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Introduction and motivation 
• Geophysical processes, e.g.,  like rainfall or river discharge, can be probabilistically 

described if treated as random variables obeying a distribution law. 

• Of course, choosing a proper probabilistic model is not a trivial task. The common 
practice is to choose one of the few popular distributions based on empirical 
considerations e.g., the summary statistics of the data. 

• Regarding rainfall, numerous probability models have been suggested as 
appropriate, depending on the time scale or the study area; however, a theoretically 
justified and “universally” accepted model does not exist. 

• In contrast, the principle of maximum entropy offers a theoretical basis for selecting 
a distribution law, based on deduction rather than on trial‐and‐error procedures. 
Yet, the resulting maximum entropy distribution is not unique as it depends on the 
maximized entropic form and the imposed constraints. 

• Here, we use the principle of maximum entropy and we suggest and justify simple 
and general constrains that are suitable for positive, highly varying and asymmetric 
random processes, like rainfall. 

• We test the performance of the resulting maximum entropy distributions by 
studying rainfall worldwide, at various time scales. 
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Entropy measures 
• What is entropy? 

i. Entropy as a concept dates back to the works of Rudolf Clausius in 1850 and of 
Ludwig Boltzmann around 1870 who gave entropy a statistical meaning and 
related it to statistical mechanics. Next, the concept of entropy was evolved by J. 
Willard Gibbs and Von Neumann in quantum mechanics, and was reintroduced in 
information theory by Claude Shannon in 1948.  

ii. Information entropy is a purely probabilistic concept and is regarded as a 
measure of the uncertainty related to a random variable (RV). 

• In literature there are more than twenty different entropy measures [1], proposed 
mainly as generalizations of Boltzmann‐Gibbs‐Shannon (BGS) entropy, which is the 
most famous and well justified entropy measure. The BGS entropy for a non‐
negative continuous RV X with density function 𝑓𝑋(𝑥) is defined as 

 𝑆BGS = − ∫ 𝑓𝑋 𝑥 ln𝑓𝑋 𝑥 d𝑥∞
0   (1) 

• A famous generalization was proposed by Rényi in 1961, while another one, that 
gained popularity the last decades, is the Havrda‐Charvat‐Tsallis (HTC) entropy 
[2,3], defined as  

 𝑆HCT = 1
1−𝑞 ∫ 𝑓𝑋 𝑥 𝑞d𝑥 − 1∞

0   (2) 

which for 𝑞 → 1 converges to the BGS entropy. 
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The principle of maximum entropy (POME) 
• The principle of maximum entropy, established by Edwin Jaynes [4,5], essentially 

relies in finding the most suitable probability distribution under the available 
information. According to Jaynes, the resulted maximum entropy distribution “is the 
least biased estimate possible on the given information…”.  

• Mathematically, the given information used in the principle of maximum entropy, is 
expressed as a set of constraints formed as expectations of functions 𝑔𝑗( ) of X, i.e., 

 𝐸 𝑔𝑗 𝑥 = ∫ 𝑔𝑗 𝑥
∞
0 𝑓𝑋 𝑥 d𝑥 = 𝑐𝑗 ,     𝑗 = 1, … ,𝑛 (3) 

• The resulting maximum entropy distributions emerge by maximizing the selected 
form of entropy with constraints 𝑐𝑗 , and with the additional constraint (to guarantee 
the legitimacy of the distribution)  

 ∫ 𝑓𝑋 𝑥∞
0 d𝑥 = 1 (4) 

• The general solution of the maximum entropy distributions resulting from the 
maximization of BGS entropy and the HCT entropy (accomplished by using the 
method of Lagrange multipliers) are, respectively, 

 𝑓𝑋 𝑥 = exp[−𝜆0 − ∑ 𝜆𝑗𝑛
𝑗=1 𝑔𝑗 𝑥 ] (5) 

 𝑓𝑋 𝑥 = 1 + 1 − 𝑞 𝜆0 + ∑ 𝜆𝑗𝑛
𝑗=1 𝑔𝑗 𝑥

−1/(1−𝑞)  (6) 
where 𝜆𝑗, with j =0,…, n are the Lagrange multipliers linked to the constraints. 
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Selecting the constraints 
• The choice of the imposed constraints is the most important and determinative part 

of the method as it defines uniquely the resulting maximum entropy distribution. 
• Choosing constraints, however, is not trivial; theoretically, the expectation of any RV 

function can be used. 
• Commonly, entropy maximization is done by assuming known mean and variance, 

which leads to (a) the Gaussian distribution in the BGS entropy case, and (b) a 
symmetric bell‐shaped distribution with power‐type tails in the HCT entropy case. 

• So, how should we chose constraints? 
i. Constraints should express our state of knowledge concerning a RV and should 

summarize all the available information from both observations and theoretical 
considerations. 

ii. We can assume that some coarse features of the RV, e.g., the mean or the variance, 
are more likely to be preserved in the future than finer features, e.g., the kurtosis 
coefficient. Therefore, constraints should be simple and express features that are 
robust to estimate from the sample, and are likely to be preserved in the future. 

iii. For some geophysical processes we may know important prior characteristics of the 
underlying distribution that should be preserved, e.g., a J‐shaped or bell‐shaped 
distribution or a heavy‐ or light‐tailed distribution. So, the constraints should 
provide a distribution consistent with the empirical evidence. 
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The expectation of ln𝑋 
• Here, we aim to define and justify the use of some simple and general constraints, 

suitable for geophysical RVs, to use with the BGS entropy. 
• The geometric mean μG given by 

 𝜇𝐺 = ∏ 𝑥𝑖𝑛
𝑖=1

1 𝑛⁄ = exp 1
𝑛
∑ ln𝑥𝑖𝑛
𝑖=1 = exp ln𝑥  (7) 

is measure of central tendency, with the convenient property for geophysical 
processes to be defined only for positive values. This gives an intuitively meaning to 
formulate the expectation of ln𝑋 as a constraint 

 𝐸(ln𝑋)  = ln𝜇G (8) 
• Apart from its relationship to the geometric mean and its simplicity, the expectation 

of ln 𝑋, has some desired properties that make it an essential constraint for 
positively skewed RVs. Samples drawn from positively skewed, or even more, from 
heavy‐tailed distributions, e.g., like those of daily rainfall, exhibit values that act like 
outliers and consequently strongly influence the sample moments, especially those 
of higher order. On the contrary, the function ln 𝑥 applied to this kind of samples 
eliminates the influence of those “extreme” values and offers a very robust measure 
that is more likely to be preserved than the estimated sample moments. For this 
reason the logarithmic transformation is probably the most common 
transformation used in hydrology as it tends to normalize positively skewed data. 
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The expectations of moments 
• The common use of mean and variance as constraints must be attributed to their 

link with the physical principles of momentum and energy conservation. However, 
this link is invalid in geophysical processes, e.g., the mean of the rainfall is not its 
momentum and its variance it is not its energy.  

• Theoretical arguments (apart from simplicity and conceptual meaning as measures 
of central tendency and dispersion) which favor the mean and the variance against, 
e.g., fractional moments of small order or even negative do not exist. For example, if 
the second moment is likely to be preserved then probably the square root moment 
is more likely to be preserved as it is more robust in outliers.  

• Additionally, we can relate low order fractional moments with the ln 𝑥 function, as it 
is well known that 

 lim
𝑞→0

𝑥𝑞−1
𝑞

= ln 𝑥 (9) 

Thus, we may say that the function 𝑥𝑞  for small values of q behaves similar to ln 𝑥. 
• Based on this reasoning we deem that, instead of choosing the order of moments a 

priori, it is better to let the order unspecified, so that any value can be a posteriori 
chosen, including small fractional values. This leads in imposing as a constraint any 
moment 𝑚𝑞 of order q, i.e.,  

 𝑚𝑞 = 𝐸 𝑋𝑞 = ∫ 𝑥𝑞∞
0 𝑓𝑋 𝑥 d𝑥 (10) 
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The expectations of p‐moments 
• Many entropy generalizations have emerged to explain empirically detected 

deviations from exponential type distributions that arise from the BGS entropy using 
moment constraints. Yet, generalized entropy measures have been criticized for 
lacking theoretical consistency and for being arbitrary. 

• Here, we generalize the important notion of moments [6] inspired by the limiting 
definition of the exponential function. First, we define the generalized power function  

 𝑥𝑝
𝑞 = ln 1 + 𝑝 𝑥𝑞 /𝑝 (11) 

which for 𝑝 → 0 converges to the familiar power function 𝑥𝑞 . Thus, we generalize 
classical moments by defining the p-moments as  

 𝑚𝑞
𝑝 = 𝐸 𝑋𝑝

𝑞 = 1
𝑝 ∫ ln 1 + 𝑝 𝑥𝑞∞

0  𝑓𝑋 𝑥 d𝑥 (12) 

• We believe that there is a strong rationale that supports the use of p‐moments, i.e., 
i. Generalized entropy measures have been successfully used; why not p‐moments with the 

standard definition of entropy?  
ii. Maximization of the BGS entropy using p‐moments leads naturally to power‐type 

distributions (including the Pareto and Tsallis distributions for q = 1 and q = 2, respectively). 
iii.  p‐moments are simple and, for 𝑝 = 0, become identical to classical moments, i.e., 𝑚𝑞

0 = 𝑚𝑞. 
iv. They exhibit similar properties with the ln 𝑥 function, and thus are suitable for positively 

skewed RVs; additionally, compared to 𝐸(ln 𝑥) they are always positive. 
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The Generalized Gamma distribution 
• Maximization of the BGS entropy, given in (1), with constraints (8) and (10) results 

in the density function 
 𝑓𝑋 𝑥 = exp −𝜆0 − 𝜆1ln𝑥 − 𝜆2𝑥𝑞  (13) 

which after algebraic manipulations and parameter renaming can be written as 

 𝑓𝑋 𝑥 = 𝛾2
𝛽 𝛤 𝛾1 𝛾2⁄   𝑥

𝛽

𝛾1−1
exp − 𝑥

𝛽

𝛾2
, 𝑥 ≥ 0 (14) 

corresponding to the distribution function 

 𝐹𝑋 𝑥 = 1 − 𝛤 𝛾1
𝛾2

, 𝑥
𝛽

𝛾2
/𝛤 𝛾1

𝛾2
 (15) 

where 𝛤( ) is the Gamma function and 𝛤( , ) the upper incomplete Gamma functions. 
• This distribution, commonly attributed to Stacy [7], is known as the Generalized 

Gamma distribution (GG). It is a very flexible distribution that includes many well‐
known distributions as special cases, e.g., the Gamma, the Weibull, the Exponential, 
or the Chi‐square distributions.  

• The distribution comprises the scale parameter β, and the shape parameters γ1 and 
γ2. The parameter 𝛾2 mainly controls the asymptotic behavior of the right tail and 
the parameter 𝛾1 that of the left tail. Specifically, the distribution is J‐shaped for 
0 < 𝛾1 < 1, bell‐shaped for 𝛾1 > 1, and equals the Generalized Exponential 
distribution for 𝛾1 = 1. 
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The Generalized Beta of the second kind distribution 
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• Maximization of the BGS entropy, given in (1), with constraints (8) and (12) results 
in the density function 

 𝑓𝑋 𝑥 = exp −𝜆0 − 𝜆1ln𝑥 − 𝜆2 ln 1 + 𝑝 𝑥𝑞 /𝑝  (16) 
which after algebraic manipulations and parameter renaming can be written as 

 𝑓𝑋 𝑥 = 𝛾3
𝛽 B 𝛾1,𝛾2

𝑥
𝛽

𝛾1  𝛾3−1
1 + 𝑥

𝛽

𝛾3 − 𝛾1+𝛾2
, 𝑥 ≥ 0 (17) 

corresponding to the distribution function 
 𝐹𝑋 𝑥 = B𝑧 𝛾1, 𝛾2 /𝐵 𝛾1, 𝛾2 , where 𝑧 = 1 + 𝑥 𝛽⁄ −𝛾3 −1 (18) 

where 𝐵( , ) and 𝐵𝑧( , ) denote the Beta and the incomplete Beta functions, 
respectively. 

• This distribution is known as the Generalized Beta of the second kind (GB2) and has 
been rediscovered many times under different names and parameterizations. 
Probably, Milke and Johnson [8] were the first who formed it, and proposed it for 
describing hydrological and meteorological variables.  

• The distribution is an extremely flexible four‐parameter distribution comprising 
one scale parameter 𝛽, and three shape parameters 𝛾1, 𝛾2, 𝛾3, which allow the 
distribution to form innumerable different shapes. Many of the well‐known 
distributions are special or limiting cases of the GB2 distribution (see e.g. [9,10]). 
 



The Burr type XII distribution 
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• The GB2 distribution is extremely flexible but not so easy to handle. Yet, one simple 
three‐parameter special case, with analytical distribution function, can be derived 
by setting 𝛾1 = 1 in the density function of GB2. After some trivial algebraic 
manipulations and parameter renaming the distribution Burr type XII is derived, 
introduced by Burr in 1942 in the framework of distribution system similar to 
Pearson’s. Its density function is 

 𝑓𝑋 𝑥 = 1
𝛽

𝑥
𝛽

𝛾1−1
1 + 𝛾2

𝑥
𝛽

𝛾1 − 1
𝛾1𝛾2

−1
, 𝑥 ≥ 0 (19) 

corresponding to the distribution function 

 𝐹𝑋 𝑥 = 1 − 1 + 𝛾2
𝑥
𝛽

𝛾1 − 1
𝛾1 𝛾2  (20) 

• This flexible power‐type distribution, comprises the scale parameter 𝛽 and the 
shape parameters 𝛾1 and 𝛾2. In literature, the distribution is given in a different 
form (see e.g. [11]). However, as given here, the parameter 𝛾2 completely controls 
the asymptotic behavior of the right tail and the parameter 𝛾1 that of the left tail. In 
detail, the distribution is J‐shaped for 0 < 𝛾1 < 1, bell‐shaped for 𝛾1 > 1, and for 
𝛾1 = 1 equals the Pareto type II distribution. Additionally, (19) constitutes a kind of 
a generalization of the as for 𝛾2 → 0 converges to the Weibull distribution. 



Application to rainfall: The dataset 

The data used here, are rainfall records of the Global Historical Climatology Network‐Daily 
database (http://www.ncdc.noaa.gov/oa/climate/ghcn‐daily) which includes data recorded at 
over 40 000 stations worldwide. Many of those records, however, are too short in length, have 
missing data, or, contain data suspect in terms of quality. Thus, we selected for analysis only those 
records fulfilling the following criteria: (a) record length greater or equal than 50 years, (b) 
missing data less than 10% and, (c) data with quality flags less than 0.1%.  
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This map depicts the 
locations of the stations 
studied. A total of 11 697 
daily rainfall records. 



Methodology 

• To test the suitability of the afore‐mentioned distributions to describe 
rainfall at several time scales we proceed as follows: 
i. We aggregated the original time series of each station (given in the daily 

time scale), at several time scales k, by calculating the average of non‐
overlapping runs of k sequential values. The average of a k‐run was 
calculated only if the percentage of missing values within the run was less 
than 15%, e.g., in a 7‐run (weekly time scale) this is one day missing. 

ii. We selected the positive rainfall values at each time scale and estimated the 
sample coefficients of L‐variation (L‐CV) and L‐skewness (L-CS) (denoted 
here as L2‐points). 

iii. We formed the theoretical L-CS vs. L‐CV space (denoted here as L2‐space) for 
the Generalized Gamma and Burr type XII distributions. 

iv. We compared the sample L2‐points at each time scale with the theoretical 
L2‐space of the distributions and estimated the percentage of L2‐points that 
belong within the theoretical L2‐space. 
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L2‐space of the GG distribution 
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The figure depicts the theoretical L2‐space of the GG distribution and the sample L2‐points 
(blue dots) of all time scales examined. The red dots show the average L2‐point at each time 
scale (from left to right the scale gets finer, varying from yearly to daily scale). 

Gamma line 

Generalized Exponential line 



L2‐space of the Burr type XII distribution 
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The figure depicts the theoretical L2‐space of the BurrXII distribution and the sample L2‐
points (blue dots) of all time scales examined. The red dots show the average L2‐point at 
each time scale (from left to right the scale gets finer, varying from yearly to daily scale). 

Pareto type II line 



Performance of the GG distribution 
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The figure depicts the percentage (%) of the sample L2‐points, at each time scale, that lie 
within the theoretical L2‐space of the GG distribution. Almost at all time scales examined the 
distribution performs exceptionally well. 



Performance of the Burr type XII distribution 
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The figure depicts the percentage (%) of the sample L2‐points, at each time scale, that lie 
within the theoretical L2‐space of the Burr type XII distribution. The distribution performs 
well at the daily and the yearly scales with its worst performance at the monthly scale. 



Conclusions 
• We use the principle of maximum entropy with the BGS entropy to derive suitable 

distributions for geophysical processes.  

• The imposed constraints should, first, summarize all the available information from 
both observations and theoretical considerations, and second, be simple and 
express features that are likely to be preserved in the future. 

• We propose and justify the use of three simple constraints (a) the 𝐸(ln𝑋), (b) 
moments of arbitrary order, and (c) p‐moments of arbitrary order. 

• p‐moments, which are a generalization of the classical moments, when they are 
used with the BGS entropy lead straightforwardly to power‐type distributions, thus 
avoiding generalized entropy measures. 

• The combination of the studied constraints produces two very flexible distributions, 
(a) the Generalized Gamma (exponential‐type), and (b) the Generalized Beta of the 
second kind (power‐type). 

• The empirical analysis performed to 11 697 rainfall records worldwide, showed 
that the Generalized Gamma distribution is an exceptional model for rainfall at all 
time scales, while the Burr type XII distribution (a special case of the GB2 
distribution) is a good model for the daily and annual time scales. 
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