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  Abstract 

The multifractal representation of rainfall and its use to predict rainfall extremes have advanced 

significantly in recent years. This paper summarizes this body of work and points at some open 

questions. The need for a coherent overview comes in part from the use of different terminology, 

notation and analysis methods in the literature and in part from the fact that results are dispersed 

and not always readily available. Two important trends have marked the use of multifractals for 

rainfall and its extremes. One is the recent shift of focus from asymptotic scaling properties 

(mainly for the intensity-duration-frequency curves and the areal reduction factor) to the exact 

extreme distribution under non-asymptotic conditions. This shift has made the results more 

relevant to hydrologic applications. The second trend is a more sparing use of multifractality in 

modeling, reflecting the limits of scale invariance in space-time rainfall. This trend has produced 

models that are more consistent with observed rainfall characteristics, again making the results 

more suitable for application. Finally we show that rainfall extremes can be analyzed using 

rather rough models, provided the parameters are fitted to an appropriate range of large-deviation 

statistics. 

 

Keywords: rainfall extremes, intensity-duration-frequency curves, areal reduction factor, scale 

invariance, multifractal processes 
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1. Introduction 

Hydrologic risk analysis and design are often controlled by extreme precipitation events. This is 

why the evaluation of rainfall extremes, which is commonly embodied in the intensity-duration-

frequency (IDF) and intensity-duration-area-frequency (IDAF) curves, has been a major focus of 

theoretical and applied hydrology for many decades (Sherman, 1931; Bernard, 1932; Eagleson, 

1970; Chow et al., 1988; Burlando and Rosso, 1996; Sivapalan and Blöschl, 1998; 

Koutsoyiannis et al., 1998; Willems, 2000; Menabde and Sivapalan, 2000; Asquith and 

Famiglietti, 2000; Veneziano and Furcolo, 2002a; Castro et al., 2004; Veneziano and Langousis, 

2005a). 

 A significant body of empirical work (Schertzer and Lovejoy, 1987; Lovejoy and Schertzer; 

1995; Olsson et al., 1993; Gupta and Waymire, 1993; Marsan et al., 1996; Over and Gupta, 

1996; Menabde et al., 1997; Harris et al., 1998; Venugopal et al., 1999a; Deidda et al., 1999, 

among others) has shown that rainfall in time and space has multifractal scale invariance within 

finite but practically important ranges, typically from below 1 hour to several days in time and 

from below 1 km to more than 100 km in space. Other rainfall features that are of particular 

interest for extremes are that, to a first approximation, the IDF curves display a power-law 

dependence on averaging duration d and return period T (Burlando and Rosso, 1996; Willems, 

2000) and the areal reduction factor (ARF) has power-law form over a certain range of averaging 

area a and duration d (NERC, 1975; De Michele et al., 2001) Recent studies (Hubert et al., 1998; 

Veneziano and Furcolo, 2002a; Veneziano and Langousis, 2005a) have shown that these 

properties are consistent with multifractal scale invariance of the underlying rainfall process. 

Hence the premises exist to making multifractal modeling a cornerstone of rainfall extreme 

analysis. 
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 This paper is a tutorial account of rainfall extremes using multifractal models. The 

exposition is largely shaped by the views and past and ongoing work by the authors. An attempt 

is made to make the presentation concise but self-contained, with occasional pointers to the 

literature for detailed derivations and in-depth coverage of certain topics. Proofs of important 

results are given or at least sketched.  

 The paper includes three main sections: Section 2 is an introduction to multifractality and 

the various interpretations of this term that are found in the literature. Emphasis is on the 

definition of multifractality as a scale invariance property that extends the classic concept of self-

similarity. The aim of this section is to provide a general view of multifractal processes while 

introducing notation and basic results for what follows. Section 3 focuses on the important class 

of stationary multifractal measures, which are relevant to the modeling of rainfall. Special 

attention is given to the marginal and extreme properties of these measures. We show how the 

upper quantiles of the marginal distribution scale with the averaging duration d and the 

exceedance probability P as either d or P approaches zero, examine the implications of 

multifractality on the areal reduction factor, and describe numerical procedures to calculate 

marginal and maximum distributions under non-asymptotic conditions. These results are at the 

core of the multifractal theory of rainfall extremes. 

 Section 4 proposes some multifractal models for temporal rainfall and derives their extreme 

properties. The models are in many ways simplistic, but when properly fitted to data suffice for 

the estimation of rainfall extremes. Using results from Section 3, we derive the intensity-

duration-frequency curves for each model and present an application example. Conclusions and 

suggestions for future research are given in Section 5. 
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2. Multifractality – What is it? 

An unfortunate state of affairs with multifractality is that there is no general consensus on its 

definition. The term multifractality has its origin in the fact that different sets extracted from the 

object of interest, here a random process or a random measure, have different fractal dimensions. 

Specifically, following Parisi and Frisch (1985), a stationary multifractal measure is singular of 

order γ on a fractal set whose fractal dimension D(γ) depends on γ. Roughly speaking, a 

singularity of order γ exists at point t if the average measure density εr in a cube of side length 

1/r centered at t behaves like rγ  as the resolution r → ∞ . This “geometric” multifractal property 

is characterized by the singularity spectrum D(γ) or any of several equivalent functions. 

 For realizations of important classes of random measures one would like to call multifractal 

(including those most often used to represent rainfall), the local singularity exponent γ at point t 

does not exist. This fact makes it necessary to use a broader “probabilistic” level-exceedance 

notion of multifractality, as follows. Cover the support of the measure with cubes of side length 

1/r and let E[N(r,γ)] be the expected number of cubes where the average measure density 

exceeds rγ . The measure is multifractal if, for some non-constant D(γ), E[N(r,γ)] behaves like 

rD(γ ) as r → ∞  (Schertzer and Lovejoy, 1987, 1996). Here D(γ) is not the fractal dimension of 

any set; rather, it is an asymptotic fractal-like property of the sequence of rγ -exceedance sets 

obtained by fixing γ and increasing the resolution r. D(γ) is still called the singularity spectrum 

or dimension function of the measure. Both the geometric and probabilistic level-exceedance 

definitions of multifractality have been applied mainly to stationary measures. 
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 When using the level-exceedance definition, one often works with the co-dimension 

function C(γ) = D - D(γ), where D is the Euclidean embedding dimension (D = 1 for measures on 

a line, D = 2 for measures on a plane, etc.). The reason is that the property E[N(r,γ)] ~ rD(γ ) 

may be restated as P[εr > rγ ] ~ r−C (γ )  where εr is the average measure density in a cube of side 

length 1/r.  

 An important implication of the above definitions of multifractality is that, as r → ∞ , the 

moments of εr  scale as E[εr
q ] ~ rK (q ) , where K(q) is the Legendre transform of C(γ), 

  
K(q) = max

γ
{qγ − C(γ)}

C(γ) = max
q

{qγ − K(q)}
 (1) 

 A derivation of Eq. 1 is given in Schertzer and Lovejoy (1996), pp. 55-56; see also Section 3 

and Appendix A below. If the moment scaling function K(q) is nonlinear, the measure is 

multifractal; if K(q) is linear but does not pass through the origin, the measure is monofractal; 

and if K(q) is linear through the origin, the measure is self-similar. Due to the correspondence 

between level-exceedance and moment-scaling properties in Eq. 1, multifractality is sometimes 

referred to as the property that the moments of εr  depend on resolution r as E[εr
q ] ~ rK (q)  with 

K(q) a nonlinear function of q.  

 Some, including the authors, view the above level-crossing and moment-scaling properties 

as manifestations of a fundamental scale invariance condition called stochastic self-similarity 

(sss), which extends the classical notion of self-similarity (ss). Next we recall the definitions of 

ss and sss for a (stationary or nonstationary, signed or unsigned) random measure X(Ω), 

Ω ⊂ RD . The properties are stated in terms of the measure density ε(Ω) = X(Ω)/|Ω)|, as ε(Ω) is 

the quantity most often used in multifractal analysis. We consider random measures (also called 



 7

generalized random functions; see for example Yaglom, 1986) rather than ordinary random 

processes X(t) because the latter are special cases of the former and multifractal models of 

rainfall exist only as random measures. For ordinary processes X(t), just replace ε(Ω) and 

Ω ⊂ RD  with X(t) and t ∈ RD . 

 As is well-known (see for example Samorodnitsky and Taqqu, 1994, Ch. 7), X(Ω) is self-

similar if constants ar  exist such that, for any r > 0, 

  ε(Ω) =
d

arε(rΩ) (2) 

where =
d

 denotes equality of all finite-dimensional distributions. Since ar1r2
= ar1ar2

 and a1 =1, it 

must be ar = r−H  for some real H and Eq. 2 may be stated more explicitly as 

  ε(Ω) =
d

r−Hε(rΩ) (3) 

 The condition of stochastic self-similarity or sss differs from Eq. 2 in two respects: 1) the 

deterministic factors ar  are replaced with random variables Ar , and 2) the range of r over which 

scale invariance applies is reduced to either 0 < r ≤ 1 (sss under dilation or dsss) or r ≥ 1 (sss 

under contraction or csss). This leads to the following definition. 

 A random measure X(Ω), Ω ⊂ RD , is stochastically self-similar if non-negative random 

variables Ar  exist such that 

  ε(Ω) =
d

Arε(rΩ),
for any 0 < r ≤1 (dsss)
for any r ≥1 (csss)

 
 
 

 (4) 

Gupta and Waymire (1990) and Veneziano (1999) have suggested that the scaling property in Eq. 

4 be used to define multifractality.  

 According to the sss definition, multifractality is characterized by the marginal distribution 

of the variables Ar . Important properties of these distributions are listed below. Properties 1 and 
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2 follow directly from Eq. 4, whereas Properties 3, 4 and 5 follow from the consistency condition 

Ar1r2
=
d

Ar1 Ar2
, which must hold for any r1 and r2 in the allowed range (larger than 1 for csss 

processes, between 0 and 1 for dsss processes): 

1. For r = 1, A1 = 1 with probability 1; 

2. For measure densities with constant nonzero mean, E[Ar ] =1; 

3. log(Ar )  has infinitely divisible distribution, meaning that for any given integer k > 1, a 

random variable Bk  exists such that log(Ar )  has the same distribution as the sum of k 

independent copies of Bk . On infinitely divisible distributions, see for example Feller 

(1968); 

4. Let ϕr (t) be the characteristic function of Ar . The relationship 

ϕr1 (t) = [ϕr2
(t)]log(r1) / log(r2 ) , which holds for any 1 < r2 < r1 in the csss case and any 0 < 

r1 < r2 < 1 in the dsss case, allows one to find the distribution of Ar1  from the 

distribution of Ar2
. Therefore it suffices to know the distribution of Ar  for just one value 

of r; 

5. The non-diverging moments of Ar  and ε(Ω) scale with r as 

  
E[Ar

q ] = rK (q )

E[ε(Ω /r)q ] ∝ rK (q )
 (5) 

where K(q) is a convex function. Equation 5 shows that the sss definition of 

multifractality reproduces the moment-scaling property of other definitions, but is not 

limited to stationary measures. As we shall see in Section 3, also the fractal-like property 

of the level-exceedance sets is reproduced. 
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Other remarks on sss measures: 

1. For r → ∞ (in the case of csss measures) or r → 0 (in the case of dsss measures), the 

variable Ar  becomes degenerate, being either 0 or ∞ with probability 1. This implies that, 

in order for ε(Ω) itself to be non-degenerate, the csss property must hold below some 

finite maximum scale Ωmax and the dsss property must hold above some non-zero 

minimum scale Ωmin. As we show in Section 4, the outer scale Ωmax plays an important 

role in the modeling of rainfall and its extremes. 

2. For measures on the line, scaling of the support is expressed by the transformation rt → t. 

In higher-dimensional spaces, a direct generalization is rt → t, which corresponds to 

isotropic expansion/contraction of Ω from the origin. One may consider ss and sss scale 

invariance under more general space transformations that for example include rotation or 

anisotropic scaling of the support (see concept of generalized scale invariance in 

Schertzer and Lovejoy, 1991). For rainfall, anisotropic scaling in space and time is often 

referred to as “dynamic scaling”. The degree to which rainfall exhibits dynamic or other 

generalized type of scaling is however unclear and conflicting results have been reported 

(Marsan et al., 1996; Venugopal et al., 1999b; Deidda, 2000; Deidda et al., 2004). As the 

most extensive analysess to date (Deidda, 2000; Deidda et al., 2004) favor isotropy, here 

we deal exclusively with isotropic scaling. 

In spite of many similarities, the definitions of multifractality given above are not completely 

equivalent. In our view, the sss concept is more fundamental and intuitive than the fractal-like 

property of a sequence of random level-exceedance sets and makes multifractality a natural 

extension of self-similarity. For these reasons, in all that follows we adopt the sss notion of 

multifractality. 
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3. Stationary Multifractal Measures and Their Marginal and Extreme Properties 

Next we focus on the class of (non-negative) stationary measures, which are especially relevant 

to rainfall modeling. Such measures can be csss but not dsss and are ss (with H = 0) only in the 

uninteresting case of uniform measures. 

 We review many classic and recent results on stationary sss measures. In Section 3.1 we 

give a general procedure to construct stationary sss measures and discrete multiplicative 

cascades, which are models with limited stationarity and sss properties. Discrete cascades are of 

interest because they are simpler to analyze and produce results that are often identical or close 

to those of continuous-scaling measures. Section 3.2 focuses on the marginal properties of 

discrete cascades, including the moments, marginal distribution and extreme quantiles of ε(Ω). 

Methods to calculate the distribution of the maximum of ε(Ω) inside the region of multifractal 

scaling Ωmax  are given in Section 3.3. 

3.1 Construction of Stationary Multifractal Measures and Discrete Cascades 

(a) Continuous-scaling Measures 

Suppose that Ωmax  is the unit D-dimensional cube Ω0 = {t : 0 ≤ ti ≤1, i =1,...,D}. Stationary sss 

measures in Ω0  are obtained as products of scaled independent copies of a non-negative 

stationary process. Specifically, let ro  > 1 be a scale-change factor and Wro
(t) , t ∈ RD , be a 

stationary process such that Wro
(t)  may be considered constant inside Ω0  and E[eWro ] =1. For 

any positive integer n, define an ordinary random process Xro ,n (t) and the associated measure 

density εro ,n (Ω) as 
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Xro ,n (t) = exp{ Wro ,i (ro

i t)
i=1

n
∑ }

εro ,n (Ω) = 1
| Ω |

Xro ,n (t)dt
Ω
∫

 (6) 

where the random processes Wro ,i (t)  are independent copies of Wro
(t) . As n → ∞, Xro ,n (t) 

becomes singular, but under conditions on the marginal distribution of Wro
 given below, 

εro ,n (Ω) converges to a non-degenerate measure density εro
(Ω)  with the sss property 

  εro
(Ω) =

d
eWro εro

(roΩ), roΩ ⊂ Ω0  (7) 

 Notice that εro
(Ω)  is sss only under contraction by the discrete set of factors r = ro

n , n = 0, 1, 

… To obtain a measure that is sss under any r > 1, one must constrain Wro
(t)  to be an infinitely 

divisible process and “densify” the previous construction in scale, as follows. For a random 

process Wro
(t) , infinite divisibility means that, for any integer k > 1, Wro

(t)  may be represented 

as the sum of k independent copies Wro
1/ k ,i (t) of some other random process Wro

1/ k (t). Then one 

replaces Eq. 6 with 

  
Xro

1/ k ,nk (t) = exp{ Wro
1/ k ,i (r

i /k t)
i=1

nk
∑ }

εro
1/ k ,nk (Ω) = 1

| Ω |
Xro

1/ k ,n (t)dt
Ω
∫

 (8) 

Taking the limit of εro
1/ k ,n (Ω)  for n,k → ∞  produces a continuous-scaling csss measure density 

ε(Ω) that satisfies Eq. 4 for any r ≥ 1, with Aro
= eWro . 

 In some cases one can construct stationary sss measures using more direct methods. A 

notable example is when Wro
(t)  is a normal process, implying that also ln[Xro

1/ m ,nk (t)] is a 

normal process. One can see from Eq. 8 that, for measures in D-dimensional space, as n,k → ∞  
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the spectral density of ln[Xro
1/ k ,nk (t)] approaches a function Sln X (ω) that for frequencies |ω | 

larger than some lower limit ωo decays like |ω |−D  in any given direction from the origin. This 

property can be used to characterize and simulate the measure density ε(Ω). Schertzer and 

Lovejoy (1991) and Wilson et al. (1991) have extended this spectral construction method to the 

case when Wro
(t)  is a stable non-normal process. 

(b) Discrete Cascades 

Discrete sss cascades (Mandelbrot, 1974; Schertzer and Lovejoy, 1987; Gupta and Waymire, 

1993) are obtained through a simpler procedure, in which: 

• ro  is a positive integer m > 1, called the (linear) multiplicity of the cascade. For cascades, 

we use m rather than ro  to emphasize that the multiplicity is an integer; 

• RD  is partitioned into unit cubic tiles and Wm (t) has constant iid values in different tiles; 

• No densification is made (k = 1). 

Hence the construction of a discrete cascade in Ω0  proceeds in steps. At step n, each cubic tile at 

the previous step (n – 1) is partitioned into mD  cubic sub-tiles and the measure density in each 

sub-tile is multiplied by an independent variable with the distribution of Am = eWm . Figure 1a 

illustrates the partition of Ω0  into square tiles for the case D = 2 and m = 2. Figure 1b shows a 

realization when W2 has normal distribution with mean value -0.1ln(2) and variance 0.2ln(2) and 

the cascade construction has reached resolution level n = 9. Discrete cascades are not quite 

stationary (marginal and joint distributions are invariant with respect to a discrete set of 

translations) and have limited sss properties (the Ω regions in Eq. 4 must be cascade tiles and r 

must equal mn  for some non-negative integer n).  
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 A key advantage of working with discrete cascades is that one can unambiguously 

distinguish between bare and dressed measure densities. These quantities are defined as follows. 

Let Ωn  be a tile at step n of the cascade construction. The bare densityεn,b = εb (Ωn ) is the 

constant measure density in Ωn  at the end of step n, whereas the dressed density εn = ε(Ωn )  is 

the average measure density in Ωn  for the fully developed cascade. The densities ε(Ω) we have 

considered up to now are dressed. We use a subscript b to denote quantities related to bare 

densities. Symbols that lack such subscript refer to dressed quantities. 

 εn,b  and εn  have the following distributional properties. The log bare density ln(εn,b ) is 

distributed like the sum of n independent copies of Wm  (i.e. like Wm n ), whereas the dressed 

density εn  satisfies 

  εn =
d

Zεn,b  (9) 

The “dressing factor” Z in Eq. 9 is independent of εn,b  and has the same distribution as ε0, the 

dressed average density in Ω0 . 

 Kahane and Peyriere (1976) have shown that Z is non-degenerate (in the sense that Z is 0 

with probability less than 1) if and only if Kb
' (1) < D , where Kb

' (q) is the derivative of the bare 

moment-scaling function Kb (q) = logm E[eqWm ]. Due to Eq. 9, this is also the condition for non-

degeneracy of the (dressed) cascade. 

3.2 Marginal Properties 

In this section we obtain important marginal properties of discrete cascades. As before, the 

cascades are defined inside the unit cube Ω0  of RD  and have integer linear multiplicity m ≥ 2. 

Hence the tiles Ωn,i  at level n of the cascade construction are cubes of side length m−n . Interest 

is in the distribution of the dressed density εn  inside a generic tile Ωn . 
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(a) Moments of εn 

 Kahane and Peyriere (1976) found that the moment E[Z q ], q > 1, exists if and only if 

Kb (q) < D(q - 1); see also Appendix B. Hence the critical order qD
*  > 1 above which the 

moments E[εn
q ] diverge is found from Kb (qD

* ) = D(qD
* −1) . If no such qD

*  exists, then εn  has 

finite moments of all orders q > 1. This is important for the extremes because, if qD
*  exists, then 

the upper tail of εn  has power-law form P[εn > ε] ~ ε−qD
*

. An example of moment scaling 

function Kb (q) (for Wm  a normal variable) and associated critical moment order qD
*  is shown in 

Figure 2a. Next we give a method to calculate the moments E[εn
q ] of integer order q between 1 

and qD
* .  

 It follows from Eq. 9 and E[εn,b
q ] = mnK b (q )  that  

  E[εn
q ] = mnKb (q )E[Zq ] (10) 

Hence the problem is to find E[Z q ]. These moments are obtained using the fundamental 

relationship  

  Z =
d 1

mD Am,iZi
i=1

m D

∑  (11) 

where all the variables on the right hand side are mutually independent, the variables Am,i  are 

distributed like Am  and the variables Zi  are distributed like Z. Equation 11 follows from ε0 =
d

Z  

and the fact that ε0 = ε(Ω0)  is the average of the mD  iid dressed densities ε1,i = ε(Ω1,i )=
d

AmZ . 

 To find E[Z q ] from Eq. 11, one uses the multinomial expansion of ( Am,iZii=1
mD

∑ )q  to 

express E[( Am,iZii=1
mD

∑ )q ] as a linear function of moments of Z of order up to q. Then one solves 
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E[Zq ] = m−qD E[( Am,iZii=1
mD

∑ )q ] for E[Z q ] in terms of the lower integer moments of Z and the 

known moments of Am . Finally, one finds E[Z q ] recursively for q = 1, 2, …, starting from E[Z] 

= 1. Details are in Veneziano and Furcolo (2003). 

 Since E[Z q ] diverges for q ≥ qD
* , one can use Eq. 10 to write the dressed moments as E[εn

q ] 

~ mnK (q), where the dressed moment scaling function K(q) is given by 

 K(q) =
Kb (q), q < qD

*

∞, q ≥ qD
*

 
 
 

  
 (12) 

Note that while Kb (q) does not depend on the space dimension D, K(q) does (through qD
* ); see 

Figure 2a. 

(b) Upper Tail of εn  for Large n 

To characterize the upper tail of εn  for n large, we consider probabilities of the type P[εn > mnγ ] 

for given γ and n → ∞. We are specifically interested in these probabilities because, as we shall 

see in Section 3.3, they are linked to the return-period values of εn .  

 Recall from Section 2 that the property P[εn > mnγ ] ~ m−nC (γ )  is sometimes taken as the 

definition of multifractality. This relationship has the form of a rough limit. A more refined 

characterization of the tail behavior of εn  is 

  lim
n→∞

P[εn > mnγ ]
m−nC (γ ) = g(mn ,γ)  (13) 

where g(r,γ) is a function that varies slowly with r. As we show next, one can derive the function 

g(r,γ) and the Legendre transform relationship between C(γ) and K(q) starting from the sss 

condition in Eq. 4.  
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 Consider first the bare densities εn,b . One may use Cramer’s (refined) Theorem for large 

deviations of sums of iid random variables (Cramer, 1938; see also Dembo and Zeitouni, 1993, 

or Varadhan, 1984) to obtain 

  lim
n→∞

P[εn,b > mnγ ]
m−nCb (γ ) = gb (mn,γ)  (14) 

where Cb (γ)  is the Legendre transform of Kb (q) = logm E[Am
q ] and 

gb (r,γ) = 2π [Cb
' (γ)]2

Cb
" (γ)

ln(r)
 

 
 

 

 
 
−1/2

; see Veneziano (2002). The link to large deviations for sums of 

iid variables is through the fact that the log bare density ln(εn,b ) is the sum of n iid variables 

distributed like Wm . A more direct proof of Eq. 14 is given in Appendix A. 

 Veneziano (2002) has extended the previous result to the dressed densities εn . In this case 

Eq. 13 holds with C(γ) the Legendre transform of K(q) in Eq. 12, 

  C(γ) =
Cb (γ), γ ≤ γD

*

qD
* γ − D(qD

* −1), γ > γD
*

 
 
 

  
 (15) 

and g(r,γ) given by 

  g(r,γ) =
E[ZCb

' (γ )] 2π [Cb
' (γ)]2

Cb
" (γ)

ln(r)
 

 
 

 

 
 
−1/2

, γ < γD
*

lim
z→∞

P[Z > z]
z−q* , γ > γD

*

 

 

 
 

 

 
 

 (16) 

The constant γD
* = Kb

' (qD
* )  in Eqs. 15 and 16 is the value of γ associated with qD

* ; see Figure 2.  

 Equations 13, 15 and 16 may be written in more compact form as 

 P[εn ≥ mnγ ] ≈
P[εn,b ≥ mnγ ]E[ZC ' (γ )], γ < γD

*

P[Z ≥ mnγ ]E[εn,b
C ' (γ )] = P[Z ≥ mnγ ]mnD(qD

* −1), γ > γD
*

 
 
 

  
 (17) 
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where ≈ denotes equality up to a factor that approaches 1 as n → ∞ and C'(γ)  is the moment 

order q associated with γ in the dressed cascade. Equation 17 emphasizes the symmetrical roles 

played by the factors εn,b  and Z in determining the exceedance probability P[εn ≥ mnγ ] of 

εn = εn,bZ : when γ < γD
* , εn,b  dominates and Z contributes a factor E[ZC ' (γ )] to the exceedance 

probability, whereas for γ > γD
* , Z dominates and εn,b  contributes a factor 

E[εn,b
C ' (γ )] = mnK (qD

* ) = mnD(qD
* −1) . Equation 17 will be used in Section 3.3 to study the 

asymptotic behavior of return-period values of εn . 

(c) Marginal Distribution of εn  for any n 

Equation 17 characterizes the upper tail behavior of εn  as n → ∞, but for many applications one 

is interested in the entire distribution of εn  for n finite. Here we give a numerical procedure to 

find this distribution.  

 Notice that εn = εn,bZ  and the distribution of εn,b  is known, being the same as the 

distribution of the scaling factor Am n . The distribution of the dressing factor Z can be obtained 

from Eq. 11 using the following procedure. 

 Several distributions FZ  satisfy Eq. 11, for example one with probability mass 1 at Z = 0. To 

find the distribution of the dressing factor, one can use the fact that Z has the distribution of 

ε(Ω0)  and calculate the latter as the cascade construction progresses. This corresponds to 

iteratively solving Eq. 11 starting from FZ
(0)(z)  = H(z-1), the Heaviside unit step function at z = 

1: first one calculates the distribution FZ
(1) of the right hand side of Eq. 11 assuming that the 

variables Zi  have distribution FZ
(0) and then one calculates FZ

(2) assuming that the variables Zi  
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have distribution FZ
(1), and so on until convergence; see Veneziano and Furcolo (2003) for 

details. 

 As an example, Figure 3 shows plots of consecutive approximations to the probability 

density function of Z for a binary cascade (m = 2) on the line (D = 1), when the scaling factor A2 

has lognormal distribution with mean value 1 and second moment E[A2
2] = 20.2 . In this case the 

critical order of moment divergence is qD
* =10. Calculation of FZ  was stopped at iteration 26, 

when a convergence criterion was met. The integer moments of Z (26)  were then calculated 

numerically and compared with the exact moments based on Eq. 11. The inset in Figure 3 shows 

the moment ratio E[Zq ]/ E[(Z (26))q ] for q = 1, 2, …, 9. The fact that this ratio is very close to 1 

over the whole range of finite moments indicates that good convergence has been reached.  

 Veneziano and Furcolo (2003) also studied the distribution of εn  in the small-scale limit 

n → ∞. The main result is that, while other possible limiting distributions exist, the lognormal 

distribution has the largest domain of attraction, for εn  when P[Am = 0] = 0 and for (εn |εn  > 0) 

when 0 < P[Am = 0] <1. Therefore, at small scales, “almost all” stationary sss measures have 

lognormal or conditional lognormal distribution.  

3.3 Extremes 

Results of two types are relevant to the problem of cascade extremes: 1. the upper tail of εn  

(which was studied in Section 3.2) and 2. the distribution of εn,max , the maximum of the dressed 

densities εn,i  over the tiles Ωn,i . While the distribution of εn,max  is the result of greater interest, 

the marginal upper tail provides asymptotic scaling relations for the “return-period value” εn,T , 

defined here as the value that is exceeded by εn  with probability 1/(mnDT). Since a cascade in 

the unit D-dimensional cube Ω0  contains mnD  tiles Ωn,i , εn,T  is expected to be exceeded once in 
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T cascade realizations and T may be viewed as the return period of the event [εn  > εn,T ] in units 

of cascade realizations.  

 Asymptotic results on εn,T  are given in Part (a). These results are directly applicable to the 

IDF curves of temporal rainfall. However, to extend the results to area rainfall averages and for 

example examine the behavior of the areal reduction factor (ARF), additional theory is needed. 

This is given in Part (b). Parts (a) and (b) study extremes using marginal distributions and 

therefore neglect dependence among the measures in different cascade tiles. Part (c) derives the 

distribution of εn,max  accounting for dependence. 

(a) Asymptotic Scaling of Return-period Values 

Appendix C shows that the return period values εn,T  scale asymptotically as 

   εn,T  ~ 
mnγ D T1/qD , for n → ∞, T finite (a)

mnDT1/qD
*

, for n finite, T → ∞ (b)

 
 
 

  
 (18) 

where γD  is the slope of the tangent to K(q) with Y-intercept equal to –D and qD  is the value of 

q at the point of tangency; see Figure 2. The result for (n finite, T → ∞) was first derived by 

Hubert et al. (1998) and the result for ( n → ∞, T finite) was obtained by Veneziano and Furcolo 

(2002a). The latter reference also shows that these asymptotic scaling properties do not depend 

on the precise definition of the return period T and for example still hold when T is defined using 

the maximum of εn  inside the unit cube. 

 To illustrate numerically, Figure 4 shows plots of εn,T  for the cascade on the line that was 

used in Figure 3. In this case D = 1 and m = 2. Other relevant parameters are 

 
Kb (q) = 0.1(q2 − q) γ1 = 0.1(2 10 −1) = 0.532

q1
* =10 q1 = q1

* = 10 = 3.16
 (19) 
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 The quantity on the horizontal axis in Figure 4 is the averaging duration d = 2−n  and 

different curves are for different return periods T. The values of εn,T  are obtained as the 

[1− (2n T)−1]-quantiles of εn , calculated numerically using the procedure of Section 3.2 and 

Z (26)  in Figure 3 in place of Z. For small d (large n), the plots confirm the asymptotic scaling 

result in Eq. 18a. The limiting result in Eq. 18b starts to appear at the coarsest resolution d = 1 (n 

= 0) for the longest return period T =106. For smaller d, that limiting result holds for such long 

return periods that it is irrelevant in practice.  

(b) Return Period Values in Sub-spaces and the ARF Factor 

The results in Eq. 18 apply when one counts the exceedance events [ε(Ωn,i ) > εn,T ] in all the 

mnD  tiles Ωn,i  that make up Ω0 , the unit cube in RD . This is fine for rainfall at a point, for 

which D = 1 and RD  is the time axis. However, for rainfall in two spatial dimensions plus time 

(D = 3), the averaging space-time region is fixed in space and slides in time. In addition, the 

averaging region is not necessarily a cascade tile. These features require an extension of Eq. 18, 

as we show next. 

 To exemplify, suppose that averaging is in a square geographical region of side length 

l = m−ns  and over a time interval of duration d = m−nt . The dressed density in such space-time 

region is denoted by εns ,nt
, with T-cascade return period value εns ,nt ,T . Below we derive 

asymptotic scaling relations for εns ,nt ,T  and for the areal reduction factor (ARF), 

ηns ,nt ,T =
εns ,nt ,T

ε∞,nt ,T
,  which is the ratio between εns ,nt ,T  and the corresponding return period value 

at a geographical point, ε∞,nt ,T . One is interested in this ratio because at many locations the IDF 

value ε∞,nt ,T  can be estimated from rain gauge data, whereas lack of space-time rainfall data 
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makes direct estimation of εns ,nt ,T  impossible. If the ARF is insensitive to climate, season etc., 

then it can be robustly estimated from just one or very few space-time data sets and εns ,nt ,T  can 

be found as the product ηns ,nt ,Tε∞,nt ,T .  

 By considering rainfall to be multifractal in the unit cube Ω0 , one implicitly assumes that 

the units of length and time are such that the outer limit of multifractal behavior is 1 in all spatial 

and temporal directions. Now let ∆n  be an integer such that m∆n  is about 5. Veneziano and 

Furcolo (2002b) have shown that, when ns  and nt  differ by at least ∆n , 

  εns ,nt
≈

ε∞,nt
, for ns > nt + ∆n (a)

εns,ns +∆n , for nt > ns + ∆n (b)

 
 
 

  
 (20) 

One concludes from Eq. 20a that, when time averaging dominates (when ns > nt + ∆n ), 

εns ,nt ,T ≈ ε∞,nt ,T  and η ≈1. 

 A more interesting case is when spatial averaging dominates ( nt > ns + ∆n ). A slight 

extension of the analysis in Appendix C shows that Eq. C4 in that appendix holds also for 

rectangular averaging regions with different side lengths, provided their shape is kept constant. 

This is the case with εns ,ns +∆n  in Eq. 20b. Then, using Eq. C4 with D = 3 and D' = 1, one obtains 

that the return-period values εns ,ns +∆n,T  scale as 

      εns ,ns +∆n,T  ~ 
mnsγ1 T1/q1, for ns → ∞, T finite, nt > ns + ∆n

mns (3−2/q3
* )T1/q3

*
, for ns finite, T → ∞, nt > ns + ∆n

 

 
 

  
  (21) 

where γ1 and q1 areγD  and qD  in Figure 2 for D = 1. Equation 21 characterizes the asymptotic 

scaling of the intensity-duration-area-frequency curves when averaging is mainly in space. By 

comparison, the IDF values for rainfall at a point are (set n = nt  and D = 1 in Eq. 18): 
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    ε∞,nt ,T  ~ 
mntγ1 T1/q1, for nt → ∞, T finite (a)

mnt T1/q1
*
, for nt finite, T → ∞ (b)

 
 
 

  
  (22) 

Hence the areal reduction factor η, which is the ratio between the return period values in Eqs. 21 

and 22, behaves as 

 ηns ,nt ,T  ~ 
m(ns−nt )γ1 , for ns → ∞, T finite, nt > ns + ∆n (a)

m(ns−nt )+2ns (1−1/q3
* )T (1/q3

* −1/q1
* ), for ns finite, T → ∞, nt > ns + ∆n (b)

 

 
 

  
 (23) 

 Like the asymptotic behavior in Eq. 18b, the asymptotic behavior in Eq. 23b is of little 

practical interest because it requires extremely long return periods T, especially at spatial 

resolutions ns > 0. By contrast, the limiting behavior in Eq. 23a is observed over ranges of ns  

and nt  of engineering significance. Notice that in this case the ARF scales with m(ns−nt ), which 

is the ratio between the duration of time averaging and the side length of the geographical 

averaging region. The constant γ1 in the exponent is the value of γ for which C(γ) = 1; see Figure 

2. The same constant appears in the scaling of the IDF curves; see Eq. 22a. 

 Another interesting observation is that, while strictly nonzero, the dependence of the ARF on 

the return period T may be neglected. In fact η is independent of T in the first limiting case and 

in the second limiting case (for which dependence of η on T is maximum and which is rarely 

approached in practice), the exponent of T is very small. For example, for Kb (q) in Eq. 19, one 

finds q1
* =10 and q3

* = 30 and the exponent is –0.067. This theoretical result sheds light on the 

debate about the effect of T on the ARF: NERC (1975) reports a weak effect, whereas Bell 

(1976), Asquith and Famiglietti (2000), and De Michele et al. (2001) found that η decreases as T 

increases. ARF charts for routine hydrologic design (e.g. Leclerc and Schaake, 1972; NERC, 
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1975; Koutsoyiannis and Xanthopoulos, 1999) typically give η as a function of only the spatial 

averaging area a and the temporal averaging duration d. The present results support this practice. 

 One can validate Eq. 23 through either numerical calculation of the marginal distribution of 

εns ,nt
 for different ns  and nt  (this can be done through a simple extension of the method in 

Section 3.2 for cubic regions) or through numerical simulation of 3-dimensional cascades. An 

example using the latter approach, with Kb (q) in Eq. 19 and m = 2, is shown in Figure 5. Figure 

5a shows contour lines of the ARF from the simulated rainfall intensities as a function of 

l = m−ns  and d = m−nt . Consistently with Eq. 23a, the contour lines indicate that ARF is a 

function only of the ratio d / l = m(ns−nt ). The dependence on d/l is shown more explicitly in 

Figure 5b. Since here m = 2, the value on the horizontal axis is the difference (nt − ns) and ∆n  is 

about 2. Notice that for (nt − ns) < -2 the ARF is essentially 1 and for (nt − ns) > 2 the ARF 

scales as (d / l)γ1 . This validates our conclusion immediately following Eq. 20 as well as the 

asymptotic result in Eq. 23a. 

 The ARF depends somewhat on the shape of the averaging region on the geographical plane. 

Here we have considered the case of square regions. Other cases (very elongated regions, effect 

of convection of the rain field) are discussed in Veneziano and Langousis (2005a). The same 

reference shows that Eq. 23 is in good agreement with the empirical behavior of the ARF in 

NERC (1975). This is so for averaging durations from 30 min to approximately 8 hours and for 

averaging areas larger than 100 km2. For durations longer than 8 hours and the averaging areas 

considered in N.E.R.C. (1975), time averaging dominates and hence the ARF is very close to 1 as 

indicated by Eq. 20, whereas for areas smaller than 100km2 biases associated with the small 

raingauge network density become significant, causing the observed rainfall scaling in N.E.R.C. 

(1975) to deviate from Eq. 23.  
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(c) Distribution of εn,max   

While interesting, the previous results are asymptotic and are based on the marginal distribution 

of εn . Therefore they ignore dependence among the dressed densities εn,i in different tiles Ωn,i  

(on the dependence structure of stationary multifractal measures, see Cates and Deutsch, 1987, 

and O'Neil and Meneveau, 1993). A more appropriate approach to the extremes is to calculate 

the distribution of the maximum εn,max = max
i

{εn,i} or more in general the distribution of 

εns ,nt ,max = max
i

{εns,nt ,i}, where ns  and nt  are not necessarily equal. Next we give a numerical 

method for εn,max , the maximum density among all cubic cascade tiles at level n. Calculation of 

the distribution of εns ,nt ,max  is more difficult and is not considered here. 

 As was shown in Veneziano and Langousis (2005b), the cumulative distribution function 

Fε n,max
can be found recursively for n = 0, 1, … by noting that ε0,max = ε0 =

d
Z  and, for any n > 0, 

εn,max  is the maximum of mD  iid variables distributed like Amεn−1,max . Therefore, working with 

logs, 

    Flog(ε n,max ) =
Flog(Z ), n = 0

[Flog(ε n−1,max ) * f log(Am )]
mD

, n =1, 2, ...

 
 
 

  
  (24) 

where fX is the probability density function of X and F*f is the convolution 

F * f (s) = F(x) f (s − x)dx
−∞

∞
∫ . The distribution of Z, which is needed for ε0,max, can be obtained 

through the procedure in Section 3.2. 

 While generally feasible, numerical calculation of the distribution of εn,max  is tedious, since 

it involves repeated convolutions, first to find the distribution of Z and then to implement Eq. 24. 

One could use approximations that avoid such convolutions. For example, one might replace Z 
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with a random variable of the Ar  type, say with ArZ
 where rZ  is chosen to match some moment 

of Z (the moments of ArZ
are E[ArZ

q ] = rZ
K (q)  and the moments of Z can be found as explained in 

Section 3.1). One might also neglect dependence among the dressed densities εn,i  in different 

tiles and replace Eq. 24 with 

  Flog(ε n,max ) ≈ [Flog(Z ) * f log(A
m n )]

m nD
, n = 0,1, ... (25) 

 Veneziano and Langousis (2005b) evaluated these approximations and found that 

replacement of Z by ArZ
 generally produces accurate results, except in the extreme upper tail 

where the power-law behavior of the exact distribution of εn,max  is lost. By contrast, ignoring 

dependence among the cascade tiles produces larger errors in the body of the distribution of 

εn,max , but has little effect on the extreme quantiles. The reason why Eq. 25 is accurate in the 

extreme upper tail of εn,max  is that, as ε → ∞, the exceedance events [εn,i  > ε] become 

independent (Poisson). 

 To illustrate, we consider again the problem of estimating the return-period values εn,T , 

defined now as the values exceeded by εn,max  with probability 1/T. All cascade parameters are 

the same as for Figures 3 and 4, and D = 1. Figure 6a shows the exact IDF curves, whereas 

Figure 6b shows approximate results when Z is replaced with ArZ
 using a second-moment 

matching criterion (in this case rZ  = 2.237). Figure 6c uses the same approximation of Z and 

further neglects dependence among the cascade tiles. 

 First notice that the curves are close to those derived from the marginal distribution (Figure 

4), where T was taken to be the reciprocal of the exceedance rate. This is especially true for large 

T, since for high thresholds the exceedance events become Poisson. For all combinations of 

 d=m-n and T except d close to the outer scale of multifractal behavior Dmax (here Dmax = 1) and T 
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very large, the return-period value εn,T  of εn = εn,bZ  is determined mainly by the distribution of 

the bare density εn,b  and any reasonable approximation of Z produces accurate results (compare 

Figures 6a and 6b). In the region where the tail of Z is important (d close to 1 and T very large), 

approximating Z with ArZ
 produces somewhat low return-period values. If in addition one 

ignores dependence among the cascade tiles (Figure 6c), the IDF values for small durations d 

become slightly larger than the exact ones. This is true especially for small T. For large T, the 

assumption of independence is accurate and the approximate results are very close to the exact 

ones. Also notice that, for d = 1, the IDF values in Figures 6b and 6c coincide.  

 The general conclusion is that all approximations considered, whether based on the marginal 

distribution (Figure 4), a moment approximation of Z (Figure 6b) or a moment approximation of 

Z and the independence assumption among the cascade tiles (Figure 6c), are generally accurate. 

The main exception is that, when making the independence assumption, the return period values 

for large d and small T are overestimated by about 50%. 

4. Multifractal Models for Rainfall Extremes 

In further discussing the problem of precipitation extremes, we focus in this section on temporal 

rainfall. There is general consensus that rainfall in time displays sss scaling, at least under certain 

conditions and within a finite range of scales (for example during rainstorms and for scales 

between about 20 minutes and a few days). There is little evidence that scaling extends much 

beyond these limits. This is for example clear from the spectral analysis of rainfall records 

(Fraedrich and Larnder, 1993; Olsson et al., 1993; Olsson, 1995) and from the distribution of 

dry periods (Schmitt et al., 1998; Veneziano and Iacobellis, 2002).  

 The accurate representation of rainfall is therefore a complex endeavour, but if interest is in 

the extremes one may get good results also from rough models. The reason is that the extremes 
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are insensitive to the low rainfall intensities and the dry inter-storm periods. What is important is 

to recognize the range of scales over which multifractal scale invariance applies and fit the 

models using relevant extreme statistics; see Section 4.2 below. 

4.1 Three Simple Models 

 Following Veneziano and Langousis (manuscript in preparation), we consider three possible 

representations of temporal rainfall for extreme analysis, which we call Models 1, 2, and 3. 

 Model 1 has a rather conventional structure. It assumes that storms of random duration Dmax  

and random mean intensity Ib  occur at a certain rate and further that not more than one storm 

contributes significantly to the yearly maximum intensity in d. The reason why we use the 

symbol Dmax  for storm duration is that this is also taken to be the outer limit of multifractal 

behavior in time. Inside each storm, rainfall intensity is assumed to be a stationary sss measure. 

Hence, the parameters of the model are the joint distribution of ( Dmax , Ib ), the mean number of 

yearly storm arrivals λ, and the multifractal parameters of the storm interiors, say the distribution 

of Ar  for a given contraction factor r > 1 or equivalently the moment scaling function K(q). All 

parameters may vary seasonally, but for yearly analysis we consider a single stationary model. 

 Model 2 is simpler in that it partitions the time axis into intervals of fixed duration Dmax . 

Inside each interval, rainfall is modelled in the same way as during a storm in Model 1. 

Specifically, inside different intervals Dmax,i  rainfall is stationary sss with mean intensities Ib,i  

drawn at random from the same distribution FI b
. Inside all the intervals, the moment scaling 

function K(q) is the same. Contrary to the storms of Model 1, the intervals of Model 2 cover the 

entire time axis and therefore include the dry inter-storm periods. Consequently, the functions 

FI b
 and K(q) one estimates from a given data set for Models 1 and 2 are different. 
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 Model 3 is even simpler, since it adjusts the duration Dmax  and the moment scaling function 

K(q) of Model 2 such that the mean intensity Ib  inside all intervals may be considered a 

deterministic constant. 

 It is convenient to cast all three models in the classic exterior/interior format, in which one 

distinguishes between rainfall characteristics at large (e.g. synoptic) scale from those at smaller 

scales (e.g. inside storms). For Model 1, the exterior process is a sequence of rectangular pulses 

with iid durations and intensities, while for Model 2 the exterior process is a partition of the time 

axis into intervals of constant duration Dmax  with iid average intensities Ib,i . The exterior 

process for Model 3 is the same as that for Model 2, but with constant deterministic intensity Ib  

in all the intervals. Figure 7 gives a schematic representation of these different exterior 

processes. For all three models, the interior process is a stationary multifractal measure, with 

moment-scaling function K(q) that depends on the model.  

4.2 Model Fitting 

In fitting the above models to data, one must pay special attention to the events that are 

influential on the yearly maximum. Hence in Model 1 one must accurately reproduce the upper 

tail of the conditional distributions of (Ib | Dmax ), in Model 2 one must fit the upper tail of Ib , 

and in all models one must estimate K(q) with attention to the higher moments. An additional 

problem when using Model 1 is the identification of storms from continuous rainfall records. 

These problems are discussed in detail in Veneziano and Langousis (manuscript in preparation). 

Only the main conceptual steps and results are given below. Application is to a 24-yr continuous 

rainfall record from Florence, Italy (Becchi and Castelli, 1989). In all the analyses, we have used 

the reduced 23-yr record with the year 1966 removed. In November of that year, an exceptional 

rainfall event occurred whose return period is estimated to be several hundred years. 
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 For the interior process of Model 1, we have examined the moment-scaling properties of 

rainfall intensity within storms. For estimating K(q), one should not find the moments of ε(d), 

the mean rainfall intensity in an interval of duration d, after pooling together all storms of 

duration Dmax ≥ d , because such method virtually excludes short-duration storms and, more 

importantly, the intensity distribution varies with storm duration Dmax , biasing the moment-

scaling results. The appropriate way to infer the scaling properties of rainfall inside storms of 

different duration is to use the moments of εr , where r = Dmax /d  is the resolution relative to the 

outer scale of multifractality of each individual storm. 

 We have found that storm interiors have negligible lacunarity and are well represented by 

stationary lognormal sss measures with moment scaling function K(q) = c(q2 − q) where c = 0.1 

(this is the model we have previously used to illustrate marginal and extreme multifractal 

properties). The model fits well the empirical moments E[εr
q ] for q up to about 4, but generally 

gives K(q) values larger than the empirical ones for q > 4. The choice or the range of moments to 

use in fitting the K(q) function is affected by two considerations: (1) the range that is relevant to 

the rainfall extremes of interest and (2) the accuracy and bias of the empirical values. Concerning 

the former issue, we know from Eq. 18 that at high resolution (for n very large or equivalently 

for very small relative durations d /Dmax ), the return-period values εn,T  depend only on the 

values of K(q) in the neighborhood of qD  (here of q1, since for temporal rainfall D = 1). For the 

function K(q) given above, q1 = 3.2. For larger relative durations d /Dmax , moments of higher 

order become more important, especially as the return period T increases. While in the limit as 

T → ∞ what matters is the behavior of K(q) near q1* (in our case q1* = 10), for combinations of 

d /Dmax  and T of typical interest, moments of order larger than about 5 or 6 are not important.  
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 The second consideration in choosing the range of moments is the accuracy and bias of the 

empirical K(q) values. In this regard one should notice that, as n → ∞, the return-period value 

εn,T  in Eq. 18 is smaller than cmnγ  for any c > 0 and γ > γ1. This means that, at high resolutions 

r = Dmax /d  and in a record of any finite length T, singularities of order γ > γ1 occur with 

probability close to 0 and moments E[εr
q ] with q > q1 are underestimated with probability close 

to 1. If one uses the moments of εr  at small resolutions r, the probability of moment 

underestimation decreases, but statistical variability increases. All this means that one should fit 

K(q) models using moments of order not much greater than q1. This is an important 

consideration, since fitting K(q) to moments much higher than q1 would lead to almost-sure 

underestimation of the extremes. For a rigorous discussion of this problem, see Ossiander and 

Waymire (2000, 2002). A related phenomenon is the linearization of the empirical K(q) function, 

as for example discussed in Lashermes et al. (2004). 

 Interestingly, the moment-scaling function K(q) = 0.1(q2 − q) fits well the empirical 

moments of rainfall intensity irrespective of season, storm intensity Ib , and storm duration 

Dmax . This makes the interior process independent of the exterior process and suggests that the 

dynamics responsible for scale invariance in rainfall may have universal characteristics. 

 Figure 8 shows how the exterior process of Model 1 was fitted using storm duration and 

intensity data. The empirical rate of storms of duration Dmax  ≥ 5 min is λ = 170.5 storms/year 

(this reduces to 94 storms/year for storms with duration in excess of 1 hour). The inset of Figure 

8a shows that Dmax  may be assumed to have a three-parameter gamma distribution. We have 

also found that the upper tail of the conditional storm intensities (I | Dmax )  has lognormal shape. 

For example, Figure 8b shows the normal distribution fitted by maximum-likelihood to the upper 
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25% of the ln(I | Dmax ) data for Dmax  in the range [35-55] minutes. Notice that the empirical 

distribution of ln(I | Dmax )  deviates significantly from a normal distribution in the body and 

lower tail, but not the upper tail, which is what matters for extreme analysis. This tail-fitting 

operation has been repeated for different Dmax  bins, producing the values of mln(I |Dmax ) and 

σ ln(I |Dmax )
2  shown as solid squares and circles in Figure 8a. The lines in the same figure are 

smooth parametric fits. Finally, mln(I |Dmax ) and σ ln(I |Dmax )
2  have been corrected for the effect of 

dressing, to produce the bare intensity parameters mln(I b |Dmax ) and σ ln(I b |Dmax )
2  (details of the 

correction are omitted). 

 Next we consider parameter estimation for Model 2. For the interior process, the estimation 

method is simpler than for Model 1, because one does not have to contend with storms of 

different duration and intensity. In fact, for Model 2 one can proceed as usual and evaluate the 

moment-scaling properties of the dressed densities for various averaging durations d < Dmax . 

Since the record includes dry inter-storm periods, a good fit is obtained using an sss model of the 

beta-lognormal type, with K(q) = cβq + cLN (q2 − q) . The parameters ( cβ , cLN ) are estimated to 

be (0.5, 0.047). 

 For the exterior process of Model 2, one must estimate Dmax  as the outer limit of 

multifractality and the distribution of the bare intensity Ib  for intervals of duration Dmax . This 

should be done so that the upper tail or upper moments of the dressed density I = IbZ  for 

duration Dmax  match the corresponding tail or moments of the empirical distribution.  

 We have assumed that Ib  has lognormal distribution with some parameters mI b
 and σ Ib

2  

and replaced the exact distribution of Z with the distribution of the random scaling factor ArZ
, 
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where rZ  = 2.237 is chosen to match the exact second-moment of Z as explained in Section 

3.3(c). The implication is that the dressed density I has a three-parameter “beta-lognormal” 

distribution, meaning that the distribution has some probability mass Po  at I = 0 (this is the same 

as the probability that Z = 0, which equals 0.45) and (I | I > 0) has lognormal distribution. One 

can find the parameters ( Dmax , mI b
, σ Ib

2 ) to either reproduce three empirical moments of I (we 

have used the moments of order 0, 2 and 4) or reproduce the moment of order 0 and provide a 

maximum-likelihood fit to the upper tail of the empirical distribution (we have used the upper 

25% of the empirical values). The latter procedure gives Dmax  = 3.38 days, mI b
 = 0.187 mm/h 

and σ Ib
2 = 0.0251 mm2 /h2. Similar estimates are found when matching the moments. 

 For Model 3, one may select Ib  to be the mean historical rainfall intensity and estimate 

Dmax  such that IbZ  reproduces a high moment of the empirical distribution of I. We have 

chosen to match the third moment. Since now Ib  is deterministic, one obtains a larger value of 

Dmax  than for Model 2 ( Dmax  = 14.6 days). The interior process of Model 3 is practically 

identical to that of Model 2. 

4.3 IDF Curves  

Let εd,max  be the maximum rainfall intensity in d inside one Dmax  interval. In any of the above 

models, the conditional distribution of εd,max|Dmax ,I b
 can be found using the methods of Section 

3.3. For example, when using the independent approximation in Eq. 25, the distribution of 

log(εd,max|Dmax ,I b
) is found as  

         Flog(ε d ,max|Dmax ,I b )(log(ε)) ≈
[Flog(Z ) * f log(Ar )(log(ε /Ib ))]r, r ≥1

Flog(Z )(log(ε /rIb )), r <1

 
 
 

  
 (26) 

where r = Dmax /d .  
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 Notice that the intensity Ib  is random for Models 1 and 2 and the duration Dmax  is random 

for Model 1, whereas for Model 3 both quantities are deterministic. Hence the unconditional 

distribution of log(εd,max ) for Models 1 and 2 is obtained by taking expectation of the 

distribution in Eq. 26 with respect to Ib  and/or Dmax . For example, for Model 1,  

  Flog(ε d ,max )(log(ε)) = E
Dmax ,I b

[Flog(ε d ,max|Dmax ,I b )(log(ε))] (27) 

Finally, the IDF value εd,T  is the value exceeded by εd,max  with probability 1/λT for Model 1 

and with probability Dmax /T  for Models 2 and 3. 

  Figure 9 compares model-generated IDF curves (dashed lines) with the empirical IDF curves 

for Florence (solid lines), using the three models. The model-generated curves have return 

periods T = 2, 4, 8, 23, 102,103 and 104  years and the empirical curves are for T = 2, 4, 8 and 23 

years, both increasing from below. 

 All models produce IDF curves that are generally consistent with the empirical ones and 

provide similar extrapolations for return periods T longer than the duration of the historical 

record. Rather small differences can be noted for short averaging durations as well as very long 

durations. These will be commented upon in an upcoming publication, where issues of statistical 

variability and seasonal variation will also be addressed. When the model-based IDF curves are 

compared with the average rainfall intensities from the November 1966 event, one concludes that 

for d larger than about 1 day that event has a return period of several centuries. This is in general 

agreement with the historical flood record for the city of Florence (Becchi and Giuli, 1987). 

5. Conclusions 

 Significant work has been done over the past two decades to establish the multifractal 

properties of rainfall in space and time, develop suitable models, and use the models to predict 

rainfall extremes. This paper is an attempt at presenting the main results in a unified way.  
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 Unfortunately the terminology, notation and analysis of multifractal processes are not 

standardized. We have argued that an attractive and general definition of multifractality is as a 

scale-invariance property that extends the classic notion of self-similarity. All the results 

presented here are consistently derived from this definition. These include marginal and extreme 

distributions and asymptotic scaling properties of the intensity-duration-frequency (IDF) curves 

and the areal reduction factor (ARF). 

 Two important trends underlie the recent work on multifractal rainfall modeling and extreme 

analysis. One is the shift of focus from the asymptotic scaling relations satisfied by the IDF 

curves and the ARF to the calculation of exact extreme distributions of time and time-space 

averages under non-asymptotic conditions. The latter distributions are the results needed for 

many hydrologic applications.  

 The second trend is a more sparing use of multifractality in rainfall modeling, which 

recognizes the limits of scale invariance in space-time rainfall. This trend is producing models 

that are more consistent with rainfall records, again making the results more suitable for 

application. The fact that rainfall is not a simple multifractal process increases the complexity of 

the models, but we have shown that to evaluate rainfall extremes even rough models suffice, 

provided one estimates the parameters to reproduce an appropriate range of empirical moments 

or upper-tail statistics.  

 While the use of scale-invariance in rainfall modeling has come of age and a consistent 

theory of extremes using these models has emerged, some questions and needs still remain to be 

addressed. On the one hand there is the practical need to make the theory more user-friendly and 

relevant for application. For example, issues of robustness, validation, and regionalization should 

be addressed before multifractal models are routinely used to assess extreme precipitation. A 
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systematic study to identify best-performing rainfall models, balancing accuracy with simplicity 

and robustness, should also be made. 

 On the theoretical side, one needs to better understand the sources of multifractality in 

rainfall. The link to turbulent convection should be explored in greater depth to determine the 

extent to which turbulence really affects rainfall scaling. The complex cloud processes that lead 

to condensation, coalescence and ultimately precipitation should be analyzed to provide a better 

theoretical underpinning of the relationship between the properties of atmospheric convection 

and rainfall, shed light on the universality (or lack thereof) of the scaling parameters under 

stratiform, convective and other conditions, and assess the effects of various fluid-dynamics and 

microphysical processes at different scales.  
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Appendix A: Derivation of the Large-deviation Result in Eq. 14  

 What follows extends the derivation of the “rough” relationship P[εr,b > rγ ] ~ r−C b (γ )  given 

in Schertzer and Lovejoy (1996), pp. 55-56. The extension produces the function gb (r,γ) in Eq. 

14, in addition to Cb (γ) . The analysis is for bare cascades, but to simplify the notation we drop 

the subscript b. 

 We know that  
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  E[εr
q ] = rK (q ) (A1) 

and write the distribution of εr  as 

  1− Fε r
(rγ ) = g(r,γ)r−C (γ )  (A2) 

 We determine the asymptotic functions g(r,γ) and C(γ) as r → ∞  by recovering Eq. A1 from 

Eq. A2, using the saddle-point approximation to integrals of the type I(ξ) = g(x)eξf (x )dx
x1

x2
∫ , 

where the function f(x) has a maximum and is twice differentiable at a point xm , x1 < xm < x2. 

The approximation is obtained by expanding f(x) in Taylor series around xm , as 

f (x) = f (xm ) −
1
2

| f "(xm ) | (x − xm )2 + ... This gives, 

  I(ξ) = g(xm )eξf (xm ) g(x)
g(xm )

e
−

1
2

ξ | f "(xm )|(x−xm )2

dx
x1

x2
∫  (A3) 

For large ξ, the integral approaches 2π
ξ | f "(xm ) |

 

 
 

 

 
 
1/2

 and I(ξ) approaches 

  I(ξ) ≈ g(xm )eξf (xm ) 2π
ξ | f "(xm ) |

 

 
 

 

 
 
1/2

 (A4) 

 Now consider the moments E[εr
q ] = fε r

∫ (ε)εqdε  in Eq. A1. For given r, we put ε = rγ  and 

use fε dε = fγ dγ  to write these moments as 

  E[εr
q ] = fγ∫ (γ)rqγ dγ  (A5) 

It follows from Eq. A2 that γ = logr (εr )  has distribution 1− Fγ (γ) = g(r,γ)r−C (γ ) . Therefore 

  
fγ (γ) = −

∂g(r,γ)
∂γ

+ ln(r)C'(γ)g(r,γ)
 

 
 

 

 
 r−C (γ )

≈ ln(r)C'(γ)g(r,γ)r−C (γ )

 (A6) 
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 As r → ∞ , the term ∂g(r,γ)
∂γ

 becomes negligible relative to ln(r)C'(γ)g(r,γ) (see below); 

this is why in Eq. A6 this term was neglected. Substitution of Eq. A6 into Eq. A5 gives 

  E[εr
q ] = ln(r) C'(γ)g(r,γ)∫ eln(r)[ qγ −C (γ )]dγ  (A7) 

For ln(r) large, we can use the saddle-point approximation in Eq. A4 to obtain 

  E[εr
q ] = ln(r) C'(γ)g(r,γ)[ ]γ (q )

2π
ln(r) | C"(γ(q)) |

 

 
 

 

 
 

1/2

r
max

γ
[ qγ −C (γ )]

 (A8) 

where γ(q) is the value of γ that maximizes [qγ – C(γ)]. In order for E[εr
q ] in Eq. A8 to equal 

λK (q), it must be  

  K(q) = max
γ

[qγ − C(γ)]  (A9) 

and  

  ln(r) C'(γ)g(r,γ)[ ]γ (q )
2π

ln(r) | C"(γ(q)) |
 

 
 

 

 
 

1/2

=1 (A10) 

From Eq. A10, 

  g(r,γ) = 2π
C'(γ)( )2

C"(γ)
ln(r)

 

 
 
 

 

 
 
 

−1/2

 (A11) 

 To determine whether ∂g(r,γ)
∂γ

 is negligible relative to ln(r)C'(γ)g(r,γ), as assumed in Eq. 

A6, one can evaluate the derivative of g(r,γ) in Eq. A11. This gives 

  −
∂g(r,γ)

∂γ
= π ln(r) 2π

C'(γ)( )2

C"(γ)
ln(r)

 

 
 
 

 

 
 
 

−3/2 d
C'(γ)( )2

C"(γ)

 

 
 
 

 

 
 
 

dγ
 (A12) 

and the ratio 
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−

∂g(r,γ)
∂γ

ln(r)C'(γ)g(r,γ)
=

π
C'(γ)

2π
C'(γ)( )2

C"(γ)
ln(r)

 

 
 
 

 

 
 
 

−1 d
C'(γ)( )2

C"(γ)

 

 
 
 

 

 
 
 

dγ
 (A13) 

For r → ∞ , the ratio in Eq. A13 tends to 0, justifying the asymptotic expression in Eq. A11.  

 

Appendix B: Derivation of the Critical Moment Order q D
*  

At level n + 1, each cascade tile Ωn  is partitioned into mD  tiles Ωn+1,i . Hence the sss scaling 

property εn+1 =
d

Amεn  may be written as εn+1 =
d

Am
1

mD εn+1,i
i=1

m D

∑  where εn+1,i  is the dressed 

density in Ωn+1,i . If E[εn+1
q ] exists, then using E[Am

q ] = mK b (q )  from Eq. 5 gives  

  E[εn+1
q ] = mK b (q ) 1

mqD E[( εn+1,i
i=1

m D

∑ )q ] (B1) 

 Since εn+1,i  ≥ 0 with P[εn+1,i > 0] > 0 (due to non-degeneracy) and q > 1, the expectation on 

the right hand side of Eq. B1 is bounded from below by mD E[εn+1
q ], giving 

  E[εn+1
q ] > mK b (q ) 1

mqD mD E[εn+1
q ] (B2) 

 One concludes that existence of E[εn+1
q ] implies Kb (q) < D(q - 1). Since K(q) = Kb (q) 

whenever E[εn+1
q ] exists, it must also be K(q) < D(q - 1). This derivation applies not just to 

discrete cascades, but in general to all stationary sss measures. 

 

Appendix C: Asymptotic Scaling of Return-period Values 

We use Eq. 13 to obtain the asymptotic behavior of εn,T  for ( n → ∞, T finite) and (n finite, 

T → ∞). In either case, the level mnγ  in Eq. 13 diverges and the function g(mn,γ)  in Eq. 16, 
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which varies slowly with mn , becomes immaterial to the scaling of εn,T . Therefore one can 

study the asymptotic scaling properties of εn,T  using the rougher, large- mn  relations 

   P[εn ≥ mnγ ] ~ m−nC (γ ) =
m−nCb (γ ), γ < γD

*

m−n[ qD
* γ −D (qD

* −1)], γ > γD
*

 
 
 

  
 (C1) 

where we have used Eq. 15 for C(γ) . The objective is to find γ such that 

m−nC (γ ) =
1

mnDT
= m

−n (D+log
m n T )

, hence such that C(γ) = D + logm n (T) . 

 Consider first the high-resolution limit when n → ∞ while T is finite. As shown below, in 

this case γ < γD
* . Therefore C(γ) = Cb (γ) and γ must satisfy Cb (γ) = D + logm n (T) . Notice that, 

for T finite, logm n (T) → 0  as n → ∞. Hence γ is infinitesimally close to the value γD  such that 

Cb (γD ) = D and one may use linear Taylor series expansion of Cb (γ)  around γD . The expansion 

is Cb (γ) = D + qD (γ − γD ), where qD = Cb
' (γD ) is the moment order associated with γD . Solving 

D + qD (γ − γD ) = D + logm n (T)  for γ gives γ = γD +
1

qD
logm n (T) . We conclude that, under 

( n → ∞, T finite), the return-period value εn,T = mnγ  scales with mn  and T as 

   εn,T  ~ mnγ D T1/qD  (C2) 

Since γD  < γD
* , our previous use of the first expression in Eq. C1 is justified.  

 Next consider the case when n is finite and T → ∞ . Since mn  is finite and mnγ → ∞ , it must 

be γ → ∞ and one must use the expression in Eq. C1 for γ > γD
* . The condition 

qD
* γ − D(qD

* −1) = D + logmn (T) gives γ = D +
1

qD
* logmn (T)  and 

  ε(n,T) ≈ mnDT1/q*  (C3) 



 40

 The following generalization of the previous problem is needed for space-time rainfall 

extremes. As before, we consider the dressed densities εn,i = ε(Ωn,i ), but now seek the extremes 

of εn,i  over the tiles Ωn,i  of Ω0  with centerpoint in a D'-dimensional subspace, 1 ≤ D' ≤ D. For 

example, in the case of space-time rainfall, D = 3 but one is interested in the maximum of space-

time averages over time only ( D' = 1), not over time and space ( D' = 3). 

 In this more general setting, εn,T  is the value exceeded by εn  with probability 1/(mnD'T). 

Therefore γ must be such that C(γ) = D'+ logm n (T) . Following step by step the previous analysis 

one finds 

    εn,T  ~ 
mnγ D ' T1/qD ' , for n → ∞, T finite

mn[ D−(D−D' ) /qD
* ]T1/qD

*
, for n finite, T → ∞

 
 
 

  
  (C4) 

 

List of symbols 

a: averaging area 

ar : deterministic ss amplitude scaling factor for a scale change factor r 

Ar : random sss amplitude scaling factor for a scale change factor r 

cLN : lognormal co-dimension coefficient 

csss (dsss): sss under contraction (under dilation) 

cβ : beta co-dimension coefficient 

C(γ): co-dimension function of dressed cascade 

Cb (γ) : co-dimension function of bare cascade 

d: averaging duration 

D: embedding Euclidean dimension 
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D(γ): fractal dimension of singularities of order γ 

Dmax : outer limit of multifractality in time (= storm duration in Sec. 4) 

I: dressed mean storm intensity 

Ib : bare mean storm intensity 

K(q): K(q) for dressed cascades 

Kb (q)  : K(q) for bare cascades 

l: linear dimension of geographical averaging region 

m: linear cascade multiplicity 

n: cascade level 

N(r,γ): number of cubic tiles at resolution r where εr > rγ  

q: moment order 

qD : moment order associated with γD  

qD
* : critical order of moment divergence for a D-dimensional cascade 

r: resolution (also scale-change factor) 

rZ : scale change factor such that ArZ
 matches a given moment of Z  

ss: self-similarity 

sss: stochastic self-similarity 

SX (ω) : spectral density function of X(t) 

T: return period 

X(t): stationary random process in RD  

X(Ω): measure of Ω  

Z: dressing factor 
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γ: singularity exponent 

γD : singularity exponent that satisfies Cb (γD ) = D 

γD
* : singularity exponent associated with qD

*  

ε(Ω): average measure density in Ω  

εd,max : maximum of the average rainfall intensity in d for a storm of duration Dmax  

εn = ε(Ωn ) : average dressed density in Ωn   

εn,b = εb (Ωn ): bare density in Ωn   

εn,max  : maximum of the dressed densities εn,i = ε(Ωn,i ) at cascade level n 

εn,T : value expected to be exceeded once by εn  in T cascade realizations 

εns ,nt
: average random measure over a square geographical region of side length  and a time 

interval of duration d = m−nt  

εns ,nt ,T : value expected to be exceeded once by εns ,nt
 in T space-time cascade realizations 

1/ tn Dm−   

εr: average measure density in a cube of side length 1/r 

λ: annual rate of storms 

ηns ,nt ,T : areal reduction factor for a square area with linear dimension l = m−ns  and a time 

interval of duration d = m−nt  

ω : frequency vector 

Ωmax : largest region inside which the csss property holds 

Ωmin : smallest region above which the dsss property holds 

Ωn : cubic tile at cascade level n 

Ωo : unit D-dimensional cube 
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 Figure Captions 

Figure 1: (a) Partition of the unit cube into cascade tiles at different levels n for the case when D 

= 2 and m = 2; (b) simulated realization of a stationary sss measure density on the 

plane. 

Figure 2: Illustration of the moment scaling function K(q) and co-dimension function C(γ). The 

moment orders qD  and qD
*  and the “singularity orders” γD  and γD

*  are relevant to 

multifractal extremes. 

Figure 3: Consecutive approximations to the probability density function of Z for a binary 

cascade (m = 2) on the line (D = 1), with moment scaling function K(q) = 0.1(q2 − q). 

Calculation was stopped at iteration 26, when a convergence criterion was met. The 

inset shows the moment ratio E[Z q ]/ E[(Z (26))q ] for q = 1, 2, …, 9 (moments of order 

10 or greater diverge). 

Figure 4: Return-period values εn,T  for a multifractal cascade with moment scaling function 

K(q) = 0.1(q2 − q).  The plots show εn,T  against the averaging duration  d = m−n  for T 

=10, 102, 103, 104, 105 and 106 cascade realizations (T increases from bottom to top). 

Figure 5: Idealization of rainfall as a discrete cascade inside the unit cube in (x,y,t)-space, with 

moment scaling function K(q) = 0.1(q2 − q). (a) Dependence of the areal reduction 

factor ARF on the side length l of the square averaging region and the duration d of 

temporal averaging. (b) Scaling of the ARF factor with the ratio l/d. For large l/d ratios, 

the ARF behaves like a power function of l/d, with exponent −γ1 = −0.532. 

Figure 6: Return-period values εn,T  for the multifractal cascade used in Figure 4:  (a) exact 

values using the distribution of εn,max , (b) approximation when Z is replaced with ArZ
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using a second-moment matching criterion ( rZ  = 2.237), and (c) approximation when, 

in addition, one neglects dependence among the cascade tiles. Return periods are T 

=10, 102, 103, 104, 105 and 106 cascade realizations, increasing from bottom to top. 

Figure 7: Schematic representation of the “exterior process” for rainfall models 1, 2, and 3. In all 

cases, the interior process is stationary multifractal with independent realizations 

inside different Dmax  intervals. 

Figure 8: Use of Model 1 to evaluate the IDF curves for Florence, Italy, based on a 23-year 

record: (a) Fitted gamma distribution of storm duration Dmax  (inset) and mean and 

variance of the conditional log storm intensity (ln I | Dmax ) . (b) Example tail fit by 

maximum-likelihood of a normal distribution to ln(I)  for Dmax  between 35 and 55 

minutes. 

Figure 9: Comparison of model-generated IDF curves (dashed lines) and empirical IDF curves 

(solid lines) for Florence, Italy, using rainfall models 1, 2 and 3. The model-generated 

curves are for return periods T = 2, 4, 8, 23, 102,103 and 104  years and the empirical 

curves are for T = 2, 4, 8 and 23 years, both increasing from below. 
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Figure 1: (a) Partition of the unit cube into cascade tiles at different levels n for the case 
when D = 2 and m = 2; (b) simulated realization of a stationary sss measure density on 
the plane. 
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Figure 2: Illustration of the moment scaling function K(q) and co-dimension function 
C(γ). The moment orders qD  and qD

*  and the “singularity orders” γD  and γD
*  are relevant 

to multifractal extremes. 
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Figure 3: Consecutive approximations to the probability density function of Z for a binary 
cascade (m = 2) on the line (D = 1), with moment scaling function K(q) = 0.1(q2 − q). 
Calculation was stopped at iteration 26, when a convergence criterion was met. The inset 
shows the moment ratio E[Z q ]/ E[(Z (26))q ] for q = 1, 2, …, 9 (moments of order 10 or 
greater diverge). 
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Figure 4: Return-period values εn,T  for a multifractal cascade with moment scaling 
function K(q) = 0.1(q2 − q).  The plots show εn,T  against the averaging duration  d = m−n  
for T =10, 102, 103, 104, 105 and 106 cascade realizations (T increases from bottom to 
top). 
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Figure 5: Idealization of rainfall as a discrete cascade inside the unit cube in (x,y,t)-space, 
with moment scaling function K(q) = 0.1(q2 − q). (a) Dependence of the areal reduction 
factor ARF on the side length l of the square averaging region and the duration d of 
temporal averaging. (b) Scaling of the ARF factor with the ratio l/d. For large l/d ratios, 
the ARF behaves like a power function of l/d, with exponent −γ1 = −0.532. 
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Figure 6: Return-period values εn,T  for the multifractal cascade used in Figure 4:  (a) 
exact values using the distribution of εn,max , (b) approximation when Z is replaced with 
ArZ

 using a second-moment matching criterion ( rZ  = 2.237), and (c) approximation 
when, in addition, one neglects dependence among the cascade tiles. Return periods are T 
=10, 102, 103, 104, 105 and 106 cascade realizations, increasing from bottom to top. 
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Figure 7: Schematic representation of the “exterior process” for rainfall models 1, 2, and 
3. In all cases, the interior process is stationary multifractal with independent realizations 
inside different Dmax  intervals. 
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Figure 8: Use of Model 1 to evaluate the IDF curves for Florence, Italy, based on a 23-
year record: (a) Fitted gamma distribution of storm duration Dmax  (inset) and mean and 
variance of the conditional log storm intensity (ln I | Dmax ) . (b) Example tail fit by 
maximum-likelihood of a normal distribution to ln(I)  for Dmax  between 35 and 55 
minutes. 
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Figure 9: Comparison of model-generated IDF curves (dashed lines) and empirical IDF 
curves (solid lines) for Florence, Italy, using rainfall models 1, 2 and 3. The model-
generated curves are for return periods T = 2, 4, 8, 23, 102,103 and 104  years and the 
empirical curves are for T = 2, 4, 8 and 23 years, both increasing from below. 
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