed to be 750 mm. If the vegetation at time i 

is vi, the actual output through transpiration will be τi = vi τp. Thus, the water balance equation 

is 

 xi = min(xi – 1 + φ – vi τp, α) (1) 

φ : 
Infiltration

τ : 
Transpiration

Datum

x :
Soil water

v :
Vegetation 

cover

φ : 
Infiltration

τ : 
Transpiration

Datum

x :
Soil water

v :
Vegetation 

cover

 

Figure 1 A caricature hydrological system for which the toy model was constructed. 

 We can observe that, if at some time i, vi = φ/τp = 250/1000 = 0.25, then the water 

balance results in xi = xi – 1 + φ – vi τp = xi – 1. Assuming that the system dynamics is fully 

deterministic, continuity demands that there should be some specific value of xi – 1 for which vi 

= vi – 1. Without loss of generality, we set this value x = 0; that is, we define the datum in such 

a way that the vegetation remains unchanged if water is stored up to the datum. Thus, the state 

(v = 0.25, x = 0) represents an equilibrium state: if at some time the system happens to be at 

this state, it will remain there for ever. In other words, once the system reaches its equilibrium 

state, it becomes a “dead” system, exhibiting no change. 

 Apparently, it is more interesting to study our system when it is “alive”, that is, out of 

the equilibrium. To this aim, as the system is 2D, we need one equation additional to (1) to 
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model it, which we seek in conceptualizing the dynamics of vegetation. As x = 0 represents 

the state where the vegetation does not change, we may assume that soil water in excess, x > 

0, will result in increase of vegetation and soil water in deficit, x < 0, will result in decrease of 

the vegetation cover. The graph in Figure 2 was constructed heuristically, according to this 

logic, and is described by the following equation: 
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where β = 100 mm is a standardizing constant to make the equation dimensionally consistent. 
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Figure 2 Conceptual dynamics of vegetation for the caricature hydrological system. 

 Summarizing, we have a 2D toy model in discrete time i whose state is described by the 

state variables (xi, vi) =: xi (with xi in bold denoting a vector) and whose dynamics is 

represented by equations (1) (water balance) and (2) (vegetation cover dynamics). The system 

parameters are four and are assumed to be known precisely: φ = 250 mm, τp = 1000 mm, α = 

750 mm and β = 100 mm. The model is easy to program on a hand calculator or a 

spreadsheet.* The system dynamics is graphically demonstrated in Figure 3, where interesting 

geometrical surfaces appear, showing that the transformation xi = f(xi – 1) is not invertible. It 

should be stressed that no explicit “agent” of randomness (e.g., perturbation by a random 

number generator) has been introduced into the system. 

                                                 
* The interested reader can find a spreadsheet with the toy model in http://www.itia.ntua.gr/en/docinfo/923/. 
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Figure 3 Graphical depiction of the toy model dynamics. 

 Moreover, there is no external forcing imposing change onto the system. If any change 

occurs, it is caused by internal reasons, that is, by an “imbalance” of the vegetation cover and 

water stored. To see this, let us assume that at time i = 0 the system state is somewhat 

different from the equilibrium state, setting initial conditions x0 = 100 mm (≠ 0) and v0 = 0.30 

(≠ 0.25). Using equations (1) and (2) we can calculate the system state (xi, vi) at times i > 0. 

The trajectories of x and v for time i = 1 to 100 are shown in Figure 4. Apparently, the system 

remains “alive”, i.e., it exhibits change all the time, and its state does not converge to the 

equilibrium. The trajectories, albeit produced by simple deterministic dynamics, are 

interesting and seem periodic; we will discuss their properties in section 5.  
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Figure 4 System trajectory for 100 time steps assuming initial conditions x0 = 100 mm and v0 = 0.30. 
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 As the dynamics is fully deterministic, one may be tempted to cast predictions for 

arbitrarily long time horizons. For example, for time 100, iterative application of the simple 

dynamics allows to calculate the prediction x100 = –244.55 mm, v100 = 0.7423 (as plotted in 

the right end of Figure 4). Furthermore, one may be tempted to think that the “primitive 

science” that this system represents, if any, has come to an end with the above discourse. We 

have already achieved an understanding of the system, its driving mechanisms and the 

causative relationships: (a) there is water balance (conservation of mass); (b) excessive soil 

water causes increase of vegetation; (c) deficient soil water causes decrease of vegetation; (d) 

excessive vegetation causes decrease of soil water; and (e) deficient vegetation causes 

increase of soil water. And we have completely and precisely formulated the system 

dynamics, which is fully consistent with this understanding, very simple, fully deterministic, 

nonlinear and chaotic. 

 However, science is not identical to understanding. As R. Feynman (1965) stated, “I 

think I can safely say that nobody understands quantum mechanics”—and this does not 

preclude quantum mechanics from being science. Literally, the name science points to 

overstanding*, and understanding is not identical, nor a prerequisite, to overstanding. Perhaps 

an imbalance of understanding, which pertains to observing the details of a system, and 

overstanding, which aims at an overall image of the system, the “forest” rather than the “tree”, 

keeps science alive.  

 We can thus hope that, despite achieving a good understanding of the system 

mechanisms and a precise formulation of its dynamics, science may have not come to an end, 

as far as our toy model is concerned. Let us now focus on predictions, especially of the future, 

which is a crucial target of science—with even higher importance in engineering. Does, 

really, deterministic dynamics allow a reliable prediction at an arbitrarily long time horizon, 

as in our above example? In the previous section, in constructing our prediction for time 100, 

(x100 = –244.55 mm, v100 = 0.7423) we, explicitly or implicitly, assumed that we know the 

parameters and initial state with full precision. However, these are real numbers. It is now 

well known that not only cannot real numbers be known with full precision, but (with 

probability 1), they are not computable (Chaitin, 2004). Therefore, our further investigations 

will incorporate the premise that a continuous (real) variable cannot ever be described with 

full (infinite) precision, particularly if it varies in time. This premise, which we will call the 

                                                 
* Science < Latin Scientia < translation of Greek Episteme (Επιστήµη) < Epistasthai (Επίστασθαι) = to know 

how to do < [epi (επί) = over] + [histasthai (ίστασθαι) = to stand] = to overstand. 
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premise of incomplete precision, is consistent with mathematics (cf. Chatin’s results), as well 

as with physics (cf. W. Heisenberg’s, 1927, uncertainty principle).  

 It is reasonable, then, to assume that there is some small uncertainty, at least in the 

initial conditions (initial values of state variables). Perhaps it would be reasonable to assume 

that there is uncertainty also in the parameters and in model equation (2) (but not in (1), which 

represents preservation of mass). However, to keep our study simple, we will restrict our 

investigation to the uncertainty of initial conditions. Figure 5 shows the trajectory of the soil 

water x for the already examined initial conditions (x0 = 100 mm, v0 = 0.30) and for five more 

sets of initial conditions only slightly (< 1%) different from the basic set. At short times, the 

differences in the trajectories are not visible in Figure 5. At about time 20, the differences 

become visible and slightly later (time ~30) they become large. Soon thereafter, the different 

trajectories become unrelated to each other.  
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Figure 5 Evolution of soil water x as in Figure 4 but with uncertainty in initial conditions: Bold blue line 

corresponds to initial conditions s0 = 100 mm, v0 = 0.30 and the other five lines represent initial conditions 

slightly (< 1%) different. 

 This shows that a tiny uncertainty in initial conditions gets amplified after some time, a 

fact well known in chaotic systems since H. Poincaré’s discovery of chaos (e.g., Poincaré, 

1908). As a result, the deterministic dynamics can produce good predictions only for short 
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time horizons. For longer time horizons, the deterministic predictions become extremely 

inaccurate and useless. In other words, at long times the system behaviour is unpredictable, 

that is, random, whereas at short times it is very well described by the deterministic dynamics. 

 We can easily imagine that if the system dynamics were different, so as to drive it to its 

“dead” equilibrium state, there would not be uncertainty in the future. The nonlinear type of 

dynamics we used is the agent that made the system “alive”, i.e., changing and no dying. 

Apparently, what makes the system alive is the same agent that creates the uncertainty. Only 

dead systems are certain—and this might be useful to recall when thinking to eliminate 

uncertainty.  

 The type of uncertainty we observed here could be hardly classified in categories 

typically used in hydrology. It is not model uncertainty, i.e., incomplete representation of 

reality, because our system is artificial. It is not parameter uncertainty, because we assumed 

that the parameters are completely known. In is not even data uncertainty, as our inputs and 

outputs are assumed fully known and constant, and in fact we have not assumed any 

measurement error. The uncertainty in the initial conditions should be thought of as a 

consequence of the premise of incomplete precision, rather than as a measurement error. One 

may think that the assumed uncertainty 1% is too high to represent this premise. But we used 

this number just for better illustration. One may easily experiment with lower uncertainties in 

initial conditions to see that the behaviour does not change. Only the time span of 

predictability changes. For example, reducing uncertainty from 1% to 10–6 will extend the 

predictability time span, but not more than double it.  

 All alive natural systems behave more or less this way, and only the predictability time 

span changes. This view unifies phenomena as diverse as the movement of dice and planets, 

although in the former the time span of predictability is less than a second, whereas in the 

latter it is several millions of years. As strange as it seems, even the solar system is chaotic 

and unpredictable in such long horizons (Laskar, 1989). For example, it has been shown that 

it may never be possible to accurately calculate the location of the Earth in its orbit 100 

million years in the past or into the future (Duncan, 1994; Lissauer, 1999). 

3 From determinism to stochastics  

As simple and obvious as the premise of incomplete precision may seem, it implies a radically 

different perception and study of physical phenomena. First of all, the proper visualization of 

the trajectory of a system’s evolution can no longer be a line or a thread. Rather it should be a 
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stream tube (a notion familiar to hydrologists) of nonzero size (distance between its imaginary 

walls). The path this tube follows is important to know, but the size of the tube is equally 

important. This size is not constant, but varies in time.  
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Figure 6 Stream tube representation of the evolution of soil water x (with initial conditions as in Figure 4 and 

1% uncertainty) in a deterministic setting using envelope curves: (upper) when only x0 is observed; (lower) when 

x0 to x30 are observed.  
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 When an observation is made at a time i, the size of the tube at this time becomes tiny. 

In our hypothetical system this small size represents an error related to the premise of 

incomplete precision but in real-world systems it represents a (usually much higher) 

observation error. However, for future times, as well as past times at which no observation 

had been made, the size becomes much larger. Initially, we may think that the imaginary 

walls of this stream tube should be the envelope curves of several model runs with perturbed 

initial conditions within the assumed uncertainty bounds. 

 The tube visualization of this type for xi is shown in Figure 6 in two cases, when only x0 

is observed and when x0 to x30 are observed, and with only 5 model runs (as in Figure 5) as 

well as with 1000 model runs. At small times the tube has a size too tiny to be seen and a 

rough shape. The latter is typical in systems with discrete time dynamics (in continuous time 

it would be smooth, but the dynamics and the calculations would be too complicated to serve 

our purpose). At long times, the size gets much larger and increases with the number of model 

runs that are used to construct the envelope curves. It can be expected that, as this number 

tends to infinity, the zone between the envelopes will tend to cover all available space; in the 

case of x, this is the interval between –∞ and α = 750 mm. Apparently, the dependence of the 

size on the number of model runs and the large or infinite size of tube are deficiencies of the 

envelope method. Because of these deficiencies, a deterministic approach of this type, i.e., 

based on lower and upper physical bounds (cf. the probable maximum precipitation concept), 

cannot help to effectively describe the stream tube size and the uncertainty.  

 Here comes probability and stochastics, which will give us a good description of the 

tube size, as well as a profile of the likelihood that the system state is at any specified 

position, a profile reminding of the profile of longitudinal velocity across a stream tube in real 

flows. One may wonder: Is it permissible to use probability in a system that is purely 

deterministic, as the system we investigate here is? The answer we propose is a categorical 

“yes”. This answer is consistent with the unified notion of randomness discussed above, as 

well as with the concept of probabilization of uncertainty, that is, the axiomatic reduction 

from the notion of an uncertain quantity to the notion of a random variable (Robert, 2007). To 

the author’s perception, nothing in the Kolmogorov (1933) axiomatic system prohibits this 

reduction. In a probability-theoretic context, an unknown value xi is a realization of a random 

variable xi and is associated with a probability density function f(xi). A family of random 

variables xi, (arbitrarily, usually infinitely, large) is a stochastic process whereas a realization 
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of the stochastic process, i.e., a series of numbers xi is a time series.* 

 Probability along with the related fields of statistics and stochastic processes are 

currently described by the collective term stochastics.† The current meaning of this scientific 

term is no different from that first given by Jakob Bernoulli (1713—Ars Conjectandi, written 

1684-1689). Specifically, Bernoulli defined stochastics as the science of prediction, or the 

science of measuring as exactly as possible the probabilities of events. In this respect, 

stochastics should not be identified with the very common ARMA or similar types of models. 

 To make up a stochastic formulation of the evolution of the system, first, we fully 

utilize the known deterministic dynamics xi = S(xi – 1), where S is the vector function 

representing the deterministic dynamics. In our system, the state xi is the vector (xi, vi) and the 

transformation S is described by equations (1) and (2) and is graphically depicted in Figure 3. 

Second, we assume that the density at time 0, f(x0), is known. Third, we use the following 

concept from the theory of dynamical systems: Given the probability density function at time 

i – 1 , f(xi – 1), that of next time i, f(xi ), is given by the Frobenius-Perron operator FP, i.e. f(xi) 

= FP f(xi – 1), uniquely defined by an integral equation (e.g., Lasota and Mackey, 1991), which 

in our case takes the following simplified form,  

 uux
S

d)(
∂∂
∂)(FP

)(

2

1∫ −
=

A
f

vx
f  (3) 

where A :={x; x ≤ (x, v)} and S–1(A) is the counterimage of A, i.e. the set containing all points 

x whose mappings S(x) belong to A. Iterative application of the equation can determine the 

density f(xi) for any time i.  

 This shows that the stochastic representation has an analytical expression, as has the 

deterministic. However, the stochastic representation refers to the evolution in time of 

admissible sets and densities (the stream tube visualization), rather than to trajectories of 

points (the thread visualization). From the deterministic, “exact” but inaccurate, thread-like 

trajectory xi = S(xi – 1), we have moved to the tube-like trajectory:  

                                                 
* In some texts the two terms are used as synonymous, but distinction helps avoid ambiguity and 

misunderstanding.  
† Stochastics < Greek Stochasticos (Στοχαστικός) < Stochazesthai (Στοχάζεσθαι) < Stochos (Στόχος); Stochos = 

target; Stochazesthai = (a) to aim, point, or shoot (an arrow) at a target > (b) to guess or conjecture (the target) > 

(c) to imagine, think deeply, bethink, contemplate, cogitate, meditate.  
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which is a slightly different way of writing (3). Clearly, the stochastic formulation does not 

disregard the deterministic dynamics: it is included in the counterimage S–1(A). However, it 

can be easily extended to describe non-deterministic dynamics by generalizing the FP 

operator (Lasota and Mackey, 1991).  

 In the iterative application of the stochastic description of the system evolution we 

encounter two difficulties. First, despite being simple, the function S is not invertible and the 

integral over the counterimage S–1(A) needs to be evaluated numerically. Second, as the 

deterministic formulation is quite satisfactory for short time horizons, the stochastic 

formulation gets more meaningful for long ones. Iterative application of (4) over time will 

result in multiple integrations, so that eventually, for long time horizons, we need to perform a 

high dimensional numerical integration. This is difficult, unless a stochastic integration 

method is used. Specifically, it is easily shown (e.g., Metropolis and Ulam, 1949; 

Niederreiter, 1992) that for a number of dimensions d > 4, a stochastic (Monte Carlo) 

integration method (in which the function evaluation points are taken at random) is more 

accurate (for the same total number of evaluation points) than classical numerical integration, 

based on a grid representation of the integration space.  

 The Monte Carlo method is very powerful, yet so easy that we may fail to notice that 

we are doing numerical integration and that there is some concrete mathematical background 

(equation (3)) behind our simulations. In our example, the Monte Carlo method does not 

involve other calculations than those we did to construct the envelopes above. It is so very 

simple that it even bypasses the calculation of S–1(A). Results for the density function fi(x) of 

the system state x (soil water) for time i = 100, in comparison with that for time i = 0, are 

shown in Figure 7. The Monte Carlo integration was performed assuming f(x0) to be 

uniformly extending 1% around the value x0 = (100 mm , 0.30) and using 1000 simulations. It 

is observed that moving from time i = 0 to i = 100, the density changes from concentrated to 

broad and from uniform to Gaussian; the theoretical Gaussian curve is also plotted. 

 Knowing a priori, for theoretical reasons, that the probability distribution, after a long 

time, will be Gaussian is very important and substantially simplifies the solution of problem. 

But are there theoretical reasons implying Gaussian distribution? Jaynes (2003) lists a number 

of them. The most widely known is the Central Limit Theorem. In its most common 

formulation, which involves sums of random variables, it seems inapplicable here as there are 
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no such sums. However, if interpreted as a statement about the properties of density functions 

under convolution (multiple integrals of a number of density functions tends to the Gaussian 

density) it may give the required explanation. However, it is more convenient to express our 

reasoning in terms of the principle of maximum entropy: for fixed mean and variance, the 

distribution that maximizes entropy is the normal distribution (or the truncated normal, if the 

domain of the variable is an interval in the real line). Entropy* is a probabilistic concept, 

which for a continuous random variable x is defined as 

 )](ln[:][ xx fEφ −=  (5) 

where E[g(x)] denotes the expectation of any function g(x), i.e.,  

 ∫
∞

∞−

= xfggE d)()(:)]([ xxx  (6) 

Entropy is a typical measure of uncertainty, so its maximization indicates that the uncertainty 

spontaneously becomes as high as possible (this is the basis of the Second Law of 

thermodynamics). Entropy could be used to quantify the notions of randomness (high 

entropy) and determinism (lowest entropy). Given that information and entropy are more or 

less the same quantity, this quantification agrees with Kolmogorov’s and Chaitin’s view of 

mathematical randomness.  

 In the same manner—in fact using the same simulation runs—we can calculate the 

densities for all times. The propagation of uncertainty in time is typically visualized through 

prediction intervals, such as those shown in Figure 8, for a certain probability, say 95%, of 

bracketing the true state between the stream tube walls. Apparently, this stream tube 

visualization is more consistent than the envelope representation of Figure 6. It is observed 

that for long time horizons the stream tube becomes less rough and its size, i.e. the 

uncertainty, tends to stabilize to a maximum value. This defines another type of equilibrium, a 

statistical thermodynamic equilibrium of maximum entropy. To distinguish it from the static 

or “dead” equilibrium of section 2, we can call it the “alive” equilibrium.  

                                                 
* Entropy < Greek εντροπία < entrepomai (εντρέποµαι) = to turn into. 
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Figure 7 Probability density functions fi(x) of the system state x (soil water) for times i = 0 and 100. 
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Figure 8 Stream tube representation of the evolution of soil water x (with initial conditions as in Figure 4 and 

1% uncertainty) in a stochastic setting using Monte Carlo prediction limits for 95% probability of bracketing the 

true state between the stream tube “walls” (1000 simulation runs).  

4 The power of data 

As our prediction horizon increases and we approach the “alive” equilibrium, we may find it 
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natural to raise this question: Do we really need the deterministic dynamics to make a long-

term prediction? Intuitively, from Figure 8, the answer seems to be negative. But, then, what 

can replace the dynamics? Recalling that the form of the density function may be known a 

priori, as discussed above, what we need to completely express the density function are the 

two parameters of the Gaussian curve, namely its mean and standard deviation. But these 

could be estimated from data. Hence, for long horizons past data render knowledge of 

dynamics unnecessary. For illustration, we show in Figure 9 a record of 100 past values of xi 

corresponding to times i = –100 to –1. Here, because our caricature system is imaginary, the 

past data are synthetic, generated by the same model, but in a real system with really 

unknown dynamics these would be past observations of the system state. To generate the data 

here we assumed initial conditions: x–100 = (73.99 mm, 0.904), for which the resulting state at 

time i = 0 is x0 = (99.5034 ≈ 100 mm, 0.3019 ≈ 0.30). This state is compatible (within 

precision 1%) with the rounded off initial state x0 = (100, 0.30) that we used in earlier 

investigations. Interpreting past data as a statistical sample, we estimate a sample mean µ = 

–2.52  mm and a sample standard deviation σ = 209.13 mm. With these values we can obtain 

the complete density function for time i = 100, which is plotted in Figure 7 along with the 

results obtained by the Monte Carlo simulation, in which the deterministic dynamics was 

explicitly taken into account. It can be seen that the empirical result without considering the 

dynamics is a good approximation. 
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Figure 9 A sample of past data of soil water x for times i = –100 to –1.  

 Despite being empirical, this result and, more generally, the use of past data in 
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prediction, can find a theoretical justification in the concept of ergodicity,* an important 

concept in dynamical systems and stochastics. By definition (e.g., Lasota and Mackey, 1994, 

p. 59), a transformation is ergodic if all its invariant sets are trivial (have zero probability). In 

other words, in an ergodic transformation starting from any point, a trajectory will visit all 

other points, without being trapped to a certain subset. (In contrast, in non-ergodic 

transformations there are invariant subsets, such that a trajectory starting from within a subset 

will never depart from it). An important theorem by G. D. Birkhoff (1931) says that for an 

ergodic transformation S and for any integrable function g the following property holds true: 

 ( ) ∫∑
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with the right-hand side representing the expectation E[g(x)]. For example, for g(x) = x, 

setting x0 the initial system state, observing that the sequence x0, x1 = S(x0), x2 = S2(x0), ..., 

represents a trajectory of the system, and taking the equality in the limit as an approximation 

with finite (n) terms, we obtain that the time average equals the true (ensemble) average E[x]: 
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 (8) 

 Thus, ergodicity allows estimation of the system properties using past data only. The 

question then arises: If the dynamics is known, should a long-term prediction be better based 

on the data or on the dynamics? To explore this question, let as compare two different types 

of predictions: (a) a typical deterministic prediction, based on applying the dynamics as done 

initially in Figure 4; (b) a naïve statistical prediction, according to which the future equals the 

average of past data. Stochastics provides the tool to compare the two predictions, which is 

the standard (root mean square—RMS) error, 

 [ ]2)ˆ(: iii xxEe −=  (9) 

where xi denotes the random variable representing the state and ix̂  denotes the specific 

prediction for time i provided by either method (a) or (b). It is easily seen that for method (b), 

in which ix̂  = µ (mean, estimated at –2.52 mm), the standard error equals the standard 

                                                 
* Ergodicity < Greek εργοδικός < [ergon (έργον) = work] + [odos (οδός) = path]. 



19 

 

deviation σ (estimated at 209.13 mm), and is constant for all i. In method (a), ei is different for 

different times i and can be evaluated by Monte Carlo integration of (9). The results are 

shown in Figure 10. Clearly, in short lead times (< ~30) the deterministic forecast is better, 

but in long lead times (> ~45) the naïve statistical forecast is superior.  

 However, this is not a surprise. Actually, stochastics can give us an a priori estimate of 

the deterministic model error, applicable near the “alive” equilibrium, where the uncertainty 

has been stabilized. Thus, from (9) we obtain 

 [ ] { }[ ]22 )ˆ()()ˆ(: iiiii xµµxExxEe −+−=−=  (10) 

which after typical manipulations results in 

 22 )ˆ( ii xµσe −+=   (11) 
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Figure 10 Comparison of the RMS prediction error of soil water x for the deterministic prediction and the naïve 

statistical prediction. 

 When it happens that ix̂  = µ, then ei = σ, as in the statistical prediction; otherwise the 

error in the deterministic prediction is obviously greater than σ. The a priori error estimates 

are also plotted in Figure 10 and agree well with those obtained by Monte Carlo simulation. 

By treating ix̂  also as a random variable we easily obtain that the average error of the 
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deterministic forecast over all times (above ~45) will be ei = σ√2 (also plotted in Figure 10), 

which shows that, on the average, the naïve statistical prediction outperforms the 

deterministic prediction by a factor of √2.  

 This example shows that for long horizons the use of deterministic dynamics gives 

misleading results and a dangerous illusion of exactness. Unless a stochastic framework is 

used, neglecting deterministic dynamics is preferable. In very complex systems, the same 

behaviour could emerge also in the smallest prediction horizons. This justifies, for example, 

the so-called ensemble forecasting in precipitation and flood prediction. In essence, it does not 

differ from this stochastic framework discussed, and is much more effective and reliable than 

a single deterministic forecast. 

 In seeking a more informative prediction than the naïve prediction, a natural question is: 

Is reduction of uncertainty possible for long time horizons? In our simple example the answer 

is categorical: No way! For, there is no margin for better knowledge of dynamics (we have 

assumed full knowledge already). And there is indifference of potentially improved 

knowledge of initial conditions. As mentioned above, reduction of initial uncertainty from 1% 

to 10-6 results in no reduction of final uncertainty at i = 100. Therefore, a more informative 

prediction cannot be a prediction with reduced uncertainty. Rather, it must be a point 

prediction accompanied by quantified uncertainty. This has been already done in Figure 7.  

 In summary, for long time horizons, the stochastic inference using (a) past data, (b) 

ergodicity, and (c) maximum entropy, provides an informative prediction. Knowledge of 

dynamics does not improve this prediction. For short time horizons, the stochastic framework 

also incorporates the deterministic dynamics and uses it in a Monte Carlo framework. Thus, 

the stochastic representation is an all-times solution, good for both short and long horizons, 

and helps figure out when the deterministic dynamics should be considered or neglected. 

 In theory, a good data set allows even the recovery of dynamics, if it is unknown, 

employing the Whitney (1936) and Takens (1981) embedding theorems. The recovery is 

based on time-delay vectors m
ix  := (xi, xi – 1, …, xi – m + 1) of a single observable xi, with the 

required vector size m being no more than 2d + 1, where d is the system dimensionality, 

which can also be estimated from the time series. Forming time-delay vectors m
ix  with trial 

size m, we are able to calculate the multidimensional entropy φm(ε) = E[–ln p], where ε is a 

scale length (side length of hypercube) related to a grid covering the m-dimensional space, on 

which the empirical probability p that a data point m
ix  belongs to each hypercube is calculated 

(notice the difference from definition (5), i.e. the replacement of the probability density f with 
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the probability mass p). The entropy φm(ε) is a decreasing function of ε and tends to infinity as 

ε tends to zero. The limit of φm(ε)/( –ln ε) as ε tends to zero, which (according to de 

l’Hôpital’s rule) is also equal to the limit of the slope dm(ε) := –∆φm(ε)/∆ln ε, gives the 

dimension of the subspace of the m-dimensional space where the set of m
ix  lies. For small ε, 

dm(ε) cannot exceed m nor d. Application of a standard algorithm that implements this idea for 

increasing trial values of m (Grassberger and Procaccia, 1983; Koutsoyiannis, 2006) is 

demonstrated in Figure 11, where it can be seen that dm does not exceed d = 2, thus capturing 

the system dimensionality, which is 2. Note, however, that a large data set is required for the 

application of this technique. Our toy model can easily give us arbitrarily long time series, 

therefore here we used a time series of 10 000 points (rather than 100 used before). But 

shortness of data or poor attentiveness in the statistical properties of the data may result in 

erroneous conclusions (Koutsoyiannis, 2006). Other deterministic controls that can be 

recovered from the data using stochastic tools are discussed in the next section. 

0

1

2

3

4

5

6

7

8

0.001 0.01 0.1 1
ε

d m
(ε

) 1 2 3 4
5 6 7 8

0

2

4

6

8

10

12

0.001 0.01 0.1 1
ε

φ m
(ε

) 1 2 3 4
5 6 7 8

 
Figure 11 Graphical depiction of the application of the algorithm to recover the system dynamics (with empasis 

of its dimensionality) from time series of 10 000 points.  

5 Exploration of the long term stochastic properties of the system 

Arguably, when we are interested in a prediction for a long time horizon, we wish to know not 

the exact system state at a specified time but an average behaviour around that time and 

perhaps a measure of the dispersion of the extremes around it. This implies a different 

perspective of long-term prediction and predictability. In this we can disregard the 

“instantaneous” system state, which in atmospheric sciences is referred to as the weather, and 

try to predict the long-term average for a future period, commonly referred to as the climate. 

According to a common definition, climate is “the long-term average of conditions in the 
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atmosphere, ocean, and ice sheets and sea ice described by statistics, such as means and 

extremes (U.S. Global Change Research Program, 2009). The usefulness of the notion of 

climate as a long term average extends also to hydrological processes. Actually, in studies of 

climate change and its impacts, including those in hydrology and water resources, long-term 

predictions always refer to long-term average conditions.  
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Figure 12 Evolution of the soil water xi, the variability index yi, as well as their moving averages of length 30, 

for time i up to 1000.  

 To study this notion of prediction and predictability, we need long simulations and data 



23 

 

series that enable observation of long-term behaviours. In all following illustrations we use 

time series with lengths of 10 000. The first thousand terms of the time series of the soil water 

xi, generated with the same initial conditions as before, are shown in Figure 12 (upper panel). 

The plot shows high variability at the shortest time scale (i.e., 1), with peculiar variation 

patterns not visible in the plots of fewer data points presented earlier. Yet it shows flat time 

average at scale 30 (“climate”).  
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Figure 13 Graphical depiction of periodic properties of the system based on (upper) a histogram of the time 

between successive peaks, δ, of the soil water xi, where ν is the fraction of occurrences of a certain δ over the 

total number of occurrences; (lower) the periodogram of the time series of xi, where ω is frequency and q the 

spectral density; 10 000 terms of time series were used for the construction of the plots. 
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 Despite high variability at scale 1, the trajectory of the system state does not resemble a 

purely irregular or random pattern. Rather the trajectory seems cyclical, but a more careful 

investigation reveals that the time series differs from that of a typical periodic deterministic 

system. Specifically, as shown in Figure 13 (upper panel) there is no constant periodicity, but 

the time δ between successive peaks of the time series xi varies between 4 and 10 time steps, 

with a period of 6 time steps being the most frequent. 

 The flat average of the soil water xi makes prediction of the long-term average rather 

trivial in this caricature system. However, other problems, in which variability plays a role 

(e.g. long term behaviour of extremes), are less trivial and more interesting, even in this very 

simple system. To study the peculiar variability of xi, we introduce the random variable yi := 

|xi – xi + 6|, where the time lag 6 was chosen to be equal to the most frequent δ. We call yi the 

variability index and we will study its long-term behaviour in comparison to that of xi. It can 

be easily verified that yi represents the sample standard deviation of the size-two sample xi 

and xi + 6. Apparently, the standard deviation of a number of consecutive xi (e.g., the seven 

terms xi to xi + 6) would give a more representative variability index, but we chose this simpler 

definition to avoid artificial dependence between successive time series terms or else to avoid 

the need to change scale. Besides, the simple definition serves well our exploration purpose. 

A plot of the first 1000 terms of the time series of yi is shown in Figure 12 (lower panel) and 

reveals a different behaviour than xi (upper panel). Here the variability is high, not only at a 

short time scale but also at a long one. The long “excursions” of the moving average of 30 

values (“the climate”) from the global average (of 10 000 values) are quite characteristic. 

 To explore the long-term stochastic properties of our system, including periodicity and 

time dependence or persistence, we use three stochastic tools. The first is the periodogram, 

i.e., the square absolute value of the Discrete Fourier Transform of the time series. It is a real 

function q(ω), where ω is frequency. The quantity q(ω)dω is proportional to the fraction of 

variance explained by ω and thus excessive values of q(ω) indicate cyclicity with period 1/ω. 

The periodogram of 10 000 terms xi is shown in Figure 13 (lower panel). 

 The second is the empirical autocorrelation function (autocorrelogram), i.e., the Finite 

Fourier Transform of the periodogram. It is a sequence of values ρj , where j is a lag. It is 

alternatively defined and more easily determined as ρj = Cov[xi, xi – j] / Var[xi], where 

Cov[xi, xi – j] := E[(xi – µ) (xi – j – µ)], Var[xi] := Cov[xi, xi] = E[(xi – µ)2], and µ = E[ x]. The 

autocorrelograms of both xi and yi are shown in Figure 14. 
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Figure 14 Empirical autocorrelation functions of 10 000 terms xi and yi. 
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Figure 15 Climacograms (plots of standard deviation σ(k) vs. averaging scale k) of the time series xi and yi (where 

standard deviations were estimated by the classical statistical estimator of time series averaged on each scale k).  

 The third tool aims at a multi-scale stochastic representation. Based on the process xi at 

scale 1, we define a process xi
(k) at any scale k ≥ 1 as: 

 ∑
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A key multi-scale characteristic is the standard deviation σ(k) of xi
(k). The quantity σ(k) is a 

function of the scale k ≥ 1, here referred to as the climacogram* and typically depicted on a 

double logarithmic plot. While the periodogram and the autocorrelogram are related to each 

other through a Fourier transform, the climacogram is related to the autocorrelogram by a 

simpler transformation, i.e., 
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It is directly verified (actually this is the most classical statistical law) that in a purely random 

process  
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However, this law may not be verified in natural systems. The simplest alternative is 

 H
k

k
σσ −= 1

)( :  (15) 

where H is a constant (0 < H <1) known as the Hurst coefficient, after H. E. Hurst (1951) who 

first analyzed statistically the long-term behaviour of geophysical time series. Earlier, 

Kolmogorov (1940), in studying turbulence, had proposed a mathematical model to describe 

this behaviour. This behaviour has been known with several names including Hurst 

phenomenon, long-term persistence, long range dependence, and Hurst-Kolmogorov (HK) 

behaviour or HK (stochastic) dynamics. At the same time, (15) defines a simple stochastic 

model that reproduces this behaviour, known as a simple scaling stochastic model or 

fractional Gaussian noise (due to Mandelbrot and van Ness, 1968), or the HK model. 

Climacograms for the time series xi and yi are shown in Figure 15, where the departure from 

the classical law (14) of a purely random process is evident. 

 A purely random process would have a flat periodogram, but Figure 13 (lower panel) 

indicates a different behaviour for xi. Furthermore, fixed periodicities would be manifested in 

the periodogram as high impulses in the specific periods, but in the periodogram of Figure 13 

no impulses exist. Rather, the figure indicates relatively higher densities q at a broad band of 

periods 1/ω, between 5-12 time units (agreeing with the simpler representation in the upper 

                                                 
* Climacogram < Greek Κλιµακόγραµµα < [climax (κλιµαξ) = scale] + [gramma (γράµµα) = written]. 
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panel of Figure 13). The most noticeable characteristics in the periodogram are the increasing 

spectral densities for low frequencies (1/ω > 8) and the decreasing ones for high frequencies 

(1/ω < 8). The two different behaviours are indicators of antipersistence and persistence, 

respectively.  

 The autocorrelogram in Figure 14 depicts the same behaviours in a different manner. It 

is observed that the autocorrelation for lag one is positive, which is expected because of 

physical consistence (states in neighbouring times should be positively correlated because the 

changes in small time should be small) and indicates short-term persistence. For higher lags 

the autocorrelation oscillates between negative and positive values. The existence of negative 

autocorrelations is an indication of antipersistence. In the simplest case, an antipersistent 

process should have all its autocorrelations negative (and it can be verified that in an HK 

process defined by (15) with H < 0.5, the autocorrelation function is negative everywhere). 

But this cannot be observed in nature because short-term persistence demands that some auto-

correlations will be positive. A strictly periodic behaviour would also result in autocorrelation 

oscillating between positive and negative values, which creates the risk of misinterpretation of 

antipersistence as periodicity. However, the intervals between different peaks or troughs in 

Figure 14 have not constant length, so here we have antipersistence. Figure 14 also shows the 

autocorrelation of the variability index yi. In this case, the autocorrelation is always positive, 

indicating persistence both in short and long term. Processes with consistently positive auto-

correlation functions lead to large and long “excursions” from the mean as shown in Figure 12 

(lower panel), which often tends to be interpreted as nonstationarity. The latter, however, 

would require that the system’s dynamics change in time in a deterministic manner, which 

does not happen here (and in most of the cases). 

 The most characteristic and useful plot of all three is the climacogram in Figure 15. For 

the soil water series xi and for scales 1-3, the slope formed by the empirical points is very low, 

reflecting short-term persistence. For large scales (k > 10) the empirical points are arranged in 

a straight line with large slope, –0.98. From (15) we can see that this slope equals H – 1, so 

that in this case H = 0.02 asymptotically (for large scales). Likewise, the plot for the 

variability index yi indicates a slope of –0.34 for large scales, which corresponds to H = 0.66. 

The slope for a purely random process, also shown in figure, is –0.5, which corresponds to H 

= 0.5. Generally, an H between 0.5 and 1 characterizes long-term persistence, whereas an H 

between 0 and 0.5 indicates antipersistence. Thus, this figure verifies the antipersistent and 

persistent behaviour already detected for xi and yi, respectively. 
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 Most importantly, this figure provides insights on the predictability issue. It is well 

known that for a one-step-ahead prediction at scale 1, a purely random process xi is the most 

unpredictable. Dependence enhances one-step-ahead predictability. For example, in a process 

with ρ1 = 0.5 (comparable to that of our series xi and yi) the standard deviation, conditional on 

known present state, is a fraction √(1 – ρ1
2) of the unconditional one, i.e., 13% smaller. 

However, in the climatic-type predictions, on which the average behaviour rather than exact 

values is studied, the situation is different. In our example, as clearly shown in Figure 15, at 

the climatic scale of 30 time steps, predictability is deteriorated by a factor of 3 for the 

persistent process yi (thus eliminating and largely exceeding the 13% reduction due to 

conditioning on the present state). On the other hand, for the antipersistence process xi, the 

long-term predictability is improved by a factor of about 3. In summary (and perhaps contrary 

to what is believed), long-term persistence substantially deteriorates predictability over long 

time scales—but antipersistent improves it. 

 Figure 16 provides further demonstration of the unpredictability of persistent processes. 

The plot shows 1000 items of the time series yi (variability index) at the annual and the 

climatic scale and for the two sets of initial conditions discussed above, the exact and rounded 

off, which differ by less than 1%. After about 30 time steps (one time unit of “climate”), the 

departures in the two cases are pronounced. Thus, even a completely deterministic system is 

completely unpredictable at a large (climatic) time scale, when there is persistence. 
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Figure 16 Plot of 1000 terms of the time series yi (variability index) at scales 1 and 30 and for two sets of initial 

conditions deferring less than 1%.  
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6 From the toy model to the real world 

In comparison to our toy model, a natural system, such as the atmosphere, a river basin, etc.: 

(a) is much more complex; (b) has time-varying inputs and outputs; (c) has spatial extent, 

variability and dependence (in addition to temporal); (d) has greater dimensionality (virtually 

infinite); (e) has dynamics that to a large extent is unknown and difficult or impossible to 

express deterministically; and (f) has parameters that are unknown. Hence uncertainty and 

unpredictability are naturally even more pronounced in a natural system. The role of 

stochastics is then even more crucial: (a) to infer dynamics (laws) from past data; (b) to 

formulate the system equations; (c) to estimate the involved parameters; and (d) to test any 

hypothesis about the dynamics. Data offer the only solid ground for all these tasks, and failure 

to rely upon, and test against, evidence from data renders inferences about hypothesized 

dynamics worthless. 

 Despite the huge difference of the toy model and natural reality, we may hope that the 

above discourse can help address several questions, from philosophical to technical. Given the 

current dominant trend in hydrological (and other geophysical) sciences for physically-based 

modelling, relevant questions are: What is physically-based modelling? Is physics a synonym 

for determinism? Is physically-based a synonym for mechanistic? Are first principles 

mechanistic principles? Is not statistical physics part of physics? Is not entropy maximization 

a first principle? Is not stochastic modelling part of physical modelling? Will it ever be 

possible to achieve such a physically-based modelling of hydrological systems that will not 

depend on data or stochastic representations? Can detailed representations and reduction to 

first principles render hydrologic measurements unnecessary? What level of detail is needed 

in such reductionist modelling for a catchment of, say, 1000 km2? How far can the current 

research trend toward detailed models advance hydrology and water resources science and 

technology? 

 Hydrological uncertainty and its reduction is currently a core research issue and also 

very important from a water resources engineering and management perspective. Relevant 

questions are: To what extent can hydrological uncertainty be reduced? Can uncertainty be 

eliminated by uncovering the system’s deterministic dynamics? Is uncertainty epistemic or 

inherent in nature? When there is potential for reduction of uncertainty, what is the most 

effective means for reduction? Is it better understanding, better deterministic modelling, more 

detailed discretization, or better data? When the limits of uncertainty reduction have been 

reached, what is the appropriate scientific and engineering attitude? Is it confession of failure 
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and no action, or quantification of uncertainty and risk through stochastics? Are current 

stochastic methods consistent with observed natural behaviours? Is there potential to improve 

current stochastic methods in hydrology? Can deterministic methods provide solid scientific 

grounds for water resources engineering and management? Are there physical upper and 

lower limits (deterministic envelopes) in extreme hydrological phenomena, such as 

precipitation and flood, whose determination could constitute the basis of hydrological 

design? Can there be risk-free hydraulic engineering and water management? 

 In the last decades, financial support for research in hydrology and water resources 

engineering and management has been strongly linked to research on climate, a practice that 

does not favour hydrology as an autonomous scientific discipline. Therefore, questions related 

to the interface and relationship between hydrology and climate are quite important: Is the 

current interface satisfactory? Should hydrology and water resources planning rely on climate 

model outputs? Are climate models properly validated? Is the meaning of model validation 

and prediction the same in hydrology and in climate modelling? Is the evolution of climate 

and its impacts on water resources deterministically predictable? With respect to the last 

questions, we can observe that climate modellers do not hesitate to offer arbitrarily long 

predictions, with time horizons from 2100 AD (Battisti and Naylor, 2009), to 3000 AD 

(Solomon et al., 2009), to 100 000 AD (Shaffer et al., 2009)—to mention a few of the most 

recent publications in the most reputable journals. Given the definition of climate (detailed 

above) as a long-term average state, the behaviours illustrated by the toy model are quite 

relevant. The high Hurst exponents estimated in several instrumental and proxy climatic time 

series, especially for temperature (H > 0.90; Cohn and Lins, 2005; Koutsoyiannis and 

Montanari, 2007; Koutsoyiannis et al., 2009), support the view of most climate processes as 

persistent ones and, hence, far more unpredictable than a purely random process. This raises 

the question, Is there any indication that climate is predictable in deterministic terms? 

7 Conclusions 

The following summarizing questions can represent the conclusions of this article: 

• Can natural processes be divided in deterministic and random components?  

• Are probabilistic approaches unnecessary in systems with known deterministic 

dynamics? 

• Is stochastics a collection of mathematical tools, unable to give physical explanations? 

• Are deterministic systems deterministically predictable in all time horizons? 
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• Do stochastic predictions disregard deterministic dynamics in all time horizons? 

• Can uncertainty be eliminated (or radically reduced) by discovering a system’s 

deterministic dynamics? 

• Does positive autocorrelation (i.e. dependence) improve long term predictions? 

• Are deterministic predictions of climate possible? 

• Are the popular climate “predictions” or “projections” trustworthy and able to support 

decisions on water management, hydraulic engineering, or even “geoengineering” to 

control Earth’s climate?  

The most common answer to all these questions is “yes”. Hopefully, the above discourse 

explained why my answers to all of them are “no”. 
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