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Linking scales

Both disaggregation and downscaling approaches aim at modelling links
among different temporal and/or spatial scales of a given process
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Rainfall disaggregation and downscaling

Disaggregation and downscaling models simulate rainfall fields at a specific
scale (higher resolution) given a known precipitation field (measured or
simulated) at a certain coarser scale (lower resolution)

Applications (Koutsoyiannis and Langousis, 2011):
1. Link global‐scale weather prediction models to hydrologic impact

studies
2. Use satellite precipitation estimates for hydrologic purposes
3. Provide hourly or sub‐hourly precipitation data (key for many

hydrologic applications) consistent with long historical point rainfall
records coming from daily raingauges

4. Couple several stochastic models to reproduce simultaneously the
long‐term and the short‐term stochastic structure of precipitation
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Downscaling  vs Disaggregation

Downscaling aims at producing a finer scale rain field Y with the required
statistics, being statistically consistent with the given field X at the coarser
scale

Disaggregation produces a finer scale rain field Y that adds up to the given
coarse scale total X. Thus, an equality constraint is introduced (C is a
matrix of coefficients )
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Comparison of two existing approaches

Multifractal approach: based on the empirical detection of multifractal
scale invariance of rainfall in a finite but practically important ranges of
scales (for a detailed review: Veneziano and Langousis, 2010). A simple
procedure to construct discrete multifractal fields is based on the concept
of multiplicative cascades

Hurst‐Kolmogorov approach: based on the observation that: “Although in
random events groups of high or low values do occur, their tendency to
occur in natural events is greater” (Hurst, 1951). This can be explained by
multiple scales of changes within a stationary setting (Koutsoyiannis,
2002)
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Definitions

A natural process R(t) is usually defined in continuous time t, but we
observe or study it in discrete time as Ri(δ), which is the average of R(t) over
a fixed time scale δ in discrete time steps i = 1, 2, …

Let fδ be a time scale larger than δ where f is a positive integer (for
convenience δ will be omitted). Then, we can define the aggregated Zi(f)
and the mean aggregated Ri(f) stochastic processes on that time scale as

e.g., Z1(f) = R1 + … + Rf ; Z2(f) = Rf+1 + … + R2f
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Multiplicative random cascade (MRC)

Let R1(f) be the average rainfall intensity averaged over time scale f at the
time origin, which is part of a stationary stochastic process in discrete time
with mean <R1(f)> = μ0 and variance var[R1(f)] = σ0

2 (Gaume et al., 2007)

R1(f) (for convenience R1,0) is multiplied by b different weightsW so as to be
distributed over b sub‐scale steps of equal size Δs = f/b (Rj(Δs); j = 1, …, b)

W are identically distributed for all scales with mean μW and variance σW
2

After repeating this procedure k times (k cascade levels), the resulting
discrete random field at the time scale Δsk = b‐kf is of the form
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• j = 1, 2, …, bk is the position in the series at level k

• i is the cascade level

• denotes a ceiling function which defines the
position in the series at the level i
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Dyadic cascade (b = 2)
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Kinds of MRCs

For a canonicalMRC (downscaling) the expected value of the mean field at
the level k equals the expected value of the field at the initial level

The weightsW are statistically independent and satisfy <W> = μW = 1

For a microcanonical MRC (disaggregation) the mean field at the level k
equals the field at the largest scale, which means that for every pair of
successive aggregation levels (k–1 and k) of the cascade we have

Thus, the weights W are dependent random variables which satisfy μW = 1
andW < b
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Summary statistics

Mean

where μW = 1

q‐moment

Second moment

Variance
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Autocorrelation function (b = 2)

Canonical MRC

where t is the lag, and

Microcanonical MRC

where,
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The exponent hj,k(t)

The exponent hj,k(t) (at the position j = 1, …, 2k – t in the cascade at level k)
denotes the number of vertices of the tree belonging to both paths leading
to the vertices Rj,k and Rj+t,k from the start vertex R1,0 (not included).

where Θ[n] is the discrete form of the Heaviside step function, which is
defined as a function of a discrete variable n (integer)

The exponent hj,k(t) is bounded in if 0 < t ≤ 2k – 1, while
hj,k(t=0) = k, given any j and k

12

( )
( )( ) [ ]

( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

<>

>>

>≤−−Θ+

= −

−

+−

+−−

−
−

0,
0,2
0,2

,

,

,21
1

1

,12

,12

1
1,

,

ttj
tj
tj

th

th

tjth

th k

k

kj

ktj

k
kj

kj

k

k

[ ]
⎩
⎨
⎧

≥
<

=Θ
0
0

,1
,0
n
n

n

⎣ ⎦[ ]tk 2log1,0 −−



Example for a canonical MRC
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Monte Carlo simulations

Numerical simulations are used to explore the behaviour of the ensemble
statistics of the random field generated by a canonical dyadic MRC

We assumed unit mean and variance σ0
2 = μ0 = 1 of the rainrate R1,0 at the

largest scale

iid weightsW are log‐normally distributed (Molnar and Burlando, 2005)

where Y is a normal N(0,1) random variable and α = 0.5 is a parameter

We assumed k = 7 downscaling levels thus generating time series of length
n = 27 = 128
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Hurst‐Kolmogorov process (HKp)

The HKp can be defined as a stochastic process which, for any integer i and
j and any time scales f and l, has the property

where 0 < H < 1 is the Hurst coefficient and Rj is Gaussian

For the relevant process Zj(f) the following holds

The autocorrelation function of either of Ri(f) and Zi(f), for any aggregated
time scale f, is a only function of the lag t and H (Koutsoyiannis, 2002)
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Disaggregation approach

Let Z1(f) be a Gaussian random variable of the aggregated HKp at the
largest scale of interest f, which is to be disaggregated by a dyadic cascade

Z1(f) (for convenience Z1,0) is partitioned into b = 2 variables on the time
scale Δs = f/2, i.e. the first cascade level (k = 1)

Likewise, at the cascade level k we have

Thus, it suffices to generate Z2j–1,k and then obtain Z2j,k from the equation
above

A linear generation scheme is used, which preserves autocorrelations with
two earlier lower‐level variables (level k) and one later higher‐lever
variable (level k–1) (Koutsoyiannis, 2002)
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Generation procedure

In each disaggregation step the first lower‐level variable Z2j–1,k is generated

hence, the second one is

Parameters a2, a1, b0 and b1 and the variance of the innovation term V are
estimated in terms of correlations ρt, which are independent of j and k,
and the variance of the HKp at the level k, σk

2 (Koutsoyiannis, 2001)
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Conclusions

Structures of two simple and widely used approaches of stochastic
disaggregation and downscaling for rainfall time series are compared by
means of theoretical reasoning and Monte Carlo experiments

Autocorrelograms produced by multiplicative random cascade (MRC)
models seem to have a physically unrealistic attitude to the rainfall process

We started assuming a stationary setting of the entire process at the
largest scale, then we concluded with a downscaled process that we
demonstrated to be non‐stationary

The other stepwise disaggregation approach effectively generates
Gaussian time series that respect the Hurst phenomenon

However, observed rainfall time series (especially at the resolution needed
for hydrologic applications) are not Gaussian; thus they must be
normalized to estimate the model parameters. This could be not always
easy especially for high resolution data sets with high intermittency.
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