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The maximum of Multifractal Cascades: Exact Distribution and Approximations
Daniele Veneziano and Andreas Langousis 
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Objective

Find the exact distribution of the maximum of a multifractal 

cascade and develop simple and accurate approximations.

1. Bare cascade construction and dressing

Start at level 0 with a single d-dimensional cubic tile S and a 

unit measure with uniform bare density in S . 

At each subsequent level n = 1, 2, …, each tile at the 

previous level n - 1 is partitioned into m = µ d cubic tiles Si 
(i=1,…, m) where µ is an integer larger than 1; see Figure 1. 

The bare density in Si is obtained as the product of the bare 

density in the parent tile at level n-1 and an independent 

copy Yi of a non-negative, unit-mean random variable Y, 

called the cascade generator.

We call m the volumetric multiplicity of the cascade and r = 

mn the volumetric resolution when the cascade has reached 

level n.

Figure 1: Illustration of a 2D binary cascade construction for m = 4

Dressing

εb,n = bare measure density in a cascade tile at level n.

εd,n = dressed measure density in a cascade tile at level n.

Z = dressing factor (Z has the same distribution as εd,0).

q* = order above which the moments E[Zq] and E[(εd,n)q] 

diverge..



 εb,n =

d

 ∏
i = 1

n

 Yi

εd,n =
d

 εb,n Z

 

The bare and dressed densities satisfy:

2. Exact distribution of cascade maxima

Let Mn = max
i=1,…,mn
            (εd,ni) be the maximum dressed measure density in 

Flog M0
 = Flog Z                     , n = 0

 F
log Mn

 = (F
log Mn-1

* f
log Y

)m , n = 1, 2, …
 

Let Mn 

Where FX and fX denote the CDF and PDF of a random 

variable X. Notice that calculation of both FlogZ  in the first 

step and Flog     at each subsequent step requires numerical 

convolution.
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Hence need for approximations.

3. Effect of the multiplicity m

(venezian@mit.edu)               (andlag@mit.edu) 

For a given bare moment scaling function K(q) = logm[Yq], does 

the maximum at resolution r, Mr, depend on the volumetric 

multiplicity m? If it does not, then:

Discrete cascade extremes approximate well the extremes of 

continuous processes with the same K(q);

The dimensionality d of the support does not matter.

Figure 2: Ratio Mr,T,m=4/Mr,T,m=2 for a log normal cascade with 

Cln=0.1.

the correlation of the measure density between tiles at given 

distance decreases, producing higher values of Mr,T|m.

However this is a small effect.

the distribution of the dressing factor Z tightens around 1, 

causing Mr,T|m to decrease. This is a larger effect, especially 

for small r and large T.

4. Approximations to Mn

We explore various approximations to Mn, in which the 

distribution of Z is simplified and the dependence among the 

measure densities in different cascade tiles is ignored or treated 

in approximation. An important consequence of these 

approximations is that convolution operations are avoided. 

Below we consider, in sequence, the effect of the following 

simplifications:

4.1 Effect of tile dependence 

For a lognormal cascade with m = 2 and co-dimension 

parameter Cln= 0.1, Figure 3 compares the distributions of Mn=10

and Mn=20 with the same distributions under independence. The 

distribution under independence is found from:

Flog Mn,ind
 = (Flog Z* flog Y1+…+log Yn

)mn

 

Body of the 

distribution

Lower tail

Upper tail

Indistinguishable 

difference

Mn

Mn,ind

r = 220r = 210
Effects:

Dependence among the cascade tiles affects the body and 

lower tail of the distribution of Mn but not the upper tail.

Having found that dependence among the cascade tiles has a 

significant effect on Mn, we investigate whether such effect 

comes mainly from short-range or long-range dependence. 

Figure 4 compares the distribution of Mn=20 for the cascade in 

Figure 3 when long-range or short-range dependence is 

progressively neglected. We conclude that most of the effect 

comes from long-range dependence.

Figure 4: Change in the distribution of Mn=20 when long-range or short-

range dependence is progressively excluded.

4.2 Approximation of Z

While possible, numerical calculation of the distribution of Z is 

tedious (Veneziano and Furcolo, 2003). Here we approximate Z 

with the bare density εb,    where the resolution rZ is chosen to 

match some characteristic of Z. For example, if Z has finite 

second moment, then one may choose rZ so that

rZ = 






m - 1

m - mK(2)

1/K(2)
 

Figure 5: Lognormal cascade with Cln=0.1. Comparison of the exact 

distribution of Mn with the distribution obtained by replacing Z with  εb,

Figure 5 compares the upper tail of the exact distribution of Mn 

with the distribution obtained with εb,    in place of Z. The 

distributions are very similar exept for the combination of very 

low n and and very high quantiles.

T: return period expressed in cascade realizations

Cln: lognormal co-dimension coefficient 

Mn,T ≈ γ(n, T) Mn,ind,T 

where γ(n,T) is a numerically evaluated correction factor. For 

the case of beta-log normal cascades we have found that  

γ(n,T) depends minimally on the beta component. 
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5. Conclusions 

While possible, numerical calculation of the exact 

distribution of the cascade maxima Mn is tedious; 

The cascade multiplicity m has a mild effect on the 

distribution of Mn at given volumetric resolution r = mn. 

Therefore, the distribution of the maximum at resolution r 

depends little on the dimension d of the support;

Dependence among the cascade tiles has an important effect 

on the body and lower tail of the distribution of Mn;

For beta-log normal cascades, a simple and accurate 

approximation to Mn is obtained by combining Eqs. (3), (4) 

and (5) as follows:  

We have also found that γ(n,T) depends analytically on the 

lognormal co-dimension parameter Cln as:

γCln1
(n, T) ≈ ( )γCln2

(n, T)
Cln1

/Cln2 

This is a special case of the dependence of γ(n, T) on the C

parameter of log-stable cascades; see Veneziano and 

Langousis (2005). Insensitivity to the beta component and the 

above dependence on Cln make Figure 6 sufficient to 

determine γ for all  beta-lognormal cascades. 
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Let                      be the maximum in S of the dressed 

measure density at resolution r = mn. Its exact distribution F  

can be found through the following recursive procedure.

Let Mn 

To answer this question, let Mr,T,m be the upper (1/T)-quantile of 

Mr for a cascade with multiplicity m. For a specific lognormal 

cascade, Figure 2 shows the ratio Mr,T,m=4/Mr,T,m=2 against r for 

different T.

From Figure 2 and similar results for other beta-lognormal 

cascades one concludes that, as m increases:

Assume tile independence. As a part of this analysis, we study  

the separate effect of short-range and long-range dependences.

Approximate Z through a random variable with the distribution 

type of the bare density εb.

Approximate Z and include tile dependence through a 

simplified correction factor on the quantiles of Mn. 

Figure 3: The effect of dependence among cascade tiles on the 

distribution of Mn.

(large difference)

(~ identical)

(rZ

E[(εb,  )2] = rZ K(2)(rZ

equals E[Z
2
] = 

m - 1

m - mK(2)

 

1. Calculate the parameter rZ in the approximation of Z;

2. Calculate the distribution of Mn,ind, the maximum for 

independent cascade tiles;   

3. Multiply the upper (1/T)-quantile of Mn,ind by γ(n,T).
5et effect: Mr,T|m decreases with increasing m. 

Exclusion of long-

range dependence 

from level 0 to n0Long-range 

dependence has the 

dominant effect.

exact Mn

 Mn,ind

 Mn,ind

exact Mn

(rZ

, giving: 

To approximate the effect of dependence we express the upper 

(1/T)-quantile of Mn, Mn,T , as:

Insignificant 

effect of Cβ 

on γ(n,Τ)

4.3 Proposed approximation for Mn

Z can be accurately approximated by εb,     , but tile dependence 

should not be ignored. 
(rZ

Figure 6: γ(n, T) as a function of T and n. Lognormal and beta-

lognormal cascades with parameters Cln = 0.1 and Cβ = 0, 0.2.
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