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1. Introduction

In groundwater applications, Kalman filter has been
applied in both forward and inverse modelling. The use
of Kalman filter in inverse modelling can be direct or
indirect (Eigbe et al., 1998). In the direct inverse
modelling, the filter automatically calibrates the model
parameters based on the deviation of the measurements
from the current state estimates (e.g. Eppstein and
Dougherty, 1996). In the indirect inverse modelling

(e.g. Van Geer and Te Stroet, 1990), estimates of the
model parameters are obtained by an off-line procedure
(an independent optimization algorithm) that involves
minimization of the ditfferences between actual head

measurements and those predicted from the filter (a.k.a.

Kalman filter innovations).

2. Benetfits from Kalman filter in forward modelling

In simple worlds, Kalman filter is a method to synthesize
the incoming information from observations and the
knowledge of the system behaviour as it is expressed by
the model. The higher the confidence in the model the less
the observations are taken into account and vice versa.
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3. Benefits from Kalman filter in inverse modelling

According to Van Geer et al. (1991) the advantages ot
Kalman filter innovations (used in the formulation of
the objective function) are:

» The variance of the Kalman filter innovations is
smaller than the variance of the deterministic
innovations (i.e. the algebraic differences between
model results and observations).*

" The Kalman filter innovations are uncorrelated in
time whereas the deterministic innovations show a
time correlation. **

*This means that scattering of innovations about the mean in case of the Kalman
filter is smaller and consequently the mean, which should be equal zero for a well
calibrated model, can be estimated more accurately.

** This means that in the deterministic case the estimate of the mean value is
biased, in particular for relatively short measurement series compared to the
correlation length of the deterministic innovations.

4. Study scope

The basic parameters of Kalman filter are the
covariance matrix of the process-noise (Q) and the
covariance matrix of the measurements’ noise (R).
Specifying numerical values for these matrices is
notoriously ditficult, in particular, for the former
(Eigbe et al., 1998). Furthermore, in cases of indirect
inverse modelling, the process-noise changes (is
hopetully reduced) with the calibration of the model
and, thus, the matrix Q should also change. In this
study we investigate the effects of the Kalman filter
parameters on the efficiency of the filter, concerning
its application in both forward and inverse modelling.

5. Case study

The case study is based on a real application of a multi-cell
groundwater model (Rozos and Koutsoyiannis, 2006, 2010)
in a complex water-basin of Greece (Nalbantis et al., 2011).

Lilaia \
Water Level
“measurements”

6. Synthetic measurements / models

Synthetic “measurements” were derived from the
multi-cell model by corrupting the corresponding
simulated timeseries using the formula M =S. (1+e),
where M. the synthetic “measurement” at time step i, S,
the value of the simulated time series at step 1 and ¢; a
random number that follows normal distribution with
zero mean and standard deviation equal to 0.1. Two
models were used along with the Kalman filter: (a) the
multi-cell model as provided by Nalbantis et al. (2011)
with ill-calibrated spring conductances (the good
model) and (b) a model that returns a constant value
equal to the mean of the corresponding simulated time
series (the bad model).

/. Implementation of Kalman filter

The integration of the groundwater models with the
Kalman filter was implemented in GNU Octave, the
open source equivalent of Matlab. The groundwater
model is written in C (to maximize speed) and was
compiled into a Matlab executable (MEX) whereas the
Kalman Filter was implemented in an m-file based on
the equations provided by Welch and Bishop (2006).

The matrix R was chosen diagonal with all diagonal
elements equal to 0.01 m?2. The matrix Q was also
diagonal with all diagonal elements (Q,;) being equal.
The filter was applied with four ditferent Q.. values
(0.04, 0.01, 0.0025 and 0.0001 m?). The R;; was kept

constant equal to 0.01 m?.

8. Overview of the Kalman filter effect

e Kalman filter
significantly
improves the
performance of
the bad model,
especially with
larger Q.. values.

» ® When applied on
the good model,

the Kalman filter
is less influenced
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9. Kalman filter in forward modelling

To highlight the benetits of Kalman filter in ground-
water simulations the calibrated multi-cell model of
Nalbantis et al. (2011) was considered as the pertfect
model that describes the real conditions. Then, the RMS
of the measurements, the bad model and the good
model are 4.174, 6.731 and 3.999 m respectively. Note

that the RMS of the measurements at this location is
higher than the RMS of the good model.

RMS of Kalman filter on bad and on good models
Q; (m?) Bad model Good model

p——— RMS (m) RMS (m) Performance has
0.0001 | ¢ _ 6.6639 3.2564<"_ improved! Best

0.0025 = 54317 2 2497 Improvement with
0.01 gets larger. 3.922 2767 Q;=0.0025.
0.04 3.5733 3.5019

10. Kalman filter in indirect inverse modelling

To highlight the benetits of Kalman filter in indirect
inverse groundwater modelling, the deterministic
innovations of the two models were compared with the
Kalman filter innovations for different Q.. values. The
Kalman filter innovations tend to make more
distinguishable the difference between the
performances of the good and the bad model.

Kalman filter/deterministic innovations of bad and good models

Q; (m?) Bad model Good model Ratio
innovation (m) | innovation (m)

0.0001 7.9165 4.7953 1.651

0.0025 6.3965 3.0836 2.074 =71

0.01 3.9978 1.9732 2.026 —

0.04 1.5991 0.9124 1753 J Deterministic
“T1

innovation has the
Deterministic 7.9957 5.4248 1.474 lowest ratio.

Greater ratio
achieved with

11. Conclusions

In our case study, Kalman filter benefited both forward
and inverse groundwater modelling. In forward
modelling, the Kalman filter improved the model
performance even in cases where the measurements
had higher RMS than the model. This improvement is
desirable in applications where the knowledge of
present conditions is important (e.g. stochastic forecast).
In the indirect inverse modelling the filter, through
Kalman filter innovations, made more distinguishable
the difference between the bad and the good models,
which most probably will facilitate the optimization
algorithm. In both forward and inverse modelling there

was an optimum covariance matrix of the process-

noise (Q; the same for both cases) that maximized the
benetfits of the Kalman filter.
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