Scale of water resources development and sustainability: Small is beautiful, large is great

DEMETRIS KOUTSOYIANNIS
Department of Water Resources and Environmental Engineering Faculty of Civil Engineering, National Technical University of Athens, Greece (dk@itia.ntua.gr, itia.ntua.gr/dk/)

Abstract Several aspects of water resources and their links with food and energy supply, as well as with natural hazards, have been obscured due to political aims and ideological influences. At the same time, the involvement of politics and ideology testifies the high importance of water related issues internationally, and reflects the intensifying unresolved problems related to water, food and energy adequacy, and protection from floods and droughts. In an attempt to separate as much as possible the essence of problems from the political and ideological influences, several facts and fallacies about water and interrelated issues are discussed, based on data (numbers) rather than on dominant ideological views. The domain of the discussion is generally the entire globe, but, as a particular case, Greece, whose water resources are only partly developed, is discussed in more detail. From a pragmatic point of view, the water infrastructure in developed countries appears to be irreplaceable, although its management is adaptable toward more environmentally friendly operation. For developing countries, no alternative to large-scale water resources development by engineering means appears plausible. The recent pursuit of renewable energy makes imperative the utilization of the existing, and, where possible, the building of new, large hydropower plants, as only these can provide efficient energy storage, which is necessary for the renewable energy provided by nature in highly varying patterns.

Key words water resources, water needs, scale of development, dams, reservoirs, hydropower, renewable energy, energy storage

Barème des ressources en eau et durabilité: Small is beautiful, grande est grand

Résumé: Plusieurs aspects des ressources d'eau et leur relation avec l'approvisionnement alimentaire et énergétique, ainsi que des risques naturels, ont été occultés en raison des buts politiques et des influences idéologiques. En même temps, l'implication de la politique et l'idéologie témoignent la grande importance des questions liées à l'eau au niveau international, et reflète l'intensification des problèmes non résolus liés à l'eau, la nourriture et l'adéquation de l'énergie et la protection contre les inondations et les sécheresses. Dans une tentative de séparer autant que possible l'essence des problèmes des influences politiques et idéologiques, plusieurs faits et idées fausses sur l'eau ainsi que des sujets connexes sont abordés, sur la base de données (nombres) plutôt que sur les points de vue idéologiques dominants. Le domaine de la discussion est généralement l'ensemble du globe, mais, comme un cas particulier, la Grèce, dont les ressources en eau ne sont que partiellement développées, est discutée plus en détail. D'un point de vue pragmatique, l'infrastructure de l'eau dans les pays développés semble être irremplaçable, bien que sa gestion soit adaptable à un fonctionnement plus écologique. En ce qui concerne les pays en développement, aucun alternatif de développement des ressources d'eau à grande échelle à travers l'ingénierie ne semble plausible. La poursuite de dernières sources d'énergie renouvelables rend indispensable l'utilisation de grandes centrales hydroélectriques déjà existantes et, si possible, la construction de nouvelles, car seulement elles peuvent fournir de stockage d'énergie efficace, ce qui est nécessaire pour l'énergie renouvelable fournie par la nature dans des modèles variables.

Mots clefs: ressources en eau, besoins en eau, à l'échelle du développement, barrages, réservoirs, énergie hydroélectrique, stockage de l'énergie, énergie renouvelable.
INTRODUCTION

Nothing can be green without water – except ‘green’ politics (Vít Klemeš, 2007)

An impressive proof of the importance of water related issues in the international political agenda is provided by a recent report by US and EU Intelligence Agencies (NIC & EUISS, 2010) about the so-called global governance. They state “At the beginning of the century, threats such as ethnic conflicts, infectious diseases, and terrorism as well as a new generation of global challenges including climate change, energy security, food and water scarcity, international migration flows, and new technologies—are increasingly taking center stage”. At least half of these threats are directly related to water. The report provides more detailed data about water and its interrelationship with other issues of global political importance, i.e., “The water situation is a major driver behind food scarcity. Water use is closely intertwined with food production. Today, 40 percent of the world’s food supply comes from land that is irrigated, but most irrigation is highly inefficient in water use. As population and average per capita water use have grown, the amount of fresh water withdrawn globally each year has grown too—from 579 cubic kilometers in 1900 to 3973 cubic kilometers in 2000. Demand is projected to rise further to 5235 cubic kilometers by 2025. Over one billion people live in areas where human use of available water supplies has exceeded sustainable limits; by 2025 this figure will rise to 1.8 billion, with up to two-thirds of the world’s population living in water-stressed conditions, mostly in non-OECD countries. Climate change will compound the scarcity problem in many regions as precipitation patterns change and many populous areas become drier.”

Evidently, politics are closely related to ideologies. Environmentalism, the now dominant ideological current and social movement, focusing on environmental conservation and improvement, and emphasizing a duty to save the planet from diverse threats, has also determined the social views of water related problems and solutions. Most of them are regarded “politically correct”, but sometimes this “correctness” may be a euphemism, if not a synonym for irrationality. A neat criticism of such views has been recently provided by the late Vít Klemeš (2007) “[A] new infectious disease has sprung up—a WATER-BORN SCHIZOPHRENIA: on the one hand, we are daily inundated by the media with reports about water-caused disasters, from destructive droughts to even more destructive floods, and with complaints that ‘not enough is done’ to mitigate them and, on the other hand, attempts to do so by any engineering means—and so far no other similarly effective means are usually available—are invariably denounced as ‘rape of nature’ (often by people with only the foggiest ideas about their functioning), and are opposed, prevented, or at least delayed by never ending ‘environmental assessments and reassessments’. In the present ‘green’ propaganda, all dams are evil by definition, ranking alongside Chernobyls, Exxon Valdezes, ‘rape of the environment’, AIDS, cancer and genocide”.

History teaches that, within political agendas and their supporting ideologies, it is difficult to distinguish stated aims from means. For example, with reference to the report of NIC & EUISS (2010) mentioned above, it is difficult to interpret the statements: “Another cluster of problems—the management of energy, food, and water resources—appears particularly unlikely to be effectively tackled without major governance innovations” and “no overall framework exists to manage the interrelated problems of food, water and energy”. Is the solution of water and interrelated problems an aim dictating global governance innovations as means, or are aims and means reversed? Whatever the answer to this question is, whenever political aims and ideological views are involved in scientific and technological issues, the latter become difficult to study as such. Klemeš (2008), examining the relationship of political pressures in scientific issues and in water resources management stated: “[P]olitical pressures often set the agenda for what is to be (or not to be) predicted, and sometimes even try to impose the prediction result thus transforming prediction into prescription.”

With such difficulties clarified, I will attempt in the next sessions to approach, in a manner as
rational as I can, some (eight) facts related to water resources and their development, as well as some (eight) fallacies, which I think have become widespread mainly because of ideological influences. Apparently, what I present is not free of personal opinions and I am not free of ideological influences. I endorse the importance of environmental conservation and improvement, as well as sustainability, which includes investing in renewable energy, sufficiency of, and equity in, food and water supply, and quality of life. I do not dispute the fact that small scale constructions have smaller adverse environmental impacts (i.e., “small is beautiful”) when viewed as isolated projects. However, viewing isolated items of a composite landscape is misleading, and, thus, the appropriate scale of development should be approached in a holistic manner, in view of the local and global conditions. Naturally, the dilemmas on water resources development and the questions about the appropriate scale of development concern mainly areas of the world not already developed. Certainly, the negative (and the positive) experiences from the already developed areas should be taken into account in exploring the opportunities and directions in less developed areas. However, just applying currently dominant ideological views, developed by people who live in the luxury of advanced (and in effect not questioned) infrastructure, brings in mind a land owner who, after building his villa, inhibits the neighbours to build in their own lands, which he regards as an extension of his garden.

To avoid biased opinions as much as possible, the discussion of facts and fallacies that follows is based on data (numbers) rather than on dominant ideological views, although the latter may be mentioned when contradicted by the data. The domain of the discussion is generally the entire globe, but, as a particular case, Greece is discussed in more detail for three reasons: first because it is a place where water resources have been partly developed and there is much potential for further development; second, because the stagnancy in water resources development in the last decades reflects a more general stagnancy of the country’s economy which recently has made it a frequent headline in international news; and third, because my knowledge of the local conditions is naturally better than in any other place of the world.

FACTS

Fact 1: World population is large and keeps growing

As shown in Fig. 1 (upper), the world population, from 1.6 billion in 1900, now approaches 7 billion and is expected to be 9 billion by 2050. As depicted in Fig. 2, the rate of population growth varies. Very high rate is seen at 10 countries, mostly African and Southern Asian (Burundi, Laos, Liberia, Afghanistan, Eritrea and other), while in 27 countries, mostly Eastern European (Moldova, Montenegro, Ukraine, Slovenia, Georgia, Russia and other) the rate is negative. From Fig. 2 (lower) it can be seen that there is at least one quantifiable determinant of the population growth: The rate of population growth is negatively correlated to the income (gross domestic product—GDP). Evidently, other factors (cultural, birth control) influence growth rate, but these are more difficult to quantify.

Fact 2: People prefer to live in large cities

From Fig. 1 (upper), we can observe that the rural population in the most developed areas of the world (Europe, Australia, North America and Japan) has been slightly but systematically declining and that even in the entire world the rural population tends to stagnancy. Therefore, all of the future population growth is expected to be concentrated in the urban areas of the world.

Megacities and megalopolitan conurbations with 10 million or more residents are becoming more numerous, predominantly, but not exclusively, in developing countries. Currently there are 26 megacities with population over 10 million, which are shown in Fig. 3, along with some of the smaller cities. There are 63 cities with population over 5 million, 476 cities with population over 1 million and about 1000 cities with population over 500 000.
Fig. 1 (Upper): Historical evolution and future estimation of world population (EU, AU, NA and J stand for Europe, Australia, North America and Japan; data sources: esa.un.org/unpp/p2k0data.asp; www.census.gov/ipc/www/worldhis.html; www.census.gov/ipc/www/idb/worldpop.php); (Lower) Statistical distribution and historical evolution of the number of large cities (data sources: www.mongabay.com/cities_urban_01.htm; www.citypopulation.de/world/Agglomerations.html; geography.about.com/library/weekly/aa011201f.htm); the order of magnitude of cities’ water supply peak discharge is also plotted (assuming peak consumption of 300 L/d per capita).
Fig. 2 (Upper) Estimated population growth for the period 2005-10 (source: world.bymap.org/UrbanPopulationGrowthRates.html). (Lower) Percentage of annual population growth for each country vs. country’s GDP per capita; the size of each circle indicates the population of the country (see key at the left-bottom corner; data source: World Bank; data availability and visualization from Gapminder World, powered by Trendalyzer from www.gapminder.org.).
Fig. 3 The principal urban agglomerations of the world (adapted from Brinkhoff, T., The Principal Agglomerations of the World, www.citypopulation.de/world/Agglomerations.html).

Fig. 4 Percentage of population with access to an improved water source for each country vs. country’s GPD per capita; the size of each circle indicates the population of the country (see key at the left-bottom corner). Improved water source includes household connection, public standpipe, borehole, protected well or spring, and rainwater collection (data source: World Development Indicators; data availability and visualization from Gapminder World, www.gapminder.org).

The trend of the population to move to large cities is more characteristically depicted in Fig. 1 (lower). As shown in Fig. 1 (lower), for any specified population, the number of cities that exceed it has increased by more than two orders of magnitude in the last two centuries (notice that in 1800 only one city had population over 1 million, London). The improved urban infrastructure, predominantly urban water infrastructure, has played a major role in the
urbanization trend. The trend testifies the fact that life in large cities has advantages (to which I can add my personal testimony, as I have lived most part of my life in Athens, with population 4.5 million, but I have also lived 12 years in a small village with less than a thousand people). This fact is reflected even in language where several positive qualities are etymologized from the Greek "πόλης" (polis) = city and the Latin civis = townsman, i.e., πολίτης (polites) = citizen; πολιτεία (politeia) = state, republic; πολιτική (politike) = policy, politics; πολιτισμός (politismos) = civilization.

Fact 3: People need water to drink and support quality of life

While human water needs are a self evident truth, it is also true that disparities in water supply among different areas in the globe are marked: In developed countries any person has water supply through house connections and consumes typically 150-200 L/d and in some cases up to 1000 L/d. However, in developing countries it constitutes only a target to provide ‘reasonable access’ to water, which is meant as 20 L/d per capita at a distance of less than 1 km. (Interestingly, comparison with standards in the Athens of the 7th century BC, which, as implied by Solon’s legislation, are 2 × 20 L/d at a distance less than 740 m—Koutsoyiannis *et al.*, 2008b—indicates a stagnancy, or even regression, over 27 centuries). Unfortunately, 18% of the world population (>1 billion) do not meet this ‘standard’ (Howard & Bartram, 2003).

The real reasons of such disparities are astonishingly misunderstood by the wider public and decision makers, as is exemplified by the following Introduction of the so-called European Declaration for a New Water Culture (www.unizar.es/fnca/euwater/index2.php?idioma=en): “We live in times of crisis in which the international community must pause to reflect and decide which model of global governance we must take on board for the 21st century. We must face up to the ever worsening crisis of social and environmental unsustainability in the world. With reference to water resources, the systematic destruction and degradation of water ecosystems and aquifers has already led to dramatic social repercussions. 1 100 million people with no guaranteed access to drinking water, and the breakdown of the hydraulic cycle [sic] and health of rivers, lakes and wetlands are two consequences of this crisis”.

The fact that there is no breakdown of the hydrological cycle (assuming that this is meant by “hydraulic cycle”) is readily recognized by any one who has a basic hydrological knowledge. Also, it may not need much profundity to understand that the destruction and degradation of water ecosystems is not the reason for the poor (or lack of) water supply of more than 1 billion people. Some data may help understand the real reasons. As shown in Fig. 4, the percentage of population with access to an improved water source is correlated to GDP. Developed countries, have proper water supply, mostly by household connections. With very few exceptions, in countries with GDP $10 000 per capita 100% of the population achieves this high living standard, regardless of the specific value of GDP. In poorer countries, this percentage depends on the income (GDP) and is very low in the poorest African countries.

This suggests that water scarcity is economically driven, i.e. it is caused by lack of investment in water, or else lack of technological infrastructure for water. This is clearly seen in the classification of Fig. 5, where, except for (mostly uninhabitable) desert areas where water scarcity is physically driven, the water scarcity is due to economic reasons. The same story is depicted in Fig. 6, taken from a recent study by Vörösmarty *et al.* (2010). Comparing Europe and Africa in this figure, it is observed that considering natural factors (upper panel of Fig. 6), Europe is more water deficient (shows higher threat index) than Africa, but when technological infrastructure for storing and distributing water is considered (lower panel of Fig. 6), the picture is fully reversed and agrees with that of Fig. 5. Interestingly, Vörösmarty *et al.* advocate, for developing countries, “integrated water resource management that expressly balances the needs of humans and nature”. However, they do not seem to suggest technological means different from those already used in developed countries. Earlier, in the same tune, Takeuchi & Simonovic (1998) had assessed that the development of surface water reservoirs in developing countries
(similar to those already built in developed countries) will be indispensable, regardless of environmental concerns.

Fig. 5 World distribution of water scarcity (source: Comprehensive Assessment of Water Management in Agriculture, 2007)

Fig. 6 World distribution of human water security threat: (upper) as appears naturally and (lower) after accounting for water technology benefits (source: Vörösmarty et al., 2010, as adapted in www.bbc.co.uk/news/science-environment-11435522).
Fact 4: People need water for health

It is widely recognized that modern sanitation (with proper sewer systems and wastewater treatment plants) has greatly contributed to public health and life expectancy. However, again due to economic reasons, the world percentage of population using improved sanitation is very low in the poorest countries (Fig. 7). As a result, half of the urban population in Africa, Asia, and Latin America suffers from diseases associated with inadequate water and sanitation (Vörösmarty et al., 2005).

Recognizing the poor economic situation and the lack of technological infrastructure as the real reasons for water scarcity and health problems, we can expect that economic progress, wherever and whenever is made possible, will lead to improved water availability and sanitation in developing countries. Here, Athens can serve as an encouraging example. Due to dry climate (annual precipitation 400 mm, no rivers with permanent flow), the water supply in Athens depends on a large-scale engineered system (four reservoirs) bringing water from distances >200 km (Fig. 13, lower). Investments for constructing this system have always been given highest priority. Up to the 1970s, the city did not have a proper sewer system; even big apartment blocks were served by sewage tanks emptied by sewage trucks. A master plan elaborated in 1979 by the English engineering firm J. D. & D. M. Watson suggested that the entire replacement of sewage tanks with a sewer network system would be prohibitively expensive and that the tanks should remain in the less densely populated areas. However, 10 years after, the sewage tanks were entirely replaced by a modern sewer network system. Today the city has proper sewer network and wastewater treatment.

Fact 5: People need water to eat (to produce food)

While municipal water supply has the highest quality requirements, in terms of quantity it constitutes a small percentage of total water withdrawals (Fig. 8). Most of water consumed worldwide goes to irrigation. As illustrated in Fig. 8 (lower), the portion of agricultural water use depends on climate—not on income. In countries with high population and intensive irrigated agriculture like India, Pakistan and, to a lesser degree, China, water resources are insufficient to cover irrigation needs and this problem is expected to worsen due to increased population in the future.
Fig. 8 Percentage of water withdrawals for municipal and agricultural use (upper and lower panels, respectively) for each country vs. country’s GDP per capita; the size of each circle indicates the population of the country (see key at the top-right corner; data source: FAO aquastat database; data availability and visualization from Gapminder World, www.gapminder.org).
Water demand management is an option that helps mitigate water deficiency (Saleth, 2011; this issue) but it cannot tackle the problem alone, without further water resources development. Certainly, demand management is environmentally friendlier than constructing new projects, but it is also costly. The most effective tools of demand management such as water saving by replacing traditional irrigation methods with micro-irrigation and by implementation of metered water pricing need appropriate infrastructure.

Fact 6: People need to be protected from floods

When urbanization is not combined with urban water infrastructure, the results are tragic, not only in terms of economic damages due to floods, but also in terms of flood fatalities. This has been recently demonstrated by Di Baltrassare et al. (2010) for Africa, where flood fatalities have increased by an order of magnitude in the last 60 years, an increase equal to that of the urban population (Fig. 9). Urban engineering infrastructure should, thus, include flood protection works and urban planning.

![Fig. 9 Evolution of (left) total and urban population in Africa and (right) flood fatalities in the last 60 years (adapted from Di Baltrassare et al., 2010).](image)

Fact 7: People need to be protected from droughts and famines

Long-lasting droughts of large extent are intrinsic to climate (cf. Hurst-Kolmogorov dynamics; Koutsoyiannis et al., 2009b). Such droughts may have dramatic consequences, even to human lives, as shown in Table 1, which refers to drought-related historical episodes of “food availability decline” (famines). Large-scale water infrastructure, which enables multi-year regulation of flows, is a weapon against droughts and famines. As shown in table, famines and their consequences have been alleviated through the years owing to improving water infrastructure and international collaboration.

Fact 8: People need water for energy

Electricity has been a foundation stone of current civilization and hydroelectricity, which represents about 16% of total electricity, has been a corner stone for reasons that will be explained in following sections. As shown in Fig. 10, both total electricity and hydroelectricity have been increasing exponentially with rates 3% (meaning doubling every 25 years) and 2.6% per year, respectively. In Europe and the USA, hydroelectricity has been stagnant but in several countries in Asia and South America its increase has been spectacular (> 6% per year; Fig. 10).
Table 1 Most devastating famines in the last 150 years (sources: de Marsily, 2008; Devereux, 2000; Center for Research on the Epidemiology of Disasters, www.emdat.be).

<table>
<thead>
<tr>
<th>Period</th>
<th>Area</th>
<th>Fatalities (million)</th>
<th>Fatalities (% of world population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1876-1879</td>
<td>India</td>
<td>10</td>
<td>>30</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>20</td>
<td>>2.2%</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Africa</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>>30</td>
<td>>2.2%</td>
</tr>
<tr>
<td>1896-1902</td>
<td>India</td>
<td>20</td>
<td>>30</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>10</td>
<td>>1.9%</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>>30</td>
<td>>1.9%</td>
</tr>
<tr>
<td>1921-1922</td>
<td>Soviet Union</td>
<td>9</td>
<td>0.5%</td>
</tr>
<tr>
<td>1929</td>
<td>China</td>
<td>2</td>
<td>0.1%</td>
</tr>
<tr>
<td>1942</td>
<td>India</td>
<td>1.5</td>
<td>0.06%</td>
</tr>
<tr>
<td>1943</td>
<td>Bangladesh</td>
<td>1.9</td>
<td>0.07%</td>
</tr>
<tr>
<td>1965</td>
<td>India</td>
<td>1.5</td>
<td>0.04%</td>
</tr>
<tr>
<td>1973</td>
<td>Ethiopia</td>
<td>0.1</td>
<td>0.003%</td>
</tr>
<tr>
<td>1981</td>
<td>Mozambique</td>
<td>0.1</td>
<td>0.002%</td>
</tr>
<tr>
<td>1983</td>
<td>Ethiopia</td>
<td>0.3</td>
<td>0.006%</td>
</tr>
<tr>
<td>1983</td>
<td>Sudan</td>
<td>0.15</td>
<td>0.003%</td>
</tr>
</tbody>
</table>

Fig. 10 Evolution of total electricity and hydroelectricity in the world and in particular groups of countries in the last 45 years (data source: www.bp.com/productlanding.do?categoryId=6929&contentId=7044622).
Table 2 Data of economically feasible and exploited hydro potential in European countries (data from Leckscheidt & Tjaroko, 2003, in general, and Stefanakos, 2008, for Greece).

<table>
<thead>
<tr>
<th>Country</th>
<th>Economically feasible hydro potential (TWh/year)</th>
<th>Production from hydro plants (TWh/year)</th>
<th>Exploitation percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>France</td>
<td>72</td>
<td>70</td>
<td>97</td>
</tr>
<tr>
<td>Italy</td>
<td>55</td>
<td>52</td>
<td>95</td>
</tr>
<tr>
<td>Switzerland</td>
<td>36</td>
<td>34</td>
<td>94</td>
</tr>
<tr>
<td>Spain</td>
<td>40</td>
<td>35</td>
<td>88</td>
</tr>
<tr>
<td>Sweden</td>
<td>85</td>
<td>68</td>
<td>80</td>
</tr>
<tr>
<td>Norway</td>
<td>180</td>
<td>120</td>
<td>67</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>15</td>
<td>4.7</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 3 Data of economically feasible and exploited hydro potential in the world (data from Leckscheidt & Tjaroko, 2003).

<table>
<thead>
<tr>
<th>Continent</th>
<th>Economically feasible hydro potential (% of world)</th>
<th>Exploitation percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>North & Central America</td>
<td>13</td>
<td>75</td>
</tr>
<tr>
<td>South America</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Asia</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>Africa</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

The question arises, then, why Europe’s hydroelectric production has been stagnant? Is it related to the dominant ideological views disfavouring building new dams and large hydro projects, or even favouring demolition of existing dams? Some data to study these questions are provided in Table 2. The most developed countries (Germany, France, Italy, Switzerland, Spain, Sweden) have already developed almost all economically feasible hydro potential (80-100%) and, thus, there can hardly be further increase. Norway has exploited a smaller percentage (67%), which however already represents about 99% of its total electricity (data from www.bp.com/productlanding.do?categoryId=6929&contentId=7044622). In terms of the second question, indeed old dams, as any human construction, may be necessary to demolish after some time for safety and economical reasons (although there is still an ancient dam not having collapsed for about 2.5 thousand years; Koutsoyiannis et al., 2008b). In addition, there are intensifying discussions that dam removal has significant environmental benefits for restoration of aquatic ecosystems and native fisheries. An internet search will gather information from multiple sources that hundreds of dams have already been dismantled in an attempt to restore the health and vitality of rivers. However, more careful examination of specific data or photos of “dams removed” (e.g. commons.bcit.ca/recovery/global.html; www.americanrivers.org/2008DamRemovals) will reveal that these are small and rather old constructions that could be rather called barrages or embankments (with heights from less than a metre to a few metres). To my knowledge, no large hydro project has ever been demolished for environmental restoration. However, magnifying stories of embankment demolition may provide a fictitious element of realism of the environmentalist ideology, which may be necessary for its conservation.

The last row of Table 2 referred to Greece deserves a more detailed discussion. Greece’s low exploitation percentage of hydropower potential (31%) would allow for spectacular development of hydroelectricity, as, e.g., in Southern American countries. In addition, the multi-purpose character of hydropower projects would also help resolve water scarcity problems. This raises the question, why Greece’s hydroelectric production has been stagnant? The answer to this question should be sought in the mimetism—at the ideological rather than the pragmatic level—of the
Greek society and politics for European stereotypes, which did not enable water resources development in the last decades. This mimetism is very strong in the Greek ‘green’ groups, which fanatically oppose water infrastructure projects. (Recently, private energy companies may have been added to the opponents of hydropower projects, whose operation pushes energy prices down during water-rich periods; www.energypress.gr/portal/resource/contentObject/id/bd4974a8-00b8-47ea-9472-eb64388ae09f). The most impressive example, with dimensions of a Greek tragedy, is the Mesochora project (170 MW, 340 GWh/year, investment 500 M€; shown in Fig. 13) in the Upper Acheloos River (Koutsoyiannis, 1996; Stefanakos, 2008). The dam and the hydropower plant have been constructed and are in effect ready for use since 2001. However, they have not been put in operation, thus causing a loss of 25 M€/year for the national economy (assuming the lowest price of renewal energy, i.e. 73 €/MWh imposed by decree in Greece—see below).

There is unexploited hydro potential, similar to Greece’s or more, in many countries in South America, Asia and Africa as shown in Table 3. Therefore, the principal dilemma as to whether this potential should or should not be exploited by large-scale projects has to be resolved—although countries recently becoming more and more powerful, such as China, India, Pakistan, Brazil, Colombia and Venezuela, seem to have already resolved it, as shown in Fig. 10.

Fig. 11 A depiction of water distribution on Earth (from an information sheet of US Geological Survey—USGS; ga.water.usgs.gov/edu/watercyclehi.html) typical of the consideration of freshwater as non-renewable reserve.

FALLACIES

Fallacy 1: Groundwater constitutes the vast majority of freshwater

Reports from media and information provided to the wider public and decision makers may have not been able to distinguish the feature of water to be a renewable resource from other natural resources (e.g. fossil fuels) which are subject to depletion. This misrepresentation has been typically originated from graphs like that in Fig. 11, which shows where water is stored on Earth. Groundwater appears then as the vast majority of liquid freshwater and surface water appears to be a negligible fraction—particularly water in rivers. Similar information appears in tabulated form (see e.g. table in the bottom of the information sheet of USGS in address shown in the caption of Fig. 11—notice the difference in the Greek translation in ga.water.usgs.gov/edu/watercyclegreek.html). The correctness of the information given in such graphs and tables is not questioned. However, in renewable resources, as is freshwater, fluxes matter much more than storages. Surface water flux to oceans is estimated at 44 700 km³/year.
whereas an estimate of groundwater flux to oceans is 2200 km3/year (Shiklomanov & Sokolov, 1985), that is, about 20 times less.

While the ratio 1:20 does not necessarily constitute an exact characterization of the relative quantities of ground- and surface-water in land, where moving water may switch from surface to ground and vice versa, it becomes clear that surface water, and particularly that of rivers, constitutes the vast majority of water that can potentially cover the human needs as described above. However, there are huge technological differences in exploitation of ground and surface water. In groundwater the storage is provided by nature (aquifer) and the withdrawal can be done by a large number of small-scale technical works (wells) without the need of pipelines, unless the aquifer is far from the location of water use. In contrast, with the exception of endorheic basins that form lakes, storing streamflow requires a large-scale artificial system (dam – reservoir) and the withdrawal and distribution also requires large-scale piping works. As a result, surface water projects need substantial financial investment. Also, they may have substantial impacts on the environment. But this does not mean that groundwater exploitation is environmentally safer. In contrast, experience shows that some of the most adverse—and in effect irreversible—environmental impacts have been created by groundwater overexploitation, where sustainability is not spontaneous. For example, Vörösmarty et al. (2005) note “For most parts of the planet, [the Non-sustainable Water Use] will refer to the ‘mining’ of groundwaters, especially in arid and semiarid areas, where recharge rates to the underground aquifer are limited” (see Fig. 12 for a world map of unsustainable uses). As a characteristic example, Tiwari et al. (2009) using Gravity Recovery and Climate Experiment (GRACE) satellite data concluded that in Northern India there is large-scale overexploitation of groundwater at a loss rate of 54 ± 9 km3/year, probably the largest loss rate in any comparable-sized region on Earth. Groundwater overexploitation has sometimes been initiated by overestimation of basic hydrological quantities such as aquifer recharge (see e.g. Fadlelmawla et al., 2008, who report a case of a small aquifer in Kuwait which was initially exploited at a rate of one order of magnitude higher than the sustainable yield). Even if a correct estimation is later obtained, it is difficult to stop groundwater overexploitation due to the so-called “tragedy of commons” (Llamas, 2004) associated with selfish individualism. The apparent temporary winners in such situations are the wealthier who dig the deepest boreholes (Panda & Kumar, 2011, this issue). In the long term, though, there may be no winner.

Fig. 12 World distribution of potentially unsustainable agricultural water use (source: Vörösmarty et al., 2005; Fig. 7.3). High and low overdrafts roughly correspond to >0.4 and <0.04 m/year, respectively.
Fallacy 2: Water transfer is non-sustainable

Problems related to overexploitation can hardly appear in surface water withdrawal: even in the most extreme (but not advisable) case, when a river or a reservoir dries, water withdrawal will necessarily stop (until water appears again). However, scholars and water managers, perhaps for the sake of symmetry, have devised a case of non-sustainable surface water use, which is the ‘interbasin transport’. Thus, Vörösmarty et al. (2005, p. 169) state: “[Non-sustainable Water Use] can also embody the interbasin transport of fresh water from water rich to water poor areas”, although elsewhere in the same text (p. 184) they state: “Interbasin water transfers represent yet another form of securing water supplies that can greatly alleviate water scarcity”. From a scientific point of view, the notion of ‘interbasin transport’ seems not well defined and rather constitutes a stereotype. Several questions can therefore be raised: (a) What does this stereotype represent? Does not scale, size and quantity matter? Is it ‘interbasin transport’ when water quantity of 1 L/s is transferred between two neighbouring catchments of different streams, each having an area of, say, 1 km², at a length of, say, 1 km? Is it not ‘interbasin transport’ when 10 m³/s are transferred between two neighbouring sub-catchments of the same river, each having an area of, say, 10⁴ km², at a length of, say, 100 km? (b) What is the essential difference, in scientific terms, of ‘interbasin transport’ from ‘intrabasin transport’? (c) Can water be used by humans (as opposed to fish) without having been transported? (d) Is it non-sustainable to alleviate water scarcity? (e) Is it non-sustainable to substitute transferred surface water for water from overexploited groundwater sources?

In Europe, a usual argument against the implementation of interbasin water transfer plans is that the Water Framework Directive (WFD; European Parliament and Council of the European Union, 2000), by demanding river basin management plans, essentially adopts the river basin as the management unit. However, this argument is very weak. In fact WFD designates as the main unit for management of river basin the so-called ‘river basin district’, which may be composed of more than one neighbouring river basins (Article 2(14)), whose definition depends on non-objective criteria. We may also observe that even the definition of the ‘river basin’ in WFD (“the area of land from which all surface run-off flows through a sequence of streams, rivers and, possibly, lakes into the sea at a single river mouth, estuary or delta”; Article 2(13)) is hydrologically insufficient as it does not include endorheic river basins that have no outlet to the sea. But the principal counterargument is that, whatever the management unit be, it should not necessarily be regarded as a closed system. It is difficult to imagine that in an era of open skies, free trade, and globalization we might convert river basins into entrenchments, disallowing water transfer into or out of the basins.

Fallacy 3: Virtual water trade is more sustainable than real water transfer

Virtual water is the water ‘embodied’ in a product, i.e., the water needed for the production of the product; it is also known as ‘embedded water’ or ‘exogenous water’, the latter referring to the fact that import of virtual water into a country means using water that is exogenous to the importing country (to be added to a country’s ‘indigenous water’; Hoekstra, 2003). Worldwide, international virtual water trade in crops has been estimated at 500-900 km³/year, while current rates of water consumption for irrigation total 1200 km³/year (Vörösmarty et al., 2005). It is generally regarded that “virtual water trade is a realistic, sustainable and more environmentally friendly alternative to real water transfer schemes” (Hoekstra, 2003). There is no doubt that virtual water trade can be a realistic and sustainable option. However, the statement comparing it, in general terms, with real water transfer may not have the proper depth of analysis and penetration of a scientific statement. Some questions may help understand this: (a) Assuming that virtual water transfer is realistic and sustainable, why real water transfer is not? (b) Can the two transfer options, virtual water and real water, be compared in general and stereotypical terms (i.e. without referring to specifics, such as quantity, distance, energy, etc.)? (c) Is it really more
sustainable and more environmentally friendly to transport agricultural products at distances of thousands of kilometres, consuming fossil fuel energy, than to transfer real water (albeit, evidently, much larger quantity thereof) at distances of a few kilometres, producing energy? (d) Is international trade more sustainable than boosting local agricultural production and improving local economy? (e) Is sustainability irrespective of resilience in crisis situations (economic crises, international conflicts, embargos, etc.)? The current global economical crisis—and Greece’s crisis in particular—may emphasize the importance of the last questions. Again using Greece as an example, the older still relate stories about massive deaths from famine in Athens during the two world wars, whereas people living close to agricultural areas did not face food adequacy problems.

A more contemporary interesting case, illustrating the situation in Greece, is offered by the history of the Acheloos interbasin transfer plan. Acheloos is the biggest in discharge river of Greece \((4370 \, \text{hm}^3/\text{year}; \text{Koutsoyiannis et al.}, \, 2001) \). The river has been segmented and its flows regulated since the 1960s by the construction of the large dams shown in Fig. 13 (upper). A plan for further development includes the transfer (by a 17.4 km long tunnel toward the East starting from the Sykia dam, marked by an arrow in Fig. 13, upper) of about 15\% \((600 \, \text{hm}^3/\text{year}) \) of the Acheloos flows to Thessaly, the biggest and most water-deficient plain of Greece. The plan also includes four hydropower plants; two can be reversible, boosting production by up to 1000 GWh/year (converted to equivalent primary energy; Koutsoyiannis, 1996). The project is under construction for more than 2 decades (since 1988), but it cannot be completed. Greek and European ‘greens’ have fanatically fought the project. A web search for *Acheloos crime* would reveal that the project is regarded as a crime against the environment. Even a virtual ‘trial of Acheloos’ was organized in 1996 by Greenpeace, WWF and three other ‘green’ NGOs. Actual trials in the Supreme Court thwarted several times the government’s plans, which had to repeatedly change the project design studies to comply with the court directives. It may be didactic for Greeks to compare this story with that of a much bigger plan in the rapidly developed India, the National River Linking Project (Saleth, 2011; this issue). When completed, this will be the largest water infrastructure project ever undertaken in the world. It will connect 37 Himalayan and Peninsular rivers through 30 links, involving 3000 storage dams and 12 500 km of water conveyance networks, and handling 178 km\(^3\) of inter-basin water transfers. Lacking governmental initiative to start implementing the project, the Supreme Court of India, acting on public interest litigation, directed the central government in 2002 to constitute a task force and complete the project by 2012. That is, the pressures from the public and the Supreme Court in India are in exactly the opposite direction from those in Greece—and, evidently, the results in terms of economic development are also in opposite directions.

Interestingly, in Greece no opposition was encountered for the transfers for the water supply of Athens, shown in Fig. 13 (lower). The total quantity of transferred water approaches 500 \(\text{hm}^3/\text{year} \) (not counting virtual water whose quantity is tremendous), about the same order of magnitude as in the Acheloos case. However, the overall scale of interbasin transfer is much larger in Athens: it involves four river basins and distances of more than 200 km (an order of magnitude higher than in Acheloos). In addition, while the Acheloos plan contributes with substantial energy production, in the Athens case we have substantial energy consumption due to pumping. An explanation for the lack of opposition for this project, part of which was completed in the 2000s, should not be sought in more prudent handling by the government or in more effective public consciousness, participation and consultation. Perhaps the Athens-based pressure groups see no ‘environmental crime’ when their own water supply is put into question.
Fig. 13 The two largest hydrosystems of Greece: (Upper) The Acheloos system with existing and planned projects annotated; violet arrows indicate the planned water transfer. (Lower) The Athens water supply system with the four reservoirs and the four water treatment plants (WTP) annotated; shaded areas indicate aquifers whose water is also transferred to Athens; violet lines represent the water transfer paths.
In addition, no opposition has been ever raised for virtual water trade. The current conditions of virtual water trade in Greece are illustrated in Table 4. The total transfer of virtual irrigation water (exports + imports) is 6750 hm3/year, roughly equal to the total real irrigation water used in Greece (6860 hm3/year; Koutsoyiannis et al., 2008a). The Acheloos planned interbasin transfer of real water is one order of magnitude less, 600 hm3/year and, if materialized, would contribute to a better balance of Greece’s virtual water trade. The currently strongly negative balance of virtual water (–1971 hm3/year as shown in Table 4) reflects the fact that Greece, traditionally an agricultural country, has become counterproductive. Some of the entries in Table 4 are shocking, for instance the strongly negative balance (about –500 hm3/year) of Greece with France—a country with substantial industrial production, part of which is also imported to Greece.

Fallacy 4: Seawater may become a future freshwater resource by desalination

In an attempt to provide alternatives to substitute large-scale surface water projects, ‘green’ groups sometimes promote desalination as a future freshwater resource. However, as seen in Fig. 14, currently, only rich countries, mostly oil producing, have large-scale desalination plants. Desalination is costly and requires vast amounts of energy. In the future, depletion of oil will make desalination even more costly. Therefore it is not a sustainable technology. Sometimes an argument is offered that, if renewable (e.g. solar) energy is used, then desalination becomes sustainable. This, however, can be disputed on the basis that there is no excess of available energy and that, if additional renewable energy is to be produced, then it should be directed to cover existing needs, rather than creating additional energy consumption by desalination plants. Admittedly, though, desalination is a useful pragmatic alternative for some small-scale applications, e.g. small islands. In such cases, desalting brackish groundwater, which requires far less energy than seawater, or re-using nontraditional sources of water (e.g. treated wastewater) are other useful options, especially in water-stressed conditions (Koussis et al., 2010).

Fallacy 5: Hydroelectric energy is not renewable and not sustainable

Since the water that produces the hydroelectric energy is replenished, thanks to the perpetual hydrological cycle, and is not subject to depletion in the future, hydroelectric energy is clearly renewable and sustainable. However, business lobbying and ‘green’ ideological influences have resulted in laws or regulations that define ‘small hydro’ as renewable and sustainable, whereas ‘large hydro’ is labelled as not renewable or not sustainable (Frey & Linke, 2002). Similar assertions have also been made in Law scholarly articles, e.g. “... large hydroelectric dams have been excluded because of their expense, their unreliability ..., and the environmental damage that
results from flooding large areas of productive and often populated lands and from the carbon dioxide released from decaying vegetation in the dam reservoir” (Ottinger & Williams, 2002). This fallacy is further exaggerated in “grey” literature, e.g. in internet sources of ‘green’ origin: “Hydro electricity is NOT renewable. Hydro dams irreversibly destroy wild river environments—while the water is renewable, wild rivers are not. Dams have a finite lifetime, but the wild river cannot be replaced” (saveourwildrivers.org.nz/fact/hydro-electricity-not-renewable); “Hydro power is not renewable. Hydroelectric power depends on dams, and dams have a limited life—not because the concrete crumbles, but because the reservoir fills with silt.” (http://letters.salon.com/tech/htww/2009/07/07/wild_salmon_cause_global_warming/view/).

![Desalination water production for each country vs. country’s GDP per capita; the size of each circle indicates the population of the country (see key at the top-right corner; data source: FAO aquastat database; data availability and visualization from Gapminder World, www.gapminder.org).](image)

Fig. 14 Desalination water production for each country vs. country’s GDP per capita; the size of each circle indicates the population of the country (see key at the top-right corner; data source: FAO aquastat database; data availability and visualization from Gapminder World, www.gapminder.org).

Evidently, economic interests, business lobbying and ‘green’ ideology have been much more powerful than adherence to scientific reason in influencing political decisions and legislation. For example, according to the Greek legislation, “The hydraulic power generated by hydroelectric plants, which have a total installed capacity more than 15 MWe, is excluded from the provisions of this Act” (Act 3468/2006 on the Production of Electricity from Renewable Energy Sources, Art. 27, par. 4, http://www.rae.gr/downloads/sub2/129(27-6-06)_3468.pdf; originally this limit defining what is renewable energy was 20 MW and a later law changed it to 15 MW). This law determines also prices for different renewable energies ranging between 73 and 500 €/MWh, which indicate a generous subsidy, given that even the retail price for household connections is lower (currently 53 €/MWh at night). Similar are the legislations in other European Union countries, only a few of which do not exclude large hydropower from their subsidy programmes.
(Reiche & Bechberger, 2004). The limit defining the small (‘renewable’) and large (‘non-renewable’) hydropower plants varies among countries (e.g. 10 MW in the UK, 5 MW in Germany, while The Netherlands has taken small hydro-plants off the list of renewables; Reiche & Bechberger, 2004). In the USA the situation is similar but the limit varies further (30 MW in California and Maine; 80 MW in Vermont; 100 MW Rhode Island and New Jersey; Égré et al., 1999; Égré & Milewski, 2002).

Some simple questions may help recognize that the arguments advocating the non-renewable character of large-scale hydroelectric energy are pointless: (a) What is the agent that makes the produced energy non-renewable when the installed capacity exceeds the limit imposed by legislation? (b) Does reliability increase or decrease with the scale of the power plant? (c) Were the dam and reservoir not constructed, would the carbon dioxide from vegetation not be released to the atmosphere? (Are the trees not part of the natural carbon cycle and, thus, once sprouted, naturally subject to decay?) (d) Even assuming that dams have destroyed river environments, does this make the energy they produce non-renewable? (e) Does any human construction (including wind turbines and solar panels) have unlimited life? (f) Will energy production stop if a reservoir is silted? (Will the hydraulic head disappear?) (g) Is it non-sustainable to leave to future generations major assets and infrastructure for renewable energy production? A more difficult question is: Why legislation (in Europe and USA) excludes large-scale hydropower stations? This question becomes even more complicated because in some occasions, e.g. in reporting progress in achieving renewable energy targets, the contribution of large hydropower plants is not excluded. But to study this question would require a more thorough political analysis, which is out of the focus of this paper.

On the other hand, the argument about the damage in populated land is correct. Indeed, the population in inundated areas needs to be displaced. However, population displacement is not a case met in dams only. Several major civil infrastructures may have similar impacts. In addition, displacement may happen also due to natural causes, such as landslides and unfavourable hydroclimatic shifts, as well as due to unfavourable economic conditions. Perhaps the issue of population displacement has been given excessive emphasis because our modern societies tend to give priority on individual rights over collective rights, thus departing from the tradition which gave the word ‘idiot’ (from the Greek ‘idiotes’, meaning individual) such a negative meaning. Certainly, a better balance of collective and individual rights needs to be sought.

![Fig. 15 Schematic of re-naturalization of dammed river flows](image)

Fig. 15 Schematic of re-naturalization of dammed river flows (a) natural flow regime; (b) typical 20th century flow distortion after damming; (c) partially re-naturalized flow regime, which retains important hydrologic characteristics, i.e.: (1) peak wet season flood, (2) baseflow during the dry season, (3) flushing flow at the start of the wet season to cue life cycles, and (4) variable flows during the early wet season (Vörösmarty et al., 2005; Tharme & King, 1998).
Large-scale constructions also cause large environmental changes (e.g. Hjorth et. al., 1998). Thus, environmental concerns about dams and reservoirs are not pointless. However, the problems may not be irreversible and irresolvable. For example, recently, Vörösmarty et al. (2010), imply that negative impacts of dams can be reversed: “Engineers ... can re-work dam operating rules to maintain economic benefits while simultaneously conveying adaptive environmental flows for biodiversity”.

In this respect, the environmental concerns and criticisms have helped explore and find solutions for real problems. These include (a) improved ecological functioning (permanent flow for habitats downstream of dams, improved conditions for habitats in reservoirs, passages of migratory fish); (b) re-naturalization of outflow regime (see Fig. 15); (c) sediment management by appropriate design and operation (sediment routing, by-pass or pass-through, sediment dredging and transport downstream; e.g. Alam, 2004); (d) revision (increase) of non-emptied reservoir storage for improved quality of water, ecosystems and landscape.

The latter point has been studied by Christofides et al. (2005) using as a case study the Plastiras reservoir (Fig. 13, upper), which has an interesting story of changes. The project was designed for hydropower but later, as it provided also water for irrigation and as the economy of the area became dependent on the water of the reservoir, the social and political pressure gradually shifted the reservoir’s main objective; by 1990 it was the irrigation needs that dictated water management, reducing power production to a side-effect, and halving the economic value of the energy produced. Meanwhile the scenery, combined with the geographical accessibility of the lake, attracted visitors and gradually tourist resorts were developed near the reservoir. The level and quality of water in the reservoir greatly affects the attractiveness of the area, and this resulted in pressures to keep the water level high, or increase the non-emptied storage and reduce withdrawals. This gave the environmental conservation high importance. Ecotourism attained high priority in the reservoir management and the place has become very popular even by ‘green’ supporters who sometimes miss that it is not a natural lake but an artificial reservoir created by a large dam and that one of the functions of this reservoir is the interbasin transfer, quite similar to the more contemporary Acheloos plan (or ‘crime’) discussed above. The story highlights the multi-purpose character, the wide range of options, and the flexibility of the management and adaptability to societal and environmental needs, of large-scale projects, which can hardly be met in small-scale ones.

Fallacy 6: Large-scale energy storage is beyond current technology

While the notion of renewable energy is highly promoted, it is often missed to refer to its substantially different characteristics from non-renewable energies. Wind and solar energies (as well as that from small hydropower plants) depend on the weather, are highly variable and unpredictable, and cannot be synchronized with the variation of energy demand. Therefore, energy storage technologies, which can cope with this problem, are strongly needed, if solar and wind energy production is to increase.

It has been very common to read statements such as: “Engineers haven’t yet developed energy storage devices suitable for storing solar and wind power” (Kerr, 2010). However, pumping water to an upstream location consuming available energy, which will be retrieved later as hydropower, is a proven and very old technology with very high efficiency (Koutsoyiannis et al., 2009a; see also below). This feature of hydropower makes it unique among all renewable energies. This technology can be implemented even in small autonomous hybrid systems (e.g. Bakos, 2002). However (for reasons explained below) it is substantially more advantageous in large-scale projects. A few of the existing cascades of hydropower plants have been designed and constructed as pumped storage plans, because the need for energy storage is not new. However, because typically hydropower plants are used to generate only peak energy and thus operate a few hours a day, there is potential to convert existing one-way plants into reversible, so as to be used...
for energy storage; this may need substantial investment though, while it is much easier to design the new plants as reversible from the outset.

Fallacy 7: Hydroelectricity has worse characteristics than wind and solar energies

This fallacy may have been a side-effect of the exclusion of hydro projects from renewable energy policies, as people tend to assume that there is some rationality even when irrationality dominates. However, it is easy to understand that the truth is just the opposite. Large-scale hydroelectric energy has unique desirable characteristics among all renewables. It is the only fully controllable, as contrasted to the highly variable and uncontrollable wind and solar energies. The element that enables control and regulation is the water storage in a sufficiently large reservoir.

Table 5 Energy efficiencies achieved by typical renewable and non-renewable technologies.

<table>
<thead>
<tr>
<th>Energy</th>
<th>Remarks</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro</td>
<td>large-scale (see text below)</td>
<td>90-95%</td>
</tr>
<tr>
<td>Wind turbines</td>
<td>Betz limit (theoretical upper limit) achieved in practice</td>
<td>59%</td>
</tr>
<tr>
<td>Solar cells</td>
<td>best research cells (three junction concentrators)</td>
<td>41.6%</td>
</tr>
<tr>
<td></td>
<td>commercially available (multicrystalline Si)</td>
<td>~14-19%</td>
</tr>
<tr>
<td>Non-renewable (for comparison)</td>
<td>combined cycle plants (gas turbine plus steam turbine)</td>
<td>~60%</td>
</tr>
<tr>
<td></td>
<td>combustion engines</td>
<td>10-50%</td>
</tr>
</tbody>
</table>

Thus, this feature of hydropower is met only in large-scale projects and not in small hydropower plants. As a consequence of this feature, as well as due to unique properties of hydromachinery (it can be turned on and provide full capacity within minutes), among all renewable and most non-renewable energies, only the hydropower plants offer high-value primary energy for on-peak demand. Also, as discussed above, they offer the unique option of energy storage. In addition, as shown in Table 5, hydroelectricity constitutes the only energy conversion (either renewable or not) with really high efficiency, approaching 95% for large scale projects; other technologies are difficult to achieve even half of this value.

Fallacy 8: Small projects are better than large

![Geometrical law](A = 28 \ n^{1/3})

Fig. 16 Graphical depiction of reservoir area per unit power vs. number of plants required to make a total of 7400 MW. The data are from an inventory of 188 existing hydropower plants, classified in 7 categories by installed power (data from Goodland, 1995, quoted in Égré & Milewski, 2002). Each point represents the geometrical mean of each category, where 7400 MW is the geometrical mean of the first class (plants with largest installed power).
Fig. 17 (Upper) Efficiency of pumps and reversible turbines as a function of design discharge (data sources as indicated in the legend) and fitted mean and envelop curves. (Lower) An example of the partial and total efficiency of a hypothetical pumped storage plant vs. the design discharge Q; the calculations have been made according to the following assumptions: (a) turbine and pump efficiency according to the average curve, $\eta = 0.93 - (3000 \text{ m}^3/\text{s} \times Q)^{0.4}$, of the upper panel; (b) conduit length of 2 km and roughness of 1 mm; hydraulic head of 100 m; conduit velocity V varying as a power function $V(Q)$ of the discharge Q with $V(0.001 \text{ m}^3/\text{s}) = 0.6 \text{ m/s}$ and $V(1000 \text{ m}^3/\text{s}) = 2.5 \text{ m/s}$.
The debate about large vs. small projects seems to have been won by the latter; this is evident from everyday news, from scientific documents and, particularly from legislation. For example, in the last decade in Greece, while there was no noteworthy progress in the development of large scale hydropower, a total of 250 small hydropower plants have been licensed with a total installed capacity of 430 MW (Douridas, 2006). For comparison, the installed capacity of the old Kremasta hydropower plant in Acheloos (Fig. 13, upper) is larger, 437 MW. A question arises, what is less damaging for the environment? One large power plant, on one river (Acheloos), with an installed capacity of 437 MW, or 250 small power plants on different rivers and creeks, with a total installed capacity of 430 MW (1.7 MW each on the average)?

To study questions of this type in a more general setting, we can start from elementary knowledge of geometry, which reveals that if a certain volume \(V \) is divided in \(n \) geometrically similar shapes, the total area and the total perimeter will both be increasing functions of \(n \); specifically they will be proportional to \(n^s \) with \(s = 1/3 \) and \(2/3 \) for the total area and the total perimeter, respectively. This simple truth has implications on several fields, from the area occupied by reservoirs to the hydraulic losses in conduits, turbines and pumps.

Thus, we can expect that the occupied reservoir area per unit volume or per unit installed capacity of the power plant will be a power function of \(n \), i.e. \(n^s \) with \(s > 0 \), where \(n \) is the number of individual elements to which a total volume or a total installed capacity is divided. As shown in Fig. 16, statistical analysis on existing hydropower projects with data from literature, shows that the average reservoir area per unit installed power is larger in small projects and fully supports the simple theoretical argument (with \(s = 1/3 \)).

Likewise, the hydraulic losses in pipes, per unit area of pipe cross section, will increase for decreasing size of pipe (because of the increase of wetted perimeter) and this will also hold for hydromachinery, i.e. pumps and turbines. Thus, the efficiency in energy conversion will be an increasing function of scale and this is verified in Fig. 17 (upper), constructed from pump and reversible turbine data of literature and of an inventory of commercial pumps. These data can be described by expressions of the form \(\eta = \eta_\infty - (\kappa Q)^\lambda \), where \(\eta \) and \(\eta_\infty \) are the efficiencies for discharge \(Q \) and infinite, respectively, and \(\kappa \) and \(\lambda \) are parameters. In an average curve, \(\eta_\infty = 0.93 \), \(\kappa = 3000 \text{ m}^3\text{s} \) and \(\lambda = 0.4 \), whereas in an (upper) envelope curve, \(\eta_\infty = 0.94 \), \(\kappa = 2800 \text{ m}^3\text{s} \) and \(\lambda = 0.6 \).

Based on these equations, the total efficiency of a reversible (pumped storage) hydropower plant was expressed as a function of design discharge \(Q \) that is shown in Fig. 17 (lower) after making some plausible assumptions on the hydraulic characteristics of an example power plant, which are shown in figure caption. Clearly, this figure shows the spectacularly increased efficiency in large vs. small scale (discharge) and demonstrates that only large-scale systems can efficiently store energy.

CONCLUDING HIGHLIGHTS

- More dams are needed worldwide to meet increased water and food supply needs.
- More hydropower plants are needed to meet energy needs using the most effective and most efficient renewable technology.
- More reversible (pumped storage) plants are needed to meet energy storage needs and to make possible the replacement of fossil-fuel-based energy with renewable (and, hence, highly varying and uncertain) energy.
- More water transfer projects are needed to supply water to large cities and to partially replace virtual water by real water and trade by local agricultural production.
- Large-scale water projects are superior because only these are energy-efficient and multi-purpose and because, in an holistic perspective, they can be less damaging for the environment than small-scale projects.
Acknowledgments I am grateful to the reviewer A. Koussis, the Guest Editor B. Sivakumar and the Editor Z. Kundzewicz, who also acted as a reviewer, for their constructive critiques and comments that led to improved presentation. I thank P. Hubert for providing general information, J. Stefanakos for providing data for Greece and discussing several important issues, D. Papantritis for providing information on pumps and K. Tzouka for her help in preparing an inventory of commercial pumps. I also thank A. Christofides, K. Hadjibiros, N. Mamassis, H. Theodosios, C. Vournas, Th. Xanthopoulos and V. Zoukas for their encouraging or critical comments and general discussions, mostly related to a presentation with the same title (or its preparation) at the LATSIS Symposium 2010: Ecohydrology, Lausanne, 2010; itia.ntua.gr/en/docinfo/1011/). Finally, I am grateful to the organizers of that symposium, M. Parlange, A. Rinaldo and M.-J. Pellaud, as well as A. Porporato, for the invitation to prepare and present this work in the symposium.

REFERENCES

Hydraulic Institute (2000), HI Centrifugal Pump Design and Application—Figure 1.75A, (www.pumps.org/uploadedFiles/Pumps/About Pumps/Pump Diagrams/f01-75ab.pdf).

