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In a separate communication (Veneziano et al., “Annual Rainfall Maxima: Large-deviation Alternative to Extreme-
Value and Extreme-Excess Methods,” EGU 2009), we show that, at least for scale-invariant rainfall models, classi-
cal extreme value analysis based on Gumbel’s extreme value (EV) theory and peak-over-threshold (PoT) analysis
based on Pickands’ extreme excess (EE) theory do not apply to annual rainfall maxima (AM). A more appropriate
theoretical setting is provided by large-deviation (LD) theory. This paper delves with some practical implications
of these findings.

All above theories predict that, as the averaging durations d → 0, (1) the annual maximum rainfall intensity in
d, Iyear(d), has generalized extreme value (GEV) distribution, (2) the excess of the average intensity in d, I(d),
above a level u on the order of the annual maximum has generalized Pareto (GP) distribution, and (3) the GEV and
GP distributions have the same shape parameter k. The value of k depends on the theory used. According to EV
and EE theories, k is determined by the upper tail of I(d), whereas LD theory shows that k is determined by less
extreme regions of the distribution of I(d). The LD parameter kLD is always in the EV2 range and is larger than
the value kEV/EE predicted by EV and EE theories.

Since all theories predict that the annual maxima have GEV distribution and the corresponding excesses have GP
distribution, methods that directly fit GEV and GP distributions to the data without reference to its asymptotic
value should not be affected by which theory is correct. However, the theoretical results have other significant
practical implications:

1. Accurate estimation of k from at-site data is difficult. For this reason, k is often estimated regionally. The
estimate of k from LD theory is much more robust than that from EV and EE theories and relies on the
scaling of the moments of rainfall of order 2.5-3.5. This scaling is nearly universal for rainfall, providing a
good “prior” value of k (around 0.3-0.4), which can be used also at un-gauged sites.

2. The shift of focus to regions of the marginal distribution of I(d) below the extreme upper tail, and the
recognition that in practice one needs extreme rainfall estimates over a range of finite durations dfor which
Iyear(d) does not have GEV distribution make non-asymptotic methods more attractive. These methods fit
marginal distributions to the order statistics of I(d) or to PoT values above thresholds not much below the
level of the annual maxima and estimate the distribution of Iyear(d) as

P [Iyear(d) > x] ≈ {P [I(d) > x]}n(d) (1)

P [Iyear(d) > x] ≈ e−λd,uP [IP oT (d;u)>x−u] (2)

where n(d) is a parameter that gives the effective number of independent I(d) variables in one year, λd,u is the
annual rate at which I(d) up-crosses level u, and IPoT (d;u) is the PoT intensity for averaging duration d and
threshold u.

We have implemented procedures based on these non-asymptotic approaches, with the following specific charac-
teristics:



1. The distributions of I(d) (in the upper region) and IPoT (d;u) are taken to have scaled lognormal shape,
with 3 parameters (the mean value m, the variance σ2, and a scaling factor c >0 on the probability density).
This choice of distribution is based on both empirical evidence and asymptotic multifractal results;

2. The unknown parameters {m, σ2, c, n(d)} or {m, σ2, c, λd,u} are estimated simultaneously from marginal
or PoT and AM data (the latter data mainly constrain n(d) and λd,u) using maximum likelihood.

3. The upper region for I(d) is chosen such that the predicted AM distribution from Eq. 1 closely matches the
empirical AM distribution.

Application to several actual and simulated rainfall records shows that this approach is superior in accuracy and
robustness to conventional AM and PoT methods.
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