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Abstract 

We study the distribution of the maximum M of multifractal measures using discrete cascade 

representations. For such discrete cascades, the exact distribution of M can be found numerically. 

We evaluate the sensitivity of the distribution of M to simplifying approximations, including 

independence of the measure among the cascade tiles and replacement of the dressing factor by a 

random variable with the same distribution type as the cascade generator. We also examine how 

the distribution of M varies with the dimensionality of the support and the multiplicity of the 

cascade. Of these factors, dependence of the measure among different cascade tiles has the 

highest effect on the distribution of M. This effect comes mainly from long-range dependence. 

We use these findings to propose a simple approximation to the distribution of M and give charts 

to implement the approximation for beta-lognormal cascades.  

 

Keywords: multifractal processes, multiplicative cascades, multifractal extremes. 
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1. Introduction 

Multifractal models have been used to represent stationary scale invariant phenomena in many 

areas of the applied sciences. In several cases, interest is in the distribution of extreme values, 

which for example might control the occurrence of hazardous conditions. A growing body of 

literature deals with how the marginal quantiles of a stationary multifractal measure scale with 

the resolution and the exceedance probability (Bendjoudi et al., 1997, 1999; Veneziano and 

Furcolo, 2002; Castro et al., 2004), but the problem of actually calculating the distribution FM of 

the maximum M has not been addressed. In order to evaluate hazards (rather than relative 

hazards), one needs such distribution. 

 Our main objective is to find FM using discrete cascade approximations to continuous 

multifractal processes and study the dependence of FM on the dimensionality of the support d and 

the resolution r. Other issues we consider are the relative importance for FM of short-range and 

long-range dependence among the cascade tiles and the effect of the cascade multiplicity. The 

multiplicity, m, is the number of sub-tiles into which a tile is partitioned at each stage of the 

cascade construction.  

 Section 2 recalls basic facts about discrete cascades that are pertinent to our analysis. Section 

3 derives the exact distribution of M and evaluates its sensitivity to d and m. Section 4 examines 

the effects on FM of assuming independence of the measure in different cascade tiles and 

approximating the dressing factor. A detailed analysis of the relative importance of short-range 

and long-range dependence is made in Appendix A. Section 5 uses these results to propose a 

practical approximation to the distribution of M. Implementation of the approximation for beta-

lognormal cascades is discussed in detail. 
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2. Discrete Multifractal Cascades 

We start by recalling basic facts about discrete multifractal cascades. Consider a discrete cascade 

in the unit d-dimensional cube S. Construction of the cascade proceeds as follows (Schertzer and 

Lovejoy, 1987; Mandelbrot, 1989; Gupta and Waymire, 1993). One starts at level 0 with a single 

tile T01 = S and a measure with constant unit density in T01
. At level n = 1, 2, …, each tile at the 

previous level n – 1 is partitioned into m = ml 
d cubic tiles where ml > 1 is the integer linear 

multiplicity of the cascade and m is the volumetric multiplicity. The measure density inside each 

cascade tile Tni
 (i = 1, …, mn) is obtained by multiplying the measure density in the parent tile at 

level n – 1  by a random variable Yni
. The variables Yni

 are independent copies of a non-negative 

unit-mean random variable Y, called the generator of the cascade. We call r = mn the (volumetric) 

resolution when the cascade construction has reached level n.  

 A multifractal cascade is characterized by the multiplicity m and the distribution of the 

generator, FY. When using m rather than ml, the dimensionality d does not matter since a d-

dimensional cascade with parameters (m, FY) can be mapped into a 1-dimensional cascade with 

the same parameters (m, FY); see Figure 1 for an illustration for d = 2 and m = 4. 

 An important quantity in discrete cascades is εn, the average measure density in a generic Tn 

tile. One may distinguish between two such average densities (Schertzer and Lovejoy, 1987): the 

bare density εb,n, which is the density when the cascade construction is terminated at level n, and 

the dressed density εd,n, which is the average density in Tn for the completely developed cascade. 

Therefore, εd,n includes the effect of fluctuations at sub-tile scales, whereas εb,n does not. The 

bare and dressed densities satisfy  
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

 εb,n =

d
 ∏
i = 1

n
 Yi

εd,n =
d
 εb,n Z

 (1)  

where Y1, …,Yn  are n independent copies of Y, Z is a random variable independent of εb,n called 

the dressing factor, and =d  denotes equality in distribution. The factor Z has the same distribution 

as εd,0, the dressed measure in S.  

 Under certain conditions on the moments of Y (see below), Z and εd,n have algebraic upper 

tails of the type 

  
P[Z > z] ~ z -q*

 P[εd,n > ε] ~ ε -q*
 (2) 

where ∼ denotes equality up to a factor that varies slowly with z or ε and q* > 1 is the order 

above which the moments E[Zq] and E[(εd,n)q] diverge. One can find q* from the condition 

K(q) = logm E[Yq*] = q* - 1 (Kahane and Peyriere, 1976). If this equation has no solution greater 

than 1, then q* does not exist and Z and εd,n do not have algebraic upper tails.  

 

3. The Exact Distribution of Cascade Maxima 

Let Mn = max
i=1,…,mn
            (εd,ni) be the maximum dressed measure density in S at volumetric resolution mn. 

The cumulative distribution function FMn
 can be found recursively for n = 0, 1, … by noting that 

M0 = Z and, for any n > 0, Mn is the maximum of m independent variables each with the 

distribution of YMn-1. Therefore, working with logs, 

  

Flog M0
 = Flog Z                     , n = 0

 Flog Mn
 = (Flog Mn-1

* flog Y)m , n = 1, 2, …
 (3) 
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where fX is the probability density function of X and F*f is the convolution 

F * f(s) = ⌡⌠
-∞

∞

 F(s-y) f(y) dy. The distribution of Z, which is needed for M0, can itself be obtained 

through an iterative numerical procedure, as explained in Veneziano and Furcolo (2003). 

 Often in practice, one is interested in the measure density at some resolution r = mn with 

given return period T. This is the value that is exceeded by Mn on average once every T cascade 

realizations and is given by the upper (1/T)-quantile of Mn, Mn,T. As an example, for a specific 

“lognormal” cascade with m = 2, Figure 2 shows Mn,T against r = mn for different T. The 

generator of a lognormal cascade with multiplicity m has lognormal distribution with mean value 

1 and log-variance (σlnY)2 = 2C ln(m), where 0 < C < 1 is the so-called co-dimension parameter of 

the cascade. Then K(q) = C(q2 - q) and the critical moment order is q* = 1/C. In Figure 2 we 

have set C = 0.1 (hence q* = 10) and m = 2. The quantile Mn,T is known to have asymptotic 

power-law dependence on r = mn and T. Specifically, for T in any finite range and r → ∞, Mn,T 

~ r-γ1 T1/q1 and for r in any finite range and T → ∞, Mn,T ~ r T1/q*. In the first asymptotic 

expression, the exponent γ1 is the slope of the tangent to K(q) with K intercept equal to –1 and q1 

is the value of q at the point of tangency (Veneziano and Furcolo, 2002). For the cascade in 

Figure 2, γ1 = C(2 1/C-1) ≈ 0.532  and 1/q1 = C ≈ 0.316. These asymptotic scaling exponents 

are shown in Figure 2 and agree well with the numerical results. 

 It is interesting to examine how for given K(q) the maximum Mr at resolution r = mn depends 

on the volumetric multiplicity m. One reason is that discrete cascades are often used as 

approximations to continuous multifractal processes. If Mr is insensitive to m, then one may 

expect the extreme of a discrete cascade to approximate well the extreme of the continuous 

process with the same K(q). Another reason is that m depends on the space dimension d; for 
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example, m = 2d in so-called binary cascades. It is of interest to see whether, for given K(q) and 

r, the maximum Mr depends on d.  

 The effect of m on Mr may be expressed through the ratio  

  Rr, T|m = 
Mr,T|m

 Mr,T|m=2
 (4) 

where Mr,T|m is the upper (1/T)-quantile of Mr for a cascade with multiplicity m. Figures 3a and 

3b show the ratio Rr, T|m for different r and T and m = 4, 8. All other parameters are as in Figure 2. 

The multiplicity m affects Mr,T|m in two ways: 1) as m increases, the correlation between tiles at a 

given distance generally decreases, producing higher values of Mr,T|m, and 2) as m increases, the 

distribution of the dressing factor Z tightens around 1, causing a decrease of Mr,T|m especially for 

large T. We have separately evaluated these two effects and found that the first one is negligible. 

Hence for values of T of practical interest the net effect is that Mr,T|m decreases with increasing m. 

As Figure 3 shows, this effect is largest at low resolutions (because for small r the upper tail of 

εd,n is dominated by the dressing factor Z). 

4. The Maximum Under Independence Conditions 

The exact procedure in equation (3) is tedious to implement due to the repeated convolutions 

(including convolutions in the numerical evaluation of FZ; see Veneziano and Furcolo, 2003). In 

seeking approximations to Mn, we start by considering the distribution of Mn,ind, the maximum of 

the measure densities εd,ni
 under the condition that the densities in different tiles are independent. 

Comparison of Mn,ind with Mn will allow us to quantify the effect of dependence on multifractal 

extremes. In addition, Mn,ind will be used in Section 5 to approximate Mn.  
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 First we compare the exact distributions of Mn,ind and Mn and then we consider an 

approximation of Mn,ind in which the dressing factor Z is replaced with a random variable of the 

same type as the cascade generator Y.  

4.1 Exact Distribution of Mn,ind 

Under the assumption that the measure densities εd,ni
 (i = 1, …, mn) are independent, one obtains 

  Flog Mn,ind
 = (Flog Z* flog Y1+…+log Yn

)mn
 (5) 

where the variables Y1, …, Yn  are independent copies of Y and Z is the dressing factor. 

 For the cascade in Figure 2, Figure 4a compares the distribution of Mn from equation (3) with 

the distribution of Mn,ind from equation (5), for n = 10 and 20. Figure 4b and 4c display the same 

information as Figure 4a, but they show the non-exceedance and exceedance probabilities in log 

scale, thus focusing respectively on the lower and upper tail of the distribution.  

 It is clear from Figure 4 that dependence among the cascade tiles has a significant effect on 

the body and lower tail of the maximum distribution, but not on the extreme upper tail (in Figure 

4c, the solid and dashed lines cannot be distinguished). The reason for convergence of the upper 

tails of Mn,ind and Mn is that, as x→∞, the probability of more than one exceedance event εd,ni
 > x 

in S is an infinitesimal of higher order relative to the probability of just one event. Then, for large 

x, 

 P[Mn > x] = P[at least one exceedance event] ≈ P[one exceedance event] 

 ≈ E[no. of exceedance events] = mn P[εd,n > x]  (6) 

The same reasoning holds for Mn,ind. Therefore, as x→∞, both P[Mn > x] and P[Mn,ind > x] 

approach mn P[εd,n > x]. Like Z and εd,n, also Mn and Mn,ind have power-law upper tails with 

exponent –q* (in Figure 4, q* = 10). As n increases, this power-law behavior appears farther into 
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the tails of Mn and Mn,ind; this is why in Figure 4c the algebraic tail is visible for n = 10 but not 

for n = 20, although exceedance probabilities as small as 10-50 are shown. 

 It is not immediately obvious whether the difference between Mn and Mn,ind is due mainly to 

small-scale or large-scale dependence (multifractal cascades display dependence at all scales 

below the size of the region where they are defined; see for example Cates and Deutsch, 1987; 

O'Neil and Meneveau, 1993; and Marsan et al., 1996). Appendix A investigates this issue by 

using modified cascades in which short-range or long-range dependence is progressively 

suppressed, while the marginal distribution is kept the same. The qualitative finding is that the 

distribution of Mn is affected mainly by long-range dependence. 

 In conclusion, dependence has an effect on the extremes of multifractal cascades. Therefore, 

when devising approximations to Mn, this effect will need to be considered. 

4.2 An Approximation for Z 

The distribution of the dressing factor Z, which is needed to calculate the exact distributions of 

Mn and Mn,ind, is not known analytically and its numerical evaluation is tedious (Veneziano and 

Furcolo, 2003). However, for n not very small and away from the extreme upper tail, the dressed 

density εd,n = εb,n Z is dominated by the bare density εb,n and one may expect small effects on Mn 

and Mn,ind from approximating FZ. Next we propose a particularly simple approximation. 

 Suppose that the log-generator logY has infinitely divisible distribution (this is always the 

case for continuous multifractal processes and their approximating discrete cascades) and denote 

by Y(r) the generator for a volumetric scale-change factor r > 1. Notice that r is analogous to the 

volumetric multiplicity m, but is not necessarily an integer. If Y(r) has characteristic function 

h(r)(t), then for any r1, r2 > 1 the characteristic functions of Y(r1) and Y(r2) are related as 

( )h(r1)(t) ln r1  = ( )h(r2)(t) ln r2  (Veneziano, 1999). One can use this relationship to obtain the 
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distribution of Y(r) for any r ≥ 1 from the distribution of the cascade generator Y = Y(m). In some 

cases, Y(r) has a simple distribution. For example, for a lognormal multifractal process with co-

dimension parameter 0 < C < 1, Y(r) has lognormal distribution with mean value 1 and log-

variance Var[ln Y(r)] = 2C lnr.  

 Here we propose to approximate Z as Y(rZ) where rZ is such that Z and Y(rZ) share some higher 

moment, in addition to the mean value. The qth moment of Z is finite if K(q) < q - 1. Hence, if 

K(2) < 1, one may match the second moments 

  
E[Z2] = 

m - 1
m - mK(2)

 E[ ]( )Y(rZ) 2  = rZ 
K(2)

 (7) 

The expression for E[Z2] follows from the consistency condition Z =
d
   

1
m ∑

i = 1

m
 Yi

(m) Zi and the fact 

that E[ ]( )Y(m) 2  = m 
K(2) (Kahane and Peyriere, 1976; Veneziano and Furcolo, 2003). By equating 

the moments in equation (7), one obtains 

  rZ = 



m - 1

m - mK(2)
1/K(2)

 ,  K(2) < 1 (8) 

Figure 5 shows plots of rZ against m for K(2) = 0+, 0.2, 0.4, 0.6, 0.8, 0.92. Notice that for 

K(2) = 1, E[Z2]  and rZ diverge. Hence for K(2) close to 1 (rare in practice), other approximations 

should be used. For small m and 0.2 < K(2) < 0.5, rZ is about 2-3. 

 For n = 0, 5, 10 and 20 and a lognormal cascade, Figure 6 compares the distribution of Mn,ind 

using either the exact distribution of Z (solid lines) or the approximation Y(rZ) (dashed-dotted 

lines). Other parameters are m = 2 and C = 0.1 as in Figure 4. For lognormal cascades K(2) = 2C; 

hence in our case K(2) = 0.2 and equation (8) gives rZ = 2.24. Since M0,ind = Z, the curves for n = 
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0 compare the exact distribution of Z (solid line) with the approximating distribution of Y(rZ) 

(dashed-dotted line). 

 The reciprocal of the exceedance probability plotted in Figure 6 is the return period T (in 

units of cascade realizations). With this interpretation, Figure 6 shows that, for n = 0, 5, 10 and 

20, the proposed approximation of Z produces accurate results for T less than approximately 104, 

1010, 1020 and 1030 cascade realizations, respectively. Hence the approximation is accurate, 

except for the combination of very low resolutions with extremely long return periods. 

 Replacement of Z with Y(rZ) gives εd,n  ≈ d  Y(rZr). With this replacement, the upper (1/T)-quantile 

of Mn,ind, Mn,ind,T, equals the (1-1/T)1/r-quantile of Y(rZr), Y(rZr)   
(1-1/T)1/r. This approximation of Mn,ind,T is 

used next to approximate the quantiles of Mn. 

5. Approximation of Mn for Beta-lognormal Cascades 

We obtain an approximation to the upper (1/T)-quantile of Mn, Mn,T, by correcting the quantile  

Mn,ind,T ≈Y(rZr)   
(1-1/T)1/r for dependence; i.e. by using  

  Mn,T ≈ γ(n, T) Y(rZr)  
(1-1/T)1/r (9) 

where γ(n, T) is the ratio between the upper (1/T)-quantiles of Mn and Mn,ind, 

  γ(n, T) = 
Mn,T 

 Mn,ind,T
 (10) 

Next we give the factors Y(rZr)  
(1-1/T)1/r and γ(n, T) in equation (9) for the case of beta-lognormal 

cascades.  

 Lognormal multifractal measures are among the most widely used stationary scale-invariant 

models; see for example Schertzer and Lovejoy (1987). Their generator Y = Yln has lognormal 

distribution with K(q) = Cln(q2 - q) where Cln = Var[ln(Yln)]/(2lnm). In some applications, for 
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example to rainfall, the measure of interest has fractal support (due to the alternation of rainy and 

dry conditions at different scales). To include this feature, one may use so-called beta-lognormal 

models, in which the generator Y is the product of two independent random factors: a factor Yln 

with lognormal distribution as above, and a discrete factor Yβ which attains value 1/p ≥ 1 with 

probability p and value 0 with probability 1 – p (for an application to rainfall, see for example 

Over and Gupta, 1996). In this case 

  K(q) = Cβ (q-1) + Cln (q2 - q) (11) 

where Cln = Var[ln(Yln)]/(2lnm) as for lognormal cascades and Cβ = -logm p. Beta-lognormal 

cascades are non-degenerate if Cβ + Cln < 1.  

 To obtain the quantile Y(rZr)  
(1-1/T)1/r, we observe that for beta-lognormal cascades  

  Y(r) =


0 ,                                                  with probability 1-r-Cβ

 rCβ exp( )-Cln lnr + Φ 2Cln lnr  ,  with probability r-Cβ

 (12) 

where Φ is the standard normal variable. In obtaining equation (12), we have used the equality 

plogmr = r-Cβ. It follows from equation (12) that  

 

Y(rZr)   
(1-1/T)1/r = 



0 ,                                                                                           if 1-r-Cβ ≥ (1-1/T)1/r

 (rZ r)Cβ exp( )-Cln ln(rZ r)  + 2Cln ln(rZ r) Φ(1-(1-1/T)1/r) r Cβ
 ,  otherwise

 (13) 

where Φp is the value exceeded by Φ with probability p. 

 Now we turn to the quantile ratio γ(n, T) in equation (10). For beta-lognormal cascades this 

ratio can be evaluated numerically, using equations (3) and (5). Figure 7 shows results for 

volumetric multiplicities m = 2, 4, 8 and two sets of co-dimension parameters, (Cβ, Cln) = (0, 0.1) 

and (0.2, 0.1). The cascade levels considered in Figure 7 vary with m so that the same range of 

resolution is covered in each panel. In principle, γ depends on the level n, the return period T, the 
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multiplicity m, and the co-dimension parameters (Cβ, Cln). However, as Figure 7 shows, γ is 

insensitive to Cβ (because the intermittency of the process, which is controlled by Cβ, has little 

effect on the dependence among the cascade tiles). Therefore, one may evaluate γ(n, T) under Cβ 

= 0, i.e. for a lognormal cascade with Y = Yln. 

 For bare lognormal cascades, γ(n, T) has a scaling relationship with Cln. A derivation of this 

relationship for the broader class of log-stable cascades is given in Appendix B. In the case of 

lognormal cascades (index of stability α = 2), equations (B.8) and (B.10) in Appendix B give 

γb,Cln1
(n, T) = ( )γb,Cln2

(n, T)
Cln1

/Cln2, where the subscript b indicates that this relationship holds 

for bare cascades. However, the same relation is satisfied in good approximation also for dressed 

cascades, i.e. 

  γCln1
(n, T) ≈ ( )γCln2

(n, T)
Cln1

/Cln2 (14) 

For example, Figure 8 compares the exact dressed ratios γCln=0.05(n, T) and γCln=0.2(n, T) with 

approximations based on equation (14) using Cln1
 = 0.05 and 0.2 and Cln2

 = 0.1. The 

approximation is clearly very accurate. This is why, in Figure 7, we have considered only one 

value of Cln (Cln = 0.1). The factor γ(n, T) for any other value of Cln can be obtained through 

equation (14). 

    Figure 7 further shows that the dependence of γ on m (for fixed volumetric resolution r = mn) 

is weak but not negligible. This means that γ depends somewhat on the space dimension d, if for 

example one considers binary cascades with volumetric multiplicity m = 2d.  

 The issue of what value of m to use in practice is not trivial. If interest is in the maximum of 

a discrete cascade, then of course m should be the volumetric multiplicity of the cascade (e.g. 

m = 2d for “binary” cascades in d-dimensional space). However, if interest is in the maximum of 
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a continuous process of which the discrete cascade is an approximation, then m is not uniquely 

defined. Notice that one can construct approximating cascades with any integer multiplicity m ≥ 

2 in spaces of any dimension. It suffices to specify a scale-invariant tile-splitting rule in which at 

the generic level each tile is partitioned into m sub-tiles. Two rules with m = 2 in two-

dimensional space are shown in Figure 9 (the fact that, in scheme (b), the initial tile is a square 

not a triangle is not a major violation of scale invariance). Hence, when interest is in 

approximating the maximum of a continuous process, one may use values of m as small as 2, 

irrespective of d. 

Finally, we comment on the dependence of γ on n and T. Figure 7 shows that, for any given 

(m, Cln, Cβ), γ has maximum value 1 when n = 0 or T → ∞. The reason why γ → 1 as T → ∞ is 

that, as was noted in Section 4.1, the extreme upper tails of Mn and Mn,ind are practically 

identical. However, the lower quantiles are significantly larger for Mn,ind than for Mn. This is why 

γ decreases as T decreases. A rough explanation for the effect of n on γ is that, as n increases, the 

number of dependent cascade tiles increases, inducing a larger difference between Mn and Mn,ind. 

 To summarize, we suggest the following approximation to Mn,T, the upper (1/T)-quantile of 

the maximum of a beta-lognormal cascade: 

1. Given (Cln, Cβ) and the volumetric resolution m (for example m = 2d where d is the space 

dimension or m = 2 irrespective of d), calculate K(2) = Cβ + 2Cln  and find rZ from 

equation (8); 

2. For the volumetric resolution r and return period T of interest, find the quantile Y(rZr)   
(1-1/T)1/r 

from equation (13); 

3. Use the scaling relation in equation (14) and the chart in Figure 7 for the appropriate m 

and (Cln, Cβ) = (0.1, 0) to find the correction factor for dependence, γCln(n, T); 
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4. Approximate Mn,T as Mn,T ≈ γ(n, T) Y(rZr)  
(1-1/T)1/r. 

6. Conclusions 

Discrete multiplicative cascades are often used in place of continuous multifractal processes as 

they are more amenable to theoretical and numerical analysis. Here we have used them to 

approximate continuous multifractal extremes.  

 The construction of multifractal cascades leads to a recursive numerical procedure for the 

distribution of the maximum Mn at volumetric resolution r = mn, where m is the volumetric 

multiplicity of the cascade and n is the cascade level. A frequently used approximation to Mn, 

Mn,ind, ignores dependence among the cascade tiles. The distributions of Mn and Mn,ind have 

almost identical extreme upper tails but differ significantly in the body and lower-tail regions. 

These differences are due mainly to long-range dependence among the cascade tiles.  

 The recursive procedure to calculate the exact distribution of Mn, given by equation (3), 

involves repeated convolution operations and is numerically tedious. Although simpler, 

calculation of the distribution of Mn,ind through equation (5) also requires repeated convolutions 

(to obtain the distribution of the dressing factor Z). 

 In developing a practical approximation to Mn,ind, we have replaced Z with Y(rZ), a random 

variable whose distribution is of the same type as that of the cascade generator Y and whose first 

two moments match the first two moments of Z. Then, to approximate Mn, we have included the 

effect of dependence among the cascade tiles through the ratio γ(n, T) between the upper (1/T)-

quantiles of Mn and Mn,ind. For beta-lognormal cascades, γ(n, T) depends on the volumetric 

multiplicity m and the co-dimension parameters Cln and  Cβ, in addition to the cascade level n 

and the return period T. We have found however that the effect of Cβ is negligible and that 

γ(n, T) has an analytical scaling relation with Cln; see equation (14). Hence we have provided 
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charts of γ(n, T) for m = 2d with d = 1, 2 and 3, Cβ = 0, and just one reference value of Cln  (Cln = 

0.1); see Figure 7. At least for beta-lognormal cascades, the proposed approximation produces 

accurate estimates of the distribution of multifractal extremes. 
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Appendix A: The Influence of Short- and Long-range Dependence on Mn 

We examine whether the difference between the exact maximum of a multifractal cascade, Mn, 

and the maximum under the condition of independence, Mn,ind, is due mainly to short-range or 

long-range dependence. We do so by considering modified cascades in which short-range or 

long-range dependence is progressively suppressed, while the marginal distribution of the 

cascade is kept the same.  

 Suppose one wants to ignore dependence at large scales, say between cascade levels 0 and n0. 

Then one should start the cascade construction at level n0 and independently assign measure 

densities εd,n0,i to all the tiles at that level. The variables εd,n0,i have the distribution of Yn0
, the 

product of n0 independent variables, each with the distribution of the generator Y. The rest of the 

cascade construction remains the same. To obtain the distribution of Mn under these partial-

dependence conditions, one follows the procedure in equation (3) to level n – n0 and then 

calculates Flog Mn
 as 
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  Flog Mn
 = (Flog Mn-n0  

* flog Yn0 
)mn

 (A.1) 

Figure 10 shows results for n = 20 when excluding large-scale dependence over n0 = 0, 5, 10, 15 

and 20 cascade steps. All other parameters are the same as in Figure 4. Notice that the limiting 

cases n0 = 0 and n0 = 20 correspond to the distribution of Mn and Mn,ind, respectively. Figure 10 

shows that large-scale dependence is influential on the distribution of the maximum, in particular 

in the lower tail region. 

 Consider now the case when small-scale dependence is ignored, say between cascade levels 

n – n0 and n (between volumetric resolutions mn-n0 and mn). In this case the original cascade 

construction proceeds to level n – n0. Then, in a single step, each tile at level n – n0 is partitioned 

into mn0 tiles at resolution mn. The measure density in each level-n tile is obtained by multiplying 

the density in the parent tile at level n – n0 by an independent realization of the modified dressing 

factor Zn0
 = d  Z Y(n0), where Y(n0) is the product of n0 independent variables each with the 

distribution of Y and Z is the dressing factor. 

 To find the distribution of Mn ignoring short-range dependence over n0 cascade levels, one 

first finds the distribution of logZn0
, Flog Zn0  

. Raising this distribution to the mn0 power gives the 

distribution of the maximum of logZn0
 among the n-level tiles within a single (n – n0)-level tile. 

One uses this distribution in place of Flog Z 
 in the initialization step of equation (3) and then 

proceeds with (3) for n – n0 steps. Figure 11 shows results when ignoring dependence between 

cascade levels n – n0 and n, for n0 = 0, 5, 10, 15 and 20. All other parameters are as in Figure 10. 

Again, the limiting cases n0 = 0 and n0 = 20 correspond to the exact distribution of Mn and the 

distribution of the completely independent approximation Mn,ind, respectively. One can see that 

removing dependence at the smallest scales (for example, for n0 = 5, between volumetric 

resolutions 215 and 220) has minimal effect on the distribution of the maximum. 
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 Together, Figures 10 and 11 indicate that the body of the distribution of Mn is sensitive to 

long-range dependence, whereas short-range dependence is largely unimportant (especially when 

long-range dependence is present). 

 

Appendix B: Dependence of Bare Log-stable Cascades and Their Maxima on 

the Co-dimension Coefficient 

Let εb;n,α,C be the bare density at level n of a log-stable cascade with index of stability 0 < α ≤ 2, 

volumetric multiplicity m and co-dimension parameter C, inside the unit cube S. Also let 

Mb,C(α, n) be the maximum of εb;n,α,C in S and Mb,C,ind(α, n) be the maximum in S under the 

condition that εb;n,α,C has independent values in different tiles Tni
. Finally, let Mb,C(α, n, T) and 

Mb,C,ind(α, n, T) be the upper (1/T)-quantiles of Mb,C(α, n) and Mb,C,ind(α, n), respectively, and 

denote by γb,C(α, n, T) the quantile ratio 

                                  γb,C(α, n, T) = 
Mb,C(α, n)

Mb,C,ind(α, n) (B.1) 

We are interested in how the measure density εb;n,α,C, its maximum Mb,C(α, n) and the quantile 

ratio γb,C(α, n, T) depend on C, when all other parameters are kept fixed.  

 The log-generator of the cascade, logmYα,C, has stable distribution Sα(σ, β = -1, µ) with 

maximum negative skewness β = -1. The parameters σ and µ are such that  

  logm E[(Yα,C)q] = 


 C

α-1(qα- q) ,  for α ≠ 1

C q ln(q) ,    for α = 1
 (B.2) 

and are found as follows from α, C and m.  

 Let X ~ Sα(σ, β = -1, µ). Then for any a and any b > 0,   
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  a + bX ~ 


Sα(bσ, β = -1, bµ + a) ,                        for α ≠ 1

Sα=1



bσ, β = -1, bµ + a + 

2
π σbln(b)  ,  for α = 1

 (B.3) 

and for any q > 0, 

  E[eqX] = 



exp









qµ - 

σα

 cos



πα

2

qα  , for α ≠ 1

exp



qµ + 

2σ
π q lnq  ,       for α = 1

 (B.4) 

(see for example Samorodnitsky and Taqqu, 1994, pp. 11 and 15). It follows from equation (B.3) 

that  

  ln(Yα,C) ~ 


Sα(ln(m)σ, β = -1, ln(m)µ) ,                                for α ≠ 1

 Sα=1



ln(m)σ, β = -1, ln(m)



µ + 

2
π σ ln(ln m)  ,  for α = 1

 (B.5) 

and from equation (B.4), 

  logm E[(Yα,C)q] = 



qµ - 

(ln m)α-1 σα

 cos



πα

2

qα ,      for α ≠ 1

qµ + 
2σ
π q ln[q ln(m)] ,  for α = 1

 (B.6) 

Using equations (B.2) and (B.6) one obtains, 

  µ = 
C

1-α  ,     σ = C1/α [ln(m)](1-α)/α 








cos



πα

2
1-α

1/α

,   for α ≠ 1 

µ = -C ln(ln m) ,     σ = 
πC
2   ,                                   for α = 1

 (B.7) 

Having determined the distribution of the generator Yα,C of log-stable cascades, we now show 

that a power transformation relates the generators for different C, i.e. that for any given 0 < α ≤ 2 

and C1, C2 > 0, constants a and b > 0 exist such that Yα,C1
  = d   ma(Yα,C2

)b or equivalently 



 20

logm Yα,C1= d   a +b logm Yα,C2
 . Using equations (B.3) and (B.7), one obtains that the latter equality 

is satisfied for 

  
a = 

C1
1/α( C1

1/α΄ - C2
1/α΄)

1-α   ,     b = 



C1

C2

1/α
,   for α ≠ 1 

a = -C1 ln



C1

 C2
 ,     b = 



C1

C2
  ,                     for α = 1

 (B.8) 

where 
1
α + 

1
α΄ = 1. Since a power transformation of the generator induces the same power 

transformation of the bare cascades, we conclude that, for a and b in equation (B.8), 

  εb;n,α,C1 = d    ma (εb;n,α,C2)
b (B.9) 

It follows from equation (B.9) that the extremes of log-stable bare cascades scale with the co-

dimension parameter C as 

  

Mb,C1(α, n) = d   ma ( )Mb,C2(α, n) b

Mb,C1(α, n, T) = ma ( )Mb,C2(α, n, T) b

Mb,C1,ind(α, n, T) = ma ( )Mb,C2,ind(α, n, T) b

γb,C1(α, n, T) = ( )γb,C2(α, n, T) b

 (B.10) 

where m is the volumetric multiplicity and the exponents a and b are given by equation (B.8). 

Notice that, for any given C1/C2 , b = (C1/C2)1/α is closer to 1 for larger α. This means that the 

effect of dependence on the cascade extremes, which is expressed by the ratio γ, is minimum for 

α = 2 (for lognormal cascades). An intuitive explanation is that, among the class of log-stable 

cascades, the lognormal cascades have the strongest positive singularities and hence have less 

dependent positive extreme values. 
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 Another observation on equation (B.10) is that, while scaling of the maximum values 

involves the volumetric multiplicity m, the scaling of γ does not and therefore is the same for 

cascades in spaces of any dimension d. 

 Since averaging and power transformations do not commute, dressed measures and their 

maxima do not strictly satisfy the scaling relations in equations (B.9) and (B.10). However, for n 

not very small and T not very large, these equations provide accurate approximations also for 

dressed cascades; see numerical comparison in the main text. 

References 

Benjoudi, H, P. Hubert, D. Schertzer, and S. Lovejoy (1997), “Interpretation multifractale des 

courbes intensite’-duree-frequance des precipitations,” Geosciences de Surface 

(Hydrologie)/Surface Geosciences (Hydrology), 325: 323-336. 

Benjoudi, H, P. Hubert, D. Schertzer, and S. Lovejoy (1999), “Multifractal Explanation of 

Rainfall Intensity-Duration-Frequency Curves,” Proceedings, EGS, 24th General 

Assembly, The Hague, The Netherlands. 

Castro, J., A. Cârsteanu, and C. Flores (2004), “Intensity-duration-area-frequency Functions for 

Precipitation in a Multifractal Framework,” Physica A, 338: 206-210. 

Cates, M. E. and J. M. Deutsch (1987), "Spatial Correlations in Multifractals," Phys. Rev. A, 

35(11): 4907-4910. 

Gupta, V.K. and Waymire, E. (1993), “A Statistical Analysis of Mesoscale Rainfall as a Random 

Cascade,” J. Appl. Meteorol., 32(2): 251-267.  

Kahane, J.-P., and J. Peyriere (1976), “Sur certaines martingales de Benoit Mandelbrot,” Adv. 

Math., 22: 131-145. 



 22

Mandelbrot, B. B. (1989), “Multifractal Measures, Especially for the Geophysicist,” Pure Appl. 

Geophys., 131(1/2): 5-42. 

Marsan, D., D. Schertzer, and S. Lovejoy (1996), "Causal Space-time Multifractal Processes: 

Predictability and Forecasting of Rain Fields," J. Geophys. Res., 101(D21): 26,333-

26,346. 

O'Neil, J. and C. Meneveau (1993), "Spatial Correlations in Turbulence: Predictions from the 

Multifractal Formalism and Comparison with Experiments." Phys. Fluid A, 5(1): 158-

172. 

Over, T. M. and V. K. Gupta (1996), “A Space-time Theory of Mesoscale Rainfall Using 

Random Cascades, ” J. Geophys. Res. 101: 26,319-26,331. 

Samorodnitsky, G. and M. S. Taqqu (1994), Stable Non-Gaussian Random Processes, Chapman 

& Hall, New York. 

Schertzer, D. and S. Lovejoy (1987), “Physical Modeling and Analysis of Rain and Clouds by 

Anisotropic Scaling of Multiplicative Processes,” J. Geophys. Res., 92: 9693-9714. 

Veneziano, D. (1999), “Basic Properties and Characterization of Stochastically Self-Similar 

Processes in RD,” Fractals, 7(1): 59-78. 

Veneziano, D. and P. Furcolo (2002), “Multifractality of Rainfall and Intensity-duration-

frequency Curves,” Wat. Resour. Res., 38(12): 1306-1317. 

Veneziano, D. and P. Furcolo (2003), “Marginal Distribution of Stationary Multifractal 

Measures and Their Haar Wavelet Coefficients,” Fractals, 11(3): 253-270. 



 23

Figure Captions 

Figure 1: One-dimensional representation of a two-dimensional cascade with multiplicity m = 4. 

Figure 2: Lognormal cascade with m = 2 and C1 = 0.1. (1/T)-quantile of Mn,, Mn,T for different 

resolutions r = 2n and return periods T (T is expressed in units of cascade realizations). 

Figure 3: Lognormal cascade with C = 0.1. Ratio Rr, T|m =  in equation (4) for (a) m = 4 and (b) m 

= 8. 

Figure 4: Distribution of the maximum Mn (solid lines) and its independent approximation 

(dashed lines) for a cascade with multiplicity m = 2 at resolutions 210 and 220. The 

cascade generator has a lognormal distribution with co-dimension coefficient C1 = 0.1: 

(a) Body of the distribution, (b) lower tail, (c) upper tail.   

Figure 5: Dependence of the resolution rZ in equation (8) on K(2) the volumetric multiplicity m. 

Figure 6: Distribution of the maximum Mn,ind using the exact distribution of Z and a second-

moment matching approximation. The cascade is identical to that of Figure 1 and is 

developed to levels n = 0, 5, 10, 20. 

Figure 7: Ratio γ(n, T) in equation (10) as a function of the return period T and the level n. 

Lognormal and beta-lognormal cascades with co-dimension parameter Cln = 0.1 and 

Cβ = 0, 0.2 and volumetric multiplicity m = 2, 4, 8 

Figure 8: Comparison between the exact dressed ratios γ(n, T) and γ(n, T) with approximations 

based on equation (14) using C = 0.05 and 0.2, C = 0.1, and volumetric multiplicity 

m = 2. 

Figure 9: Two nested binary partitions of a square  with volumetric multiplicity m = 2. 

Figure 10: Exclusion of long-range dependence over n0 cascade levels. Distribution of the 

maximum Mn of a binary cascade at resolution r = 220 for n0 = 0, 5, 10, 15, 20. The 
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cascade generator has lognormal distribution with co-dimension coefficient C1 = 0.1. 

(a) Body of the distribution, (b) lower tail. 

Figure 11: Exclusion of short-range dependence over n0 cascade levels. Distribution of the 

maximum Mn of a binary cascade at resolution r = 220 for n0 = 0, 5, 10, 15, 20. The 

cascade generator has lognormal distribution with co-dimension coefficient C1 = 0.1. 

(a) Body of the distribution, (b) lower tail. 
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Figure 1: One-dimensional representation of a two-dimensional cascade with multiplicity m = 4. 
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Figure 2: Lognormal cascade with m = 2 and C1 = 0.1. (1/T)-quantile of Mn,, Mn,T for different 

resolutions r = 2n and return periods T (T is expressed in units of cascade realizations). 
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Figure 3: Lognormal cascade with C = 0.1. Ratio Rr, T|m = 

Mr,T|m
 Mr,T|m=2

 in equation (4) for (a) m = 4 

and (b) m = 8. 
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Figure 4: Distribution of the maximum Mn (solid lines) and its independent approximation 

(dashed lines) for a cascade with multiplicity m = 2 at resolutions 210 and 220. The cascade 

generator has a lognormal distribution with co-dimension coefficient C1 = 0.1: (a) Body of the 

distribution, (b) lower tail, (c) upper tail.   
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Figure 5: Dependence of the resolution rZ in equation (8) on K(2) the volumetric multiplicity m.  
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Figure 6: Distribution of the maximum Mn,ind using the exact distribution of Z and a second-

moment matching approximation. The cascade is identical to that of Figure 1 and is developed to 

levels n = 0, 5, 10, 20. 
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Figure 7: Ratio γ(n, T) in equation (10) as a function of the return period T and the level n. 

Lognormal and beta-lognormal cascades with co-dimension parameter Cln = 0.1 and Cβ = 0, 0.2 

and volumetric multiplicity m = 2, 4, 8.  
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Figure 8: Comparison between the exact dressed ratios γCln = 0.05(n, T) and γCln = 0.2(n, T) with 

approximations based on equation (14) using Cln1
 = 0.05 and 0.2, Cln2

 = 0.1, and volumetric 

multiplicity m = 2.  
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Figure 9: Two nested binary partitions of a square  with volumetric multiplicity m = 2. 

 

(a) Rectangular cells (b) Triangular cells 
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Figure 10: Exclusion of long-range dependence over n0 cascade levels. Distribution of the 

maximum Mn of a binary cascade at resolution r = 220 for n0 = 0, 5, 10, 15, 20. The cascade 

generator has lognormal distribution with co-dimension coefficient C1 = 0.1. (a) Body of the 

distribution, (b) lower tail. 
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Figure 11: Exclusion of short-range dependence over n0 cascade levels. Distribution of the 

maximum Mn of a binary cascade at resolution r = 220 for n0 = 0, 5, 10, 15, 20. The cascade 

generator has lognormal distribution with co-dimension coefficient C1 = 0.1. (a) Body of the 

distribution, (b) lower tail. 
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