An attempt for stochastic forecasting of rainfall
(using weather types and the scaling model)

Presentation at the 4th meeting of the AFORISM project
By N. Mamassis and D. Koutsoyiannis

Division of Water Resources, Hydraulic & Maritime Engineering
National Technical University of Athens

Parts of the presentation

1. Data presentation
2. Classification and analysis of intense rainfall events by weather type
3. Fitting of the scaling model to historical data
4. Application of the model for conditional simulation of future rainfall depths
5. Concluding remarks - Future study
Data presentation

Station
Rain recording station at Krikello, Evinos River Basin (at the border)
20 years of continuous operation (with few gaps)

Selection of intense rainfall events
Daily depth ≥ 25 mm or Hourly depth ≥ 7 mm

Data set
Total number of events: 293
At rainy season (Oct-Apr): 200
At dry season (May-Sep): 93

Classification and analysis of intense rainfall events by weather type

Definition and classification of weather types in Greece (by Maheras)
Classification by weather type (continued)

Analysis tools
1. Weather maps at surface and 500 mb level, produced by
 b) German Meteorological Service (1980-1990)
2. P. Maheras: Personal diary of weather types of Greece in daily basis since 1950 (1992)

Unidentified meteorological characteristics (to be studied in future)
1. Action of fronts (warm or cold)
2. Local meteorological data

Classification by weather type (continued)

Comparison of rainfall characteristics of the two seasons

Conclusion: Statistically significant differences between two seasons
Classification by weather type (continued)

Comparison of rainfall characteristics of each weather type for rainy season

Conclusion: Few significant differences (SW2, NW2) but essentially unimportant.

Classification by weather type (continued)

Comparison of rainfall characteristics of each weather type for dry season

Conclusion: Statistically significant differences. The differences in duration and a scaling assumption can explain the differences in the other characteristics.
Fitting of the scaling model

General structure

\[\{ \xi(t, D) \} \overset{d}{=} \{ \lambda^{H} \xi(\lambda t, \lambda D) \} \]

where \(\xi \): instantaneous rainfall intensity
D: duration of the event
t: time (0 \leq t \leq D)
H: scaling exponent

\[E[\xi(t, D)] = c_1 D^H \]
\[\text{Cov}[\xi(t, D) \xi(t + \tau, D)] = (\varphi(\tau \mid D) - c_2^2) D^{2H} \]
\[\varphi(y) = \frac{1}{2} (c_2 + c_1^2) (1 - \beta)(2 - \beta) y^{-\beta} \]

An attempt for stochastic forecasting of rainfall

Fitting of the scaling model (continued)

Statistics of incremental and total depths

\[E[X_i] = c_1 \delta D^{H+1} \]
\[\text{Var}[X_i] = \left[(c_2 + c_1^2) \delta^{-\beta} - c_1^2 \right] \delta^2 D^{2(H+1)} \]
\[\text{Cov}[X_i, X_j] = \left[(c_2 + c_1^2) \delta^{-\beta} f(|i - j|, \beta) - c_1^2 \right] \delta^2 D^{2(H+1)} \]
\[E[Z] = c_1 \delta D^{H+1} \]
\[\text{Var}[Z] = c_2 \delta^2 D^{2(H+1)} \]

where

\[\delta = \frac{\Delta}{D} \]
\[f(m, \beta) = \frac{1}{2} \left[(m - 1)^{2-\beta} + (m + 1)^{2-\beta} \right] - m^{2-\beta}, \quad m > 0 \]

Parameters

\[c_1: \text{mean value parameter} \quad \text{rainy season: 5.45} \quad \text{dry season: 9.97} \]
\[c_2: \text{variance parameter} \quad \text{rainy season: 7.28} \quad \text{dry season: 18.26} \]
\[\beta: \text{correlation decay parameter} \quad \text{rainy season: 0.27} \quad \text{dry season: 0.51} \]
\[H: \text{scaling exponent} \quad \text{rainy season: -0.332} \quad \text{dry season: -0.604} \]
Fitting of the scaling model (continued)

Rainy period - Total rainfall depth

An attempt for stochastic forecasting of rainfall
Fitting of the scaling model (continued)

Dry period - Total rainfall depth

Fitting of the scaling model (continued)

Dry period - Hourly rainfall depth
Application of the model for conditional simulation of future rainfall depths

Overview of the generating scheme

\[
\begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_k
\end{bmatrix} =
\begin{bmatrix}
\omega_{11} & 0 & \cdots & 0 \\
\omega_{21} & \omega_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{k1} & \omega_{k2} & \cdots & \omega_{kk}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
\vdots \\
V_k
\end{bmatrix}
\]
or \(X = \Omega V\) (\(V_i\) independent, appr. 3-par. gamma)

Parameter estimation

\(\Omega^T = \text{Cov}[X, X] \Rightarrow \Omega\) by decomposition(lower triangular)

\[\omega_{ii} E[V_i] = E[X_i] - \sum_{j=1}^{i-1} \omega_{ij} E[V_j]\]

Var[\(V_i\)] = 1

\[\omega_{ii}^3 \mu_3[V_i] = \mu_3[X_i] - \sum_{j=1}^{i-1} \omega_{ij}^3 \mu_3[V_j]\]

An attempt for stochastic forecasting of rainfall

Application of the model (continued)

Link to the rainfall model

Inputs to the simulation model: \(E[X], \text{Cov}[X, X], \mu_3[X]\)

Link to the past of the simulated hyetograph

At time step \(k\): \(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k\)

Generation steps

1. Generation of total duration \(D\) (from the conditional distribution)
2. Generation of sequential hourly depths \(X_j\) for \(j = k + 1, \ldots, D\).

Examined cases

1. Condition for duration: \(D > k\).
2. An estimation of the total duration is assumed, i.e. \(D \leq D \leq D_f\)
3. Adaptive simulation (one hour forecasting). At each time step it is assumed that the list of known hourly depths is updated. Duration as in case 1.

Simulated hyetographs

1000 simulated hyetographs for each event
Application of the model (continued)

Case 1 ($D > k$)

![Graph showing hourly depth vs time for Case 1](image)

An attempt for stochastic forecasting of rainfall

Application of the model (continued)

Case 2 ($D_l \leq D \leq D_h$, where $|D_{l,h} - D| = 0.1 \ D$)

![Graph showing hourly depth vs time for Case 2](image)

An attempt for stochastic forecasting of rainfall
Concluding remarks - Future study

1. Events of different weather types do not have notable differences in their stochastic structure. Thus, the introduction of weather types does not facilitate the stochastic modelling of rainfall.

2. The main essential difference detected is due to seasonal variability.

3. Future analysis of weather types will include other weather characteristics such as front action and local meteorological data as an attempt to explain a portion of the high variance of the rainfall depths.

4. The scaling rainfall model fits the intense rainfall data in both seasons and thus, can provide a basis for modelling of intense rainfall events.

5. Due to the high coefficient of variation (> 1) and the relatively low autocorrelation function of hourly depths, the stochastic forecasting of the evolution of the rainfall process is impractical. However, an one-hour forecasting by stochastic methods may be feasible.