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Abstract 36 

Contrary to common belief, Fisher-Tippett’s extreme value (EV) theory does not typically apply 37 

to annual rainfall maxima. Similarly, Pickands’ extreme excess (EE) theory does not typically 38 

apply to rainfall excesses above thresholds on the order of the annual maximum. This is true not 39 

just for long averaging durations d, but also for short d and in the high-resolution limit as d → 0. 40 

We reach these conclusions by applying large deviation theory to multiplicative rainfall models 41 

with scale-invariant structure. We derive several asymptotic results. One is that, as d → 0, the 42 

annual maximum rainfall intensity in d, Iyr,d , has generalized extreme value (GEV) distribution 43 

with a shape parameter k that is significantly higher than that predicted by EV theory and is 44 

always in the EV2 range. The value of k does not depend on the upper tail of the marginal 45 

distribution, but on regions closer to the body. Under the same conditions, the excesses above 46 

levels close to the annual maximum have generalized Pareto distribution with parameter k that is 47 

always higher than that predicted by Pickands’ EE theory. For finite d, the distribution of Iyr,d  is 48 

not GEV, but in accordance with empirical evidence is well approximated by a GEV distribution 49 

with shape parameter k that increases as d decreases. We propose a way to estimate k under pre-50 

asymptotic conditions from the scaling properties of rainfall and suggest a near-universal k(d) 51 

relationship. The new estimator promises to be more accurate and robust than conventional 52 

estimators. These developments represent a significant conceptual change in the way rainfall 53 

extremes are viewed and evaluated.  54 

 55 
 56 
Keywords: rainfall maxima, extreme value theory, extreme excess theory, large deviations, IDF 57 

curves 58 
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1. Introduction 59 

This paper deals with the classical problem of characterizing the distribution of annual rainfall 60 

maxima. Let Id  be the average rainfall intensity in an interval of duration d and Iyr,d  be the 61 

maximum of Id  in one year. A long-standing tenet of stochastic hydrology is that, at least for d 62 

small, the distribution of Iyr,d  is of the generalized extreme value (GEV) type; see e.g. Chow et 63 

al. (1988), Singh (1992), and Stedinger et al. (1993). This belief stems from the fact that, if 64 

under suitable normalization the maximum of n independent and identically distributed (iid) 65 

variables is attracted as n → ∞ to a non-degenerate distribution Gmax , then Gmax  must have the 66 

GEV form 67 

 Gmax (x) = exp − 1+ k x −ψ
λ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
−1/k⎧ 

⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 (1) 68 

where λ , ψ  and k are scale, location and shape parameters, respectively. Methods to estimate 69 

extreme rainfall intensities from recorded annual maxima (e.g. Koutsoyiannis et al., 1998; 70 

Martins and Stedinger, 2000; Gellens, 2002; Overeem et al., 2008) are generally based on this 71 

result.  72 

 The specific form of the distribution (EV1 when the shape parameter k = 0, EV2 when k > 73 

0 and EV3 when k < 0) depends on the upper tail of the parent distribution, in our case the 74 

distribution of Id  (Gumbel, 1958). For k = 0, equation (1) reduces to the Gumbel (EV1) form 75 

F(x) = exp{−exp(−(x −ψ) /λ)}  with an exponential extreme upper tail, whereas for positive k 76 

the distribution is Frechet (EV2) whose upper tail behaves like a power function with exponent 77 

-1/k. Thus, for the same probability of exceedance, larger values of k are associated with higher 78 
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rainfall intensities and more extreme behavior of the rainfall process. For negative k the 79 

distribution is Weibull (EV3), with a finite upper bound.  80 

 Another pillar of extreme rainfall modelling is extreme excess (EE) theory. Let X be a 81 

random variable with distribution F. The excess of X above u, Xu = (X − u | X ≥ u) , has 82 

distribution Fu (x) =
F(u + x) − F(u)

1− F(u)
. Pickands (1975) derived limiting properties of Fu  that 83 

parallel the results of extreme value theory for the maxima. He found that, as u increases and 84 

F(u) →1: (1) the distribution of Xu  converges to a non-degenerate distribution Gexc  if and only 85 

if the maximum of n iid copies of X converges to a non-degenerate distribution Gmax ; (2) Gexc  86 

has generalized Pareto (GP) form; and (3) Gexc  has the same shape parameter k as Gmax  in 87 

equation (1).  88 

 An important property of the GP distribution is that the maximum of a Poisson number of 89 

iid GP(k) variables has GEV(k) distribution with the same k (e.g. Stedinger et al., 1993). In 90 

conjunction with Pickands’ results, this property has been extensively used in Peak-over-91 

Threshold (PoT) and Partial-Duration-Series (PDS) methods of extreme rainfall analysis. Peak-92 

over-Threshold  methods generally assume that the peak of Id  above some high threshold u has 93 

GP distribution and find the (GEV) distribution of the annual maximum assuming that Id  up-94 

crosses level u at Poisson times; see e.g. Smith (1985), Leadbetter (1991) and, Madsen et al. 95 

(1997). Partial-Duration-Series  methods do the same using the marginal excesses of Id  above u; 96 

see e.g. Stedinger et al. (1993), Beirlant et al. (1996) and Martins and Stedinger (2001a,b). 97 

 We question whether the distribution of the annual maximum Iyr,d  is in fact GEV and has 98 

the shape parameter k of Gmax  in equation (1). This is clearly not the case for long durations d, 99 

say d > 1 week, because n = (1 year)/d is too small. However, extreme value (EV) theory might 100 
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become relevant to Iyr,d  as d → 0, since then n → ∞. Similarly, we question whether as d → 0 101 

the excesses of Id  above thresholds on the order of the annual maximum have GP distribution 102 

with the same k as Gmax . We address these issues by using stationary models of rainfall in 103 

which rainfall intensity at different scales satisfies a scale invariance condition. These 104 

(multifractal) models have been found to accurately predict rainfall extremes (Veneziano et al., 105 

2006a; Langousis and Veneziano, 2007). 106 

 We find that, under stationarity and multifractality, EV theory does not apply to the annual 107 

maximum, because for any given d the block size n needed for reasonable convergence to the 108 

asymptotic GEV distribution far exceeds (1 year)/d. We are especially interested in the annual 109 

maxima at small scales, for which an appropriate framework is provided by large deviation (LD) 110 

theory (on LD theory, see e.g. Dembo and Zeitouni, 1993 and Den Hollander, 2000). Using LD 111 

tools, we obtain several new asymptotic results. One is that, as d → 0, the annual maximum 112 

Iyr,d  approaches an EV2 distribution with a shape parameter k that is always higher than that 113 

predicted by extreme value theory. Interestingly, k does not depend on the upper tail of Id  but on 114 

regions of the distribution closer to the body and can be obtained in a simple way from the 115 

scaling properties of the rainfall process. Similarly, as d → 0, the excess of Id  above thresholds 116 

on the order of Iyr,d  has GP(k) distribution, where k is the same as for Iyr,d  and therefore is 117 

always higher than the value from Pickands’ theory.  118 

 We also study the distribution of Iyr,d  under pre-asymptotic conditions (d finite). These are 119 

the conditions of greatest interest in practice. In this case the distribution of Iyr,d  is not GEV and 120 

in fact may differ significantly from any EV or LD asymptotic distribution, but over a finite 121 

range of quantiles is accurately approximated by a GEV distribution with parameter k that 122 

decreases as d increases. This dependence of k on d is in accordance with much empirical 123 
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evidence; see e.g. Asquith (1998), Mohymont et al. (2004), Trefry et al. (2005), Veneziano et al. 124 

(2007) and Section 4 below. We propose a method to estimate k(d) from the scaling properties of 125 

the rainfall process and the range of quantiles (or return periods) of interest. The multifractal 126 

parameters provide a linkage between k and the local precipitation climate. We also suggest a 127 

near-universal default k(d) relationship for use at non-instrumented sites. 128 

 Section 2 describes the rainfall model (a simple sequence of discrete multifractal cascades) 129 

and recalls results on the upper tail of Id  for such cascades from LD theory. Section 3 derives 130 

asymptotic properties of the N-year maximum INyr,d  in the small-scale limit d → 0 for cases 131 

with N fixed and N that varies as a power law of the averaging duration d. Section 3 derives also 132 

corresponding properties of the excess of Id  above thresholds on the order of INyr,d . Section 4 133 

focuses on the distribution of the annual maximum under pre-asymptotic conditions and Section 134 

5 summarizes the main conclusions and outlines future steps.  135 

 In subsequent sections we make a change of notation, as follows. An important parameter 136 

of stationary multifractal processes is the upper limit D of the durations d for which the process 137 

displays scale invariance (e.g. Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990; 138 

Veneziano, 1999; Langousis et al., 2007). In the analysis of such processes, what matters is not 139 

the duration d but the resolution r = D/d relative to D. Accordingly, we use Ir , Iyr,r  and INyr,r  in 140 

place of Id , Iyr,d  and INyr,d , respectively. Since the analysis is confined to the scaling range, we 141 

only consider resolutions r ≥ 1. 142 

2. Multiplicative and Multifractal Rainfall Models 143 

There is ample evidence that the fluctuations of rainfall intensity at different scales combine in a 144 

multiplicative way; see e.g. Over and Gupta (1996), Perica and Foufoula-Georgiou (1996), 145 
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Veneziano et al. (1996), Venugopal et al. (1999), Deidda (2000), and Veneziano and Langousis 146 

(2005a). Multiplicative models represent rainfall intensity I(t) as 147 

 I(t) = m Yj
j=1

∞
∏ (t) (2) 148 

where m is the mean rainfall intensity and the processes Yj (t)  are non-negative, independent, 149 

with mean value 1. These processes contribute fluctuations at characteristic temporal scales d j  150 

or equivalently at resolutions rj = D /d j >1 relative to some large reference scale D. Since for 151 

our analysis the mean value does not matter, in what follows we set m = 1.  152 

 In the case of multifractal models, the resolutions rj  satisfy rj = b j  for some b > 1 and 153 

Y1(t), Y2(t),... are contractive transformations of the same stationary random process Y(t), 154 

meaning that Yj (t)  is equivalent to Y(rj t); see e.g. Veneziano (1999). An important special case 155 

is when Y(t) is a process with constant iid values inside consecutive D intervals and b is an 156 

integer ≥ 2. Then equation (2) generates a sequence of iid discrete multifractal cascades of 157 

multiplicity b within consecutive D intervals (on discrete multifractal cascades, see e.g. Schertzer 158 

and Lovejoy, 1987; Gupta and Waymire, 1990; and Evertsz and Mandelbrot, 1992). Discrete-159 

cascade sequences of this type have been found to reproduce well the intensity-duration-160 

frequency (IDF) curves extracted from historical records or generated by more sophisticated 161 

rainfall models (Langousis and Veneziano, 2007).  162 

 In a discrete-cascade representation of rainfall, the average rainfall intensity in a generic 163 

cascade tile at resolution rj , Irj
, satisfies 164 

 
Ir j

= Ar j
Z

Arj
= Y1Y2 ⋅ ⋅ ⋅Yj

,         j = 0, 1, … (3) 165 
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where Ar0 =1, the factors Y1,...,Yj  are independent copies of a non-negative variable Y with 166 

mean value 1, and Z is a mean-1 “dressing factor.” Each Yi , i ≤ j, models the effect on Irj
 of the 167 

rainfall intensity fluctuations at resolution ri , while Z captures the combined effect of all 168 

multiplicative fluctuations at resolutions higher than rj ; see Kahane and Peyriere (1976) and 169 

Schertzer and Lovejoy (1987).  170 

 An important feature of the distribution of Z is the asymptotic Pareto upper tail (i.e. P[Z >z] 171 

~ z -q*) where q* > 1 is the order at or beyond which the moments of Z diverge. The distribution 172 

of Z does not have analytical form, but it can be calculated numerically using the procedure of 173 

Veneziano and Furcolo (2003), or approximated analytically; see Langousis et al. (2007).  174 

 To realistically represent rainfall, one must model both the alternation of dry and wet 175 

conditions and the fluctuations of rainfall intensity during the rainy periods. This requires Y to 176 

have a non-zero probability mass at zero. A frequent choice is Y = YβYLN , where Yβ  is a discrete 177 

random variable with probability mass P0 at zero and probability mass 1- P0 at 1/(1- P0)  and YLN  178 

is a lognormal variable with mean value 1 (e.g. Over and Gupta, 1996; Langousis et al., 2007). 179 

In the multifractal literature, processes with Y = Yβ  are called “beta” processes, while those with 180 

Y = YLN  are referred to as “lognormal” processes, although the marginal distribution is not 181 

exactly lognormal due to the dressing factor Z; see equation (3). When Y = YβYLN , we say that 182 

the process is “beta-lognormal” (beta-LN) and refer to the distribution of Y as a beta-LN 183 

distribution. The scaling properties of a beta-LN process depend on the probability P0 and the 184 

variance of ln(YLN ) (see below for an alternative parameterization). 185 

 Later sections make frequent use of the moment-scaling function   186 

 K(q) = logrj
(E[Arj

q ]) = logb(E[Y q])   (4) 187 
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and its Legendre transform C(γ)  given by 188 

 C(γ) = max
q

{γq − K(q)}, K(q) = max
γ

{γq − C(γ)} (5) 189 

In the beta-LN case, these functions are 190 

 

K(q) = Cβ (q −1) + CLN (q2 − q), q ≥ 0

C(γ) =
CLN

4
γ − Cβ
CLN

+1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
+ Cβ , γ ≥ γmin

 (6) 191 

where Cβ = −logb(1− P0) and CLN = 0.5Var[logb (YLN )] provide an alternative parameterization 192 

of the distribution of Y and γmin = Cβ − CLN  is the slope of K(q) at 0. For example, in fitting a 193 

beta-LN model to a rainfall record from Florence, Italy, Langousis and Veneziano (2007) found 194 

D ≈ 15 days, Cβ  ≈ 0.4 and CLN ≈ 0.05. Figure 1 shows qualitative plots of the K(q) and C(γ)  195 

functions and indicates quantities of interest for the analysis that follows. Although for the 196 

present analysis the values of Cβ  and CLN  and more in general the distribution of Y do not 197 

matter, we use these settings to exemplify the theoretical results. 198 

 In the next section we need to evaluate how, in the small-scale limit j → ∞, exceedance 199 

probabilities of the type P[Irj
> rj

γ ] depend on the resolution rj  and the exponent γ. For this we 200 

turn to large deviation (LD) theory (e.g. Dembo and Zeitouni, 1993). Specifically, Cramer’s 201 

Theorem (Cramer, 1938) gives an asymptotic expression for the probability with which the sum 202 

of j iid variables exceeds levels proportional to j, as j → ∞. One might think that as j → ∞ the 203 

sum should have a normal distribution, but as j increases the quantiles of interest move into more 204 

extreme tail regions where the sum has not yet converged to the normal distribution. If for the 205 

moment one neglects the dressing factor Z in equation (3), then Irj
= Arj

 and Cramer’s Theorem 206 
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is directly relevant to our problem because P[Arj
> rj

γ ] = P[ logb(Yi )i=1
j∑ > γj]. One can extend 207 

Cramer’s results to include the dressing factor Z; see Veneziano (2002). This extension gives 208 

 P[Arj
Z > rj

γ ] ~ 
rj

−C (γ ), γmin ≤ γ ≤ γ *

rj
−C (γ*)−q*(γ −γ *), γ > γ *

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (7) 209 

where ~ denotes equality up to a factor g(rj ,γ)  that varies slowly (slower than a power law) with 210 

rj  at infinity, C(γ) and K(q) are the functions in equation (5), q* > 1 is the moment order such 211 

that K(q*) = q * −1, and γ * is the slope of K(q) at q*. For C(γ) and K(q) in equation (8), 212 

q* = (1− Cβ ) /CLN  and γ* = 2 − Cβ − CLN . The asymptotic behavior of g(rj,γ) as j → ∞ is 213 

known (Veneziano, 2002), but for the present objectives it is sufficient to work with the “rough 214 

limits” in equation (7). 215 

 The result in equation (7) for γ < γ * is also the limiting behavior of P[Arj
> rj

γ ] produced 216 

by Cramer’s Theorem. The reason is that, for γmin ≤ γ ≤ γ * and j large, the dressing factor Z 217 

contributes a factor to the probability P[Arj
Z > rj

γ ] that does not depend on j and therefore can 218 

be absorbed into the function g(rj ,γ) . By contrast, for γ > γ * and j large, the probability 219 

P[Arj
Z > rj

γ ] is dominated by the Pareto tail of Irj
, which has the form P[Irj

> i] ∝ i−q*  and 220 

starts at i * ~ rj
γ * (Langousis et al., 2007). This power-law tail originates from the Pareto tail of 221 

the dressing factor Z; see comments following equation (3).  222 

3. Asymptotic Analysis 223 

In practice, one is interested in the distribution of the annual maximum Iyr,r  for finite 224 

resolutions r and the distribution of the excess Ir,u  for finite r and thresholds u on the order of 225 
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Iyr,r . Before studying these pre-asymptotic properties (see Section 4), we examine the behaviour 226 

of the N-year maximum INyr,r  and the excess Ir,u  for thresholds u on the order of INyr,r  under 227 

various asymptotic conditions. This asymptotic analysis produces extensions of extreme value 228 

(EV) and extreme excess (EE) results and clarifies why those theories do not apply to the annual 229 

rainfall maxima. We consider two cases: the classical limit (r fixed, N → ∞) and the non-230 

classical limit ( r → ∞ , N = crα ) for any given c > 0 and α. When α = 0, the latter limit becomes 231 

( r → ∞ , N = c fixed) and thus characterizes the distribution of the c-year maximum of Ir  at 232 

small scales. To simplify notation, we denote the resolution by r, with the understanding that in a 233 

discrete cascade model r is constrained to have values rj = b j . An important property of 234 

multifractal cascades that we use below is that, for resolutions r larger than about 2 and return 235 

periods T of practical interest (say T/D ≈ 102 - 106), the distribution of INyr,r  is accurately 236 

approximated by the distribution of the maximum of rN/D independent copies of Ir , where D is 237 

in years; see Langousis et al. (2007). 238 

 Consider first the limiting case (r finite, N → ∞). As we have noted at the end of Section 2, 239 

the dressing factor Z causes Ir  to have an algebraic upper tail of the type P[Ir > i]∝ i−q*, with 240 

q* in equation (7). It follows from classical extreme value theory that, as N → ∞ , INyr,r  is 241 

attracted to EV2(1/q*), an EV2 distribution with shape parameter k* = 1/q *. It also follows that 242 

the excess above thresholds on the order of the N-year maximum is attracted to GP(1/q*), a 243 

generalized Pareto distribution with the same shape parameter k*.  244 

 The case ( r → ∞ , N = crα ) is more interesting and produces new results. Our first step is 245 

to investigate the asymptotic behavior of the distribution of Ir  for intensities in the range of the 246 

crα -year maximum. By this we mean the range between the ε- and (1-ε)-quantiles of Icrα yr,r , 247 
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where ε is a positive number arbitrarily close to 0. We denote these quantiles by imax,ε  and 248 

imax,1−ε , respectively. To examine the distribution of Ir  within this range in the small-scale 249 

limit, we need the exceedance probabilities P[Ir > imax,ε ] and P[Ir > imax,1−ε ] as r → ∞ . Under 250 

the assumption that rainfall intensities in non-overlapping (D/r)-intervals are independent (as 251 

indicated above, this assumption produces accurate approximations of the maximum 252 

distribution), these probabilities are given by  253 

 
Pε = P[Ir > imax,ε ] =1−ε1/n

P1−ε = P[Ir > imax,1−ε ] =1− (1−ε)1/n
 (8) 254 

where n = cr1+α /D, with D expressed in years, is the number of (D/r)-intervals in crα  years. 255 

Considering that ε is very small, P1−ε ≈ ε /n . One can further show that, for any given ε, 256 

Pε =1−ε1/n →
ln(1/ε)

n
 as n → ∞. Therefore, for any given ε > 0, as ( r → ∞ , N = crα ) the range 257 

[ imax,ε , imax,1−ε ] corresponds to intensities i with exceedance probabilities 258 

P[Ir > i] = η /n = ηD /(cr1+α ) , where ε < η < ln(1/ε) is positive and finite. 259 

 Appendix A uses equation (7) and the above results to show that, in the ( r → ∞ , N = crα ) 260 

limit and for ε < η < ln(1/ε), the intensity i that is exceeded by Ir  with probability 261 

ηD /(cr1+α )varies with r, η and α as  262 

          i ~ 
rγ1+α η−1/q1+α , αmin < α < α *

rγ *+(α−α*) /q*η−1/q*, α ≥ α *

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (9) 263 

where γ1+α  satisfies C(γ1+α ) =1+ α , q1+α  is such that the slope ′ K (q1+α ) = γ1+α , q* and γ* are 264 

the same as in equation (7), γ* = ′ K (q*) , α* = C(γ*) −1 = q * (γ * −1), and αmin = −K(0) −1. 265 



 13

Some of these quantities are illustrated in Figure 1. Note that the results in equation (9) do not 266 

depend on the outer scale of multifractal behavior D or the constant c. 267 

 What is important for our analysis is that i in equation (9) varies with η like η−kα  with 268 

 kα =
1/q1+α , αmin < α < α *
1/q*, α ≥ α *

⎧ 
⎨ 
⎩ 

    (10) 269 

From this power-law behavior of Ir  in the range of the crα -year maximum we conclude that the 270 

maximum itself must be attracted to an EV2( kα ) distribution with kα  in equation (10). It also 271 

follows that, in the range of thresholds and intensities that satisfy [ imax,ε < u, Ir,u + u < imax,1−ε ], 272 

the excess Ir,u  is attracted to a GP( kα ) distribution (generalized Pareto, with the same shape 273 

parameter kα ). Note that k* = 1/q *, the value of kα  for α ≥ α *, coincides with the shape 274 

parameter of the asymptotic GEV distribution from EV/EE theory. 275 

 For example, in the case of beta-LN processes, the parameters in equation (9) are  276 

 

γ1+α = Cβ − CLN + 2 CLN (1+ α − Cβ ), q1+α = (1+ α − Cβ ) /CLN

γ* = 2 − Cβ − CLN , q* = (1− Cβ ) /CLN

αmin = Cβ −1, α* = (1− Cβ )(q*−1)

 (11) 277 

and the shape parameter kα  in equation (10) is 278 
 279 

 kα =
CLN /(1+ α − Cβ ), Cβ −1< α < α *

CLN /(1− Cβ ), α ≥ α *

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (12) 280 

The value α = 0 is of special interest, as in this case the maximum is over a constant number of 281 

years N (including N = 1 for the annual rainfall maxima).  For α = 0, equation (12) gives 282 

k0 = CLN /(1− Cβ ) = k * , where k * is the value of k for α ≥ α * (as well as the value of k 283 

from EV theory). 284 
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 Figure 2 shows how kα  in equation (12) varies with α for beta-LN processes. The 285 

expressions in the figure are generic for any scaling parameters Cβ  and CLN  , but the plot is for 286 

Cβ = 0.4  and CLN = 0.05 , which are realistic values for rainfall. As one can see, for all α < α * 287 

the parameter kα  exceeds the value k * from EV theory and diverges as α → αmin = Cβ −1. For 288 

α = 0, the constraint Cβ + CLN <1 implies k0 <1. For the specific values of Cβ  and CLN  used 289 

in the figure, k* = 0.083 and k0 = 0.289. Hence EV theory severely under-predicts the shape 290 

parameter k of the annual maximum in the small-scale limit. This under-prediction results in 291 

unconservative intensity-duration-frequency (IDF) values for long return periods. 292 

 The main conceptual results of this section are illustrated in Figure 3. The coordinate axes 293 

are the resolution r = D/d and the number of independent Ir  variables over which the maximum 294 

is taken. For the N-year maximum, this number is n(r) = Nr /D, where D is in years. The scale is 295 

logarithmic in both variables. Extreme value (EV) analysis gives that, for any given r, as N → ∞ 296 

the distribution of the maximum converges to an EV2(k*), where k* =1/q *. The frequent use of 297 

this result for the annual maximum (N = 1) is based on the implicit assumption that a relatively 298 

low block size n0 (see dashed horizontal line in Figure 3) is sufficient for convergence of the 299 

maximum to EV2(k*). If this is not true for low r because n(r) = r /D is too small, the 300 

distribution of the maximum should be EV2(k*) at higher resolutions for which r/D >> n0. 301 

Figure 3 shows that (a) when r is relatively small, reasonable convergence of the maximum to 302 

EV2(k*) requires block sizes n(r)  that are 103 −104  times the annual block size r /D; hence, 303 

unless N ≈ (103-104) years, the N-year maximum cannot be assumed to have EV2(k*) 304 

distribution, and (b) the threshold n0 is not constant, but increases with increasing r as n0 ~ 305 

r1+α*, with α* ≈ 7; the latter value of α is obtained from equation (12), using realistic values of 306 
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Cβ  and CLN  from Figure 6.b; see Section 4 below. Since 1+ α* >>1, as r increases the 307 

threshold on n(r) above which EV theory applies moves farther away from the available block 308 

size r/D. This makes the EV results even less relevant at high resolutions. Based on these results, 309 

we conclude that, under multifractality, EV theory (and for the same reasons EE theory) does not 310 

apply to annual rainfall extremes. 311 

 For a number of years N = crα , the block size is n(r) = cr1+α /D, where D is in years. 312 

Therefore, as r increases, one moves in Figure 3 along straight lines with slope (1+ α). For 313 

α > α *, one eventually enters the region where EV theory holds and, as r → ∞ , the maximum 314 

becomes EV2(k*); see equation (10). It follows from the same equation that, for α < α * and as 315 

r → ∞ , the crα -year maximum is attracted to an EV2( kα ) distribution with kα  in equation (12). 316 

 Summarizing, in the context of multifractal models, large deviation (LD) theory extends 317 

the results on rainfall extremes beyond the classical context of extreme value (EV) and extreme 318 

excess (EE) theories. Specifically, the latter theories deal with the maximum of Ir  at fixed 319 

resolution r over an infinitely long period of time, whereas LD theory produces results for 320 

r → ∞  and periods of time that are either constant or diverge as power laws of r. 321 

4. Pre-Asymptotic Distribution of the Annual Maximum and GEV Approximations 322 

In practice, one is interested in the annual maximum rainfall Iyr,r  over a finite range of 323 

resolutions. The associated points (r, r/D) in Figure 3 are typically far from the regions where the 324 

EV, EE and LD theories apply. For these (r, r/D)-combinations the distribution of Iyr,r  is not 325 

GEV, but over a finite range of exceedance probabilities P or equivalently of return periods T = 326 

1/P, it may be accurately approximated by a GEV distribution. Indeed, one often finds that 327 

GEV(k) distributions fit well annual maximum data, with k being an increasing function of r. If 328 
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one could relate the best-fitting k to the resolution r and the multifractal parameters Cβ  and 329 

CLN , then one could develop a new estimator of k based on scaling theory: i.e. based on the 330 

estimates of the multifractal parameters Cβ  and CLN  from empirical records. This would be a 331 

valuable finding, since k is notoriously difficult to infer directly from annual maxima; see e.g. 332 

Mohymont et al. (2004) and Koutsoyiannis (2004). Moreover, linking k(r) to Cβ  and CLN  333 

would shed light on what rainfall-climate factors control the shape of the annual maximum 334 

distribution. 335 

 First we investigate whether, over a range of return periods T, the theoretical distribution of 336 

Iyr,r  from the multifractal model in Section 2 is approximately GEV. For this purpose, we 337 

calculate the exact distribution of Iyr,r  for various ( Cβ ,CLN )-combinations and different 338 

resolutions r using the method of Langousis et al. (2007) assuming independence of rainfall in 339 

different D intervals within a year. Then we plot this exact distribution on GEV(k) paper, varying 340 

k until the resulting plot in a given range of T is closest to a straight line in a least-squares sense. 341 

As an example, the top row of Figure 4 shows these best linear fits for a beta-lognormal cascade 342 

with parameters (Cβ = 0.4, CLN = 0.05, D = 15 days) and gives the associated values of k for r 343 

= 1 and 512 in the return-period range 2 < T < 10 000 years. For comparison, the lower rows in 344 

Figure 4 show similar plots on GEV(k) paper for k = 0 (EV1 distribution), k* = 1/q* = 0.083 345 

(EV2 distribution predicted by EV and EE theories), and k0 = 1/q1 = 0.289 (EV2 distribution 346 

from LD theory under r → ∞). It is clear that when k is optimized (top row), GEV(k) 347 

distributions provide accurate approximations to the exact distribution, whereas fixing k to 0, 348 

1/q* or 1/q1 generally produces poor fits. We have repeated the analysis using different ranges of 349 

return periods, a denser set of resolutions r and different multifractal parameters. In all cases the 350 

quality of the best fit is comparable to that in the top row of Figure 4. As one may expect from 351 
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the top-row panels of Figure 4, the least-squares k is insensitive to the range of return periods 352 

used in the least-squares fit. For example, k is almost the same when best fitting a GEV(k) 353 

distribution in the ranges from 2 to 100, 2 to 1000, or 2 to 10 000 years. 354 

 For the same multifractal process as in Figure 4, Figure 5.a shows plots of the best-fitting k 355 

(in the 2 < T < 100 years range) against r. The vertical bars are (m ± σ )  intervals for the 356 

probability weighted moments (PWM) estimator of k applied to 60 series of 100 annual 357 

maximum values, each extracted from a 100-year continuous multifractal process simulation; on 358 

the PWM method of parameter estimation, see e.g. Hosking (1990, 1992), Koutsoyiannis (2004) 359 

and Trefry et al. (2005). For reference, the values k* = 1/q* and k0 = 1/q1 are shown as dashed 360 

horizontal lines. As r → ∞ , k approaches 1/q1, but over the range of resolutions considered, k 361 

remains far from this limit. The mean of the estimator follows closely the least-squares k line, 362 

except for a slight negative bias at low resolutions. As one can see, even with 100 years of data 363 

the PWM estimator has high variability. Figure 5.b compares the least-squares k from Figure 5.a 364 

with values of k from the literature. These values were obtained from annual maximum rainfall 365 

records of different lengths using the probability weighted moment (PWM) method. The 366 

empirical values have a wide scatter, which is broadly consistent with the sampling variability in 367 

Figure 5.a. The theoretical best-fitting k values (for Cβ = 0.4 , CLN = 0.05 and D = 15 days) are 368 

generally higher, but have a dependence on r similar to the empirical values. Larger values of k 369 

correspond to a thicker upper tail and, hence, higher upper quantiles of the annual maximum 370 

distribution. Possible reasons for the theoretical values being higher are negative bias of the 371 

empirical estimators and deviations of actual rainfall from the multifractal model used to produce 372 

the theoretical estimates. The latter include variations in the multifractal parameters (Cβ , CLN , 373 

D) and deviations from strict scale invariance; see e.g.  Menabde et al. (1997), Schmitt et al. 374 
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(1998), Olsson (1998), Güntner et al. (2001), Veneziano et al. (2006b) and Veneziano and 375 

Langousis (2009). These sources of discrepancy will be the subject of future investigations. It is 376 

remarkable (but possibly coincidental) that the only empirical results based on a very extensive 377 

data set [169 daily records, each having 100-154 years of data (Koutsoyiannis, 2004); see “K” 378 

point in Figure 5.b] are almost identical to the theoretical values.  379 

 Figure 6.a compares the variation of the least-squares k value with r for selected 380 

combinations of Cβ  and CLN . Generally, k increases as either parameter increases. However, if 381 

one considers the relative small spatial variation of these parameters (see Figure 6.b where Cβ  382 

and CLN  estimates from different rainfall records are plotted against the local mean annual 383 

precipitation I yr), the sensitivity of k in Figure 6.a is modest. As Figure 6.b shows, CLN  may be 384 

considered constant around 0.053, whereas Cβ  has a linear decreasing trend with I yr . The 385 

default k curve in Figure 6.c has been obtained by using the ( Cβ , CLN ) combinations in Figure 386 

6.b and ensemble averaging the results. The dashed lines in the same figure are bounds 387 

considering the variability of Cβ  in Figure 6.b. If one uses higher values of Cβ  in more arid 388 

climates, as suggested by Figure 6.b, k would be slightly higher. 389 

 The solid line in Figure 6.c is close to the following analytical expression: 390 

 k = 2.44 [log10(r) +0.557]0.035 -2.362 (13) 391 

whereas the dashed lines deviate by approximately ±0.03-0.05 (depending on the resolution 392 

r = D/d) from the default k values in equation (13). 393 

5. Conclusions 394 

A long tradition links the modeling and analysis of rainfall extremes to Fisher-Tippett’s extreme-395 

value (EV) and Pickands’ extreme-excess (EE) theories. This includes methods that use annual-396 
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maximum and peak-over-threshold rainfall information. However, for realistic rainfall models, 397 

neither theory applies. The basic reason is that the annual maxima depend on a range of the 398 

marginal distribution much below its upper tail. This realization has profound consequences on 399 

the distribution of the annual maxima and on methods for its estimation.  400 

 To prove these points and obtain new results on rainfall extremes, we have used stationary 401 

rainfall models with multifractal scale invariance below some temporal scale D. This scale may 402 

be seen as the time between consecutive synoptic systems capable of generating rainfall; see 403 

Langousis and Veneziano (2007). Stationary multifractal models are non-negative random 404 

processes in which the fluctuations at different scales combine in a multiplicative way and for 405 

equal log-scale increments have statistically identical amplitude. These models have received 406 

significant attention in the precipitation literature, including rainfall extremes. For multifractal 407 

models, one can use a branch of asymptotic probability theory known as large deviations (LD) to 408 

extend the limiting results from EV and EE theories. Specifically we have found that, as the 409 

averaging duration d → 0 or equivalently the resolution r = D /d → ∞ , the distribution of the 410 

annual maximum Iyr,r  is GEV with shape parameter k in the EV2 range. Under the same 411 

asymptotic conditions, the excess of the marginal rainfall intensity Ir  above thresholds u on the 412 

order of the annual maximum Iyr,r  has generalized Pareto (GP) distribution with the same shape 413 

parameter k. The value of k is much higher than that produced by EV and EE theories and can be 414 

found theoretically from the scaling properties of the rainfall process. These asymptotic results 415 

hold also for the distribution of the N-year maximum INyr,r  for any finite N and the excesses of 416 

Ir  above thresholds on the order of INyr,r . 417 

 With added generality, LD theory gives the asymptotic distribution of I
crα yr,r

, the (crα ) -418 

year maximum, for any c > 0 and α ≥ αmin where αmin < 0 is a certain lower bound. As r → ∞ , 419 
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the distribution of I
crα yr,r

 is again EV2, with shape parameter kα  that: 1) is always higher or 420 

equal to the value k = k* predicted by EV and EE theories, 2) depends only on α and 3) can 421 

again be found from the scaling properties of the rainfall process. The excess of Ir  above 422 

thresholds on the order of the (crα ) -year maximum has GP( kα ) distribution with the same value 423 

of kα . The value k = k* from classical EV and EE analysis is recovered for α  larger than a 424 

critical value α *. Therefore, in the context of multifractal models, our analysis generalizes the 425 

results of classical EV and EE theories. Note that using k* instead of kα would result in 426 

underestimation of the probability of extreme rainfalls.  427 

 At the root of the differences between our results and those of classical EV theory is that 428 

the settings under which the results are obtained are different: In EV analysis one fixes the 429 

resolution r and considers the distribution of the maximum of n independent copies of Ir  as 430 

n → ∞. The asymptotic EV results are commonly assumed to apply to the annual maxima, at 431 

least at high resolutions r. By contrast, in the LD analysis one lets r → ∞  while setting n to the 432 

number of resolution-r intervals in one year. In the latter formulation, n varies with r in a way 433 

that makes sense for the study of the annual maxima at small scales.  434 

 Other important results we have obtained concern the distribution of the annual maximum 435 

Iyr,r  for finite r. In this case the distribution is not GEV, but over a range of quantiles of 436 

practical interest can be accurately approximated by a GEV(k) distribution. We have found that 437 

the best-fitting shape parameter k increases with increasing resolution r, in a way consistent with 438 

findings from directly fitting GEV distributions to annual maximum data; see Section 4. The 439 

best-fitting k generally remains within the EV2 range, but at large scales it is close to zero (EV1 440 

fit). This finding is important, as it explains why an EV2 distribution often fits well the annual 441 

maximum data and why the shape parameter depends on the resolution (in contrast with the 442 
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asymptotic EV prediction that k is constant with r). The best-fitting k depends little on the range 443 

of quantiles used in the fit and is not very sensitive to the scaling parameters, within the range of 444 

values that are typical for rainfall (except that k tends to be somewhat higher in dry than in wet 445 

climates). Taking advantage of this lack of sensitivity, we have obtained default values of k as a 446 

function of r, which can be used at non-instrumented sites or in cases of very short rainfall 447 

records.  448 

 The above results are significant in several respects. The asymptotic findings (1) show that 449 

large-deviation theory should find a place in stochastic hydrology at least as prominent as EV 450 

and EE theories and (2) indicate that what matters for the annual maximum rainfall is usually not 451 

the upper tail of the parent distribution, but a range of that distribution closer to the body. In 452 

addition, the pre-asymptotic analysis (1) shows that GEV models accurately approximate the 453 

non-GEV distribution of the annual maximum, (2) indicates that the shape parameter k of the 454 

approximating GEV distribution varies with resolution r, and (3) produces new ways to estimate 455 

k, from the scaling properties of rainfall. 456 

 This line of inquiry should continue. There is evidence that rainfall satisfies multifractal 457 

scale-invariance only in approximation, over a finite range of scales (typically between about 1 458 

hour and several days) and under certain conditions (for example only within rainstorms); see 459 

e.g. Schmitt et al., (1998), Sivakumar et al. (2001), Veneziano et al. (2006b) and Veneziano and 460 

Langousis (2009). It would be interesting to examine the sensitivity of our results to the structure 461 

of the rainfall model. Specific alternatives to our multifractal representation are bounded 462 

cascades (see e.g Menabde et al., 1997 and Menabde, 1998), which retain the multiplicative 463 

structure but allow the intensity of the fluctuations to vary with scale, and models that explicitly 464 



 22

recognize rainstorms and dry inter-storm periods and assume scale invariance (or bounded-465 

cascade behavior) within the storms (e.g. Langousis and Veneziano, 2007). 466 

 A notoriously difficult problem is to estimate the shape parameter k of the annual 467 

maximum distribution from at-site information (see e.g. Koutsoyiannis, 2004). This is why one 468 

often resorts to regionalization. The finding that k is determined not by the upper tail of Ir  but by 469 

regions of the distribution closer to the body and can be calculated from the scaling properties of 470 

rainfall opens new possibilities for both at-site and regionalized estimation of this parameter. 471 

Developments in this direction will be the subject of follow-up communications. 472 

Appendix A: Small-Scale Behavior of Certain Quantiles of Ir  473 

Let i be the value exceeded by Ir  with probability ηD /(cr1+α ), where c and D are given positive 474 

constants. We are interested in how, as the resolution r → ∞ , i varies with r and 0 < η < ∞, for 475 

different α. For this purpose, we write i as rγ  and use equation (7) to find γ such that P[Ir > rγ ] 476 

= ηD /(cr1+α ). 477 

 Suppose first that γ ≤ γ *, where γ * is the slope of K(q) at q* (as we shall see, γ  does not 478 

exceed γ * if α does not exceed a related threshold α *). Then equation (7) gives 479 

 P[Ir > rγ ] ~ r−C (γ )  (A.1) 480 

We want γ such that the right hand side of equation (A.1) equals ηD /(cr1+α ). Therefore γ must 481 

satisfy  482 

   C(γ) = (1+ α) + logr ( c
ηD

)    (A.2) 483 
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For any finite c, b and D, logr[c /(ηD)] → 0  as r → ∞ . Hence one may replace C(γ)  in equation 484 

(A.2) with its linear Taylor expansion around the value γ1+α  such that C(γ1+α ) = 1+ α . Using 485 

equation (5), this gives  486 

 C(γ) = (1+ α) + q1+α (γ − γ1+α ) (A.3) 487 

where q1+α  is the moment order at which the slope of K(q) in equation (4) equals γ1+α  and is 488 

also the derivative of C(γ)  at γ1+α ; see Figure 1. Equating the right hand sides of equations 489 

(A.2) and (A.3), one obtains  490 

 γ = γ1+α +
1

q1+α
logr ( c

ηD
)  (A.4) 491 

We conclude that, for large r and any given c and D, i = rγ  satisfies 492 

 i  ~ rγ1+α η−1/q1+α  (A.5) 493 

Equation (A.5) holds for γ1+α ≤ γ *, or equivalently for α ≤ α *, where 494 

α* = C(γ*) −1 = q * (γ * −1).  495 

 For α > α *, γ  exceeds γ * and one must use the second expression in equation (7). 496 

Therefore γ must satisfy  497 

                 C(γ*) + q*(γ − γ*) = (1+ α) + logr ( c
ηD

)    (A.6) 498 

Solving for γ and using C(γ*) =1+ α * gives the following expression for i = rγ : 499 

 i ~ rγ *+(α−α*)/q*η−1/q*  (A.7) 500 

The results in equations (A.5) and (A.7) are reproduced in equation (9). 501 
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Figure Captions 625 

Figure 1: Illustration of the moment scaling function K(q) and its Legendre transform C(γ)  in 626 

equation (6). 627 

Figure 2: Shape parameter kα  of the N-year maximum of Ir  under ( r → ∞ , N = crα ). Beta-628 

lognormal rainfall process with Cβ  = 0.4 and CLN  = 0.05. Larger values of k 629 

correspond to higher probabilities of exceedance of extreme rainfalls.  630 

Figure 3: Schematic illustration of asymptotic results on rainfall maxima from extreme value 631 

(EV) and large deviation (LD) theories.  632 

Figure 4: GEV(k) approximations to the exact distribution of the annual maximum Iyr,r  at 633 

resolutions r = 1 and 512, in the return-period range from 2-10 000 years. The top row 634 

shows the best least-squares fit on GEV(k) paper and gives the associated value of k. 635 

The lower rows show plots on GEV(k) paper for k = 0 (EV1 paper), k* = 1/q* (value 636 

predicted by EV and EE theories), and k0 = 1/q1 (value predicted by LD theory for 637 

r → ∞). Deviations of the plots from a straight line indicate lack of fit for the selected 638 

value of k.  639 

Figure 5: Dependence of the least-squares shape parameter k on the resolution r = D/d. (a) 640 

Theoretical values of k for Cβ  = 0.4 and CLN  = 0.05 when fitting is over the return 641 

period range from 2-100 years. The vertical bars are (m ± σ )  intervals for the 642 
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100-year continuous multifractal process simulations. The values k* =1/q* and 644 

k0 = 1/q1 are shown for reference. (b) Comparison of the theoretical values of k from 645 
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Figure 6. (a) Best-fitting shape parameters k at different resolutions r for selected combinations 648 

of Cβ  and CLN . The range of return periods T used for fitting is from 2 - 100 years. 649 

(b) Estimates of Cβ  and CLN  from different rainfall records plotted against the mean 650 

annual precipitation. (c) Suggested default values of k as a function of the resolution r 651 
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Figure 1: Illustration of the moment scaling function K(q) and its Legendre transform C(γ)  in 690 
equation (6). 691 
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Figure 2: Shape parameter kα  of the N-year maximum of Ir  under ( r → ∞ , N = crα ). Beta-709 
lognormal rainfall process with Cβ  = 0.4 and CLN  = 0.05. Larger values of k correspond to 710 
higher probabilities of exceedance of extreme rainfalls. 711 
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Figure 4: GEV(k) approximations to the exact distribution of the annual maximum Iyr,r  at 779 
resolutions r = 1 and 512, in the return-period range from 2-10 000 years. The top row shows the 780 
best least-squares fit on GEV(k) paper and gives the associated value of k. The lower rows show 781 
plots on GEV(k) paper for k = 0 (EV1 paper), k* = 1/q* (value predicted by EV and EE theories), 782 
and k0 = 1/q1 (value predicted by LD theory for r → ∞). Deviations of the plots from a straight 783 
line indicate lack of fit for the selected value of k. 784 
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Figure 5: Dependence of the least-squares shape parameter k on the resolution r = D/d. (a) 816 
Theoretical values of k for Cβ  = 0.4 and CLN  = 0.05 when fitting is over the return period range 817 
from 2-100 years. The vertical bars are (m ± σ )  intervals for the probability weighted moments 818 
(PWM) estimator of k using the annual maxima from 100-year continuous multifractal process 819 
simulations. The values k* =1/q* and k0 = 1/q1 are shown for reference. (b) Comparison of the 820 
theoretical values of k from (a) with empirical estimates from the literature assuming an average 821 
value of D = 15 days. 822 
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Figure 6. (a) Best-fitting shape parameters k at different resolutions r for selected combinations 864 
of Cβ  and CLN . The range of return periods T used for fitting is from 2 - 100 years. (b) 865 
Estimates of Cβ  and CLN  from different rainfall records plotted against the mean annual 866 
precipitation. (c) Suggested default values of k as a function of the resolution r = D/d. 867 
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