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Chapter 1

Introduction

1.1 The context of the research

1.1.1 Introduction

Rainfall is the main input to most hydrological systems, and hence a wide range of hydrological

analyses, for 
ood, water resource, water quality or ecological studies, require quanti�cation of

rainfall inputs. This may be possible using empirical observations, but there is often a need to

extend available data in terms of record length, temporal resolution and/or spatial coverage. Hence

rainfall models are required, and for almost all applications, it is rainfall over an area, i.e. the spatial

distribution of rainfall, that must be characterized.

In the last decade, radar data for the UK have become routinely available as a means of

recording spatial rainfall. Although radar measurement has a number of limitations with respect

to performance (see, e.g. Collier (1989)) and long records of continuous data are not yet available,

nevertheless it represents an important source of information which allows, for the �rst time, the

continuous spatial distribution of rainfall to be studied. In parallel, new research into spatial rainfall

modelling has produced a range of tools with potential hydrological application. However, most

methods of hydrological design and simulation are relatively primitive. Areal reduction factors,

assuming uniform spatial distribution, are widely applied (e.g. NERC (1975)), and modelling of

raingauge networks has received relatively little research attention or application. Radar data

have been applied in the context of real time 
ood estimation using simple short-term translation

of observed images, but not for the evaluation of more complex modelling approaches. There is

a need, therefore, to combine the strengths of new data sources and new modelling methods to

produce a new generation of rainfall modelling tools to support hydrological practice. Given the

evident complexity of spatial rainfall �elds, this is an extremely challenging task.

In the context of UK 
ood design, recent research at the Institute of Hydrology (Calver, Lamb

& Morris 1999), supported by MAFF, has been exploring the use of continuous simulation models

for 
ood estimation. As discussed in the Flood Estimation Handbook (Institute of Hydrology

1999), this approach has potential bene�ts in overcoming the problems of representing the joint

distribution of precipitation and antecedent conditions required when event simulation is used, but

a number of new problems arise. One of these is the requirement for long time-series of rainfall

6



CHAPTER 1. INTRODUCTION 7

inputs, and hence for appropriate rainfall models. The research reported here was stimulated by

this need and the recognition that the potential of new developments in spatial rainfall data and

modelling needed to be explored. The report represents recent research at Imperial College and

University College London, supported in part by The Ministry of Agriculture, Fisheries and Food,

and in part by the Natural Environment Research Council.

1.1.2 The importance of spatial rainfall for 
ood estimation

While many studies have highlighted the importance of the temporal distribution of rainfall on


ood hydrograph properties, a general understanding of the importance of spatial rainfall for 
ood

management is not yet available; this will vary, for example, with the spatial scale of the catchment

(which will determine the spatial and temporal scale of the rainfall input), the catchment properties

and rainfall type. A recent review of the e�ects of spatial and temporal properties of rainfall upon

the stream 
ow hydrograph is given by Singh (1997). Several studies have demonstrated that

e�ects of storm movement can be important. For example, Ngirane-Katashaya & Wheater (1985)

showed that storm direction and speed of movement can be signi�cant for rapidly responding

catchments; downstream movement can enhance 
ood peaks and upstream movement can reduce

them, with resonance e�ects generated as the storm speed approaches that of runo� routing. The

e�ects of the spatial distribution of rainfall will depend on the nature and spatial distribution

of catchment properties. Naden (1992) found that for the Thames basin, the spatial variation of

rainfall could have a marked e�ect on channel network response, but that the slow response of chalk

catchments damped out e�ects of rainfall variability. In complete contrast, Michaud & Sorooshian

(1994), investigating 
ood runo� from convective thunderstorm rainfall in the arid South West of

the USA, have shown that high spatial resolution of rainfall is essential to simulate 
ood peaks

(coarse resolution data led to underestimation of 
ood peaks by 50-60%). It can be concluded

that the spatial and temporal variability of rainfall can be extremely important in in
uencing 
ood

hydrograph shape and volume, but that the importance will vary greatly as a function of catchment

and rainfall properties.

1.2 Background to rainfall model selection

There are several di�erent approaches to the modelling and simulation of precipitation. Cox &

Isham (1994) classi�ed precipitation models into three broad categories. `Empirical statistical

models' are, as the name implies, essentially based on empirical analysis of raingauge data and do

not attempt to model explicitly rainfall structure or processes. They generally consider a single time

scale, for example, daily or hourly (Foufoula-Georgiou & Lettenmaier 1987), and have most widely

been used to represent single site rainfall. While it is in principle straightforward to aggregate

to larger time intervals, such models cannot be directly used to disaggregate to smaller intervals.

Multi-site developments include the Generalized Linear Models (GLMs) of Stern & Coe (1984) and

Chandler and Wheater (1998a,b), which can readily represent spatial non-stationarity and temporal

trend in daily rainfall.

In contrast, `dynamic meteorological models' encapsulate the physical processes of mass, mo-

mentum and energy transport in the atmosphere explicitly in a continuum-based representation,

requiring detailed data input of all atmospheric conditions and atmosphere-surface interactions



CHAPTER 1. INTRODUCTION 8

and extensive computational resources (Mason 1986). Such methods are widely applied in weather

forecasting and Global Climate Models (GCMs).

The third category is that of `intermediate stochastic models', which are modelled in continuous

space and time and hence can be aggregated to any required spatial or temporal scale. A simpli�ed

conceptual representation of rainfall processes is de�ned, using simple probabilistic assumptions

which lead to highly parameter eÆcient models. The model parameters thus represent observable

rainfall features and can be used to simulate physical precipitation processes. The approach is

based on single-site models developed by Rodriguez-Iturbe et al. (1987a, 1988), in which storm

arrivals are modelled using a Poisson process and associated with each storm arrival is a random

number of cells, of random duration and intensity, dependent on the model process. Much work

has been carried out in further development and validation of point models over the last decade

(Onof & Wheater 1993, Onof & Wheater 1994, Kakou 1997, Samuel 1999, Velghe, Troch, de Troch

& Van de Velde 1994, Khaliq & Cunnane 1996, Verhoest, Troch & de Troch 1997, Gyasi-Agyei &

Willgoose 1997, Calenda & Napolitano 1999). The framework for extension to spatial-temporal

modelling was developed by Cox & Isham (1988) and Cox & Isham (1994), with further recent

development by Northrop (1998).

An additional category which has emerged over the last decade and a half is that of scaling

and multi-scaling models (Foufoula-Georgiou 1998). These focus on the preservation of certain

properties across spatial scales and are able to reproduce the scaling nature of the rainfall with

a very small number of parameters (Tessier, Lovejoy & Schertzer 1993, Gupta & Waymire 1993).

These are not related to the observed storms and cells of rainfall, although they can be linked to

climatological features (Perica & Foufoula-Georgiou 1996).

For continuous simulation modelling in the context of 
ood design, computational constraints

preclude the use of dynamic meteorological models. Scaling and multi-scaling models have diÆculty

with the accurate reproduction of the wet/dry �eld (Gupta & Waymire 1993) and the full space-

time modelling of rainfall using random cascades is an ongoing area of research as far as theoretical

development is concerned (Over & Gupta 1996). Such modelling has been mostly developed for

short-term forecasting (Marshall 1996) and not long term simulation. The approach in this study

is therefore based on exploration of the potential and relative merits of empirical statistical models

and intermediate stochastic models, represented by the Generalised Linear Models of Chandler and

Wheater and the Poisson-process based spatial-temporal models of Northrop, respectively.

1.3 Modelling strategy

1.3.1 Spatial-temporal models

The modelling of rainfall in continuous space and time gives complete 
exibility of application,

and the Poisson models discussed above are also attractive in being parsimonious in the number

of their parameters, and the fact that the model parameters have physical signi�cance. A major

thrust of this study has therefore been to investigate the potential applicability of this family of

models for continuous simulation. One limitation is that, at their present stage of development,

these models represent rainfall as stochastically stationary in space. Hence systematic e�ects,

such as topographic variation in rainfall, cannot be represented. The consequences of this are

obviously dependent on the spatial scale and location of application, and remain to be de�ned for
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rainfall-runo� application. The models are also stationary in time. Seasonality can be included,

for example by allowing di�erent parameters for each month, and in principle long-term variability

(e.g. climate change) could be similarly included. However, data support for this is not available at

present. A �nal point concerning these models is that they require adequate spatial data to allow

identi�cation of model parameters representing spatial structure. This is most obviously provided

by radar measurements, although there are associated problems of data quality and available record

lengths. The extent to which raingauge data can be used to identify local spatial structure has also

been investigated in this study and is reported below.

1.3.2 Generalized Linear Models (GLMs)

The GLM approach represents point rainfall at a number of locations by what is essentially an

extension of a multiple regression approach (spatial correlation | that is, association over and

above deterministic regional e�ects | is introduced through a model of the noise). In this way,

any important explanatory variables can be included (for example elevation, rainshadow e�ects,

distance from the sea, as well as previous rainfall amounts to allow for temporal dependence). The

model is thus extremely 
exible, and can incorporate spatial non-stationarity. Once the underlying

independent controls on spatial non-stationarity have been de�ned, it can be used to simulate

rainfall at any location within the modelled �eld, not just those gauges used in calibration. In

addition, its eÆcient model identi�cation structure allows for possible long-term trend or periodicity

to be rigorously investigated, and included in simulations as appropriate. However, given the

complexity of the spatial-temporal rainfall process, such models have only been applied at the daily

time-scale. Although there are important exceptions, for most 
ood estimation problems at the scale

of UK catchments, sub-daily rainfall is required for rainfall-runo� modelling. Ideally, therefore, this

approach should be combined with some other method if �ner temporal-scale behaviour is required.

1.3.3 Hybrid Modelling Approaches

It was originally proposed for this study that a hybrid modelling approach could be used to retain

the bene�ts of the GLM in representing spatial and temporal non-stationarity, and of the spatial-

temporal model in representing �ne-scale temporal and spatial behaviour. This would be done

through use of the GLM to de�ne probabilities of rainfall at locations of interest on a given day in

a sequential simulation, and rejection sampling to identify those simulations of the spatial-temporal

model consistent with the (non-stationary) daily simulation. This approach was investigated �rst

for the single-site problem, but after theoretical and simulation studies, the method was rejected as

infeasible for the spatial-temporal problem. Nonetheless, a brief account of the work is presented

in chapter 5 of this report.

An alternative hybrid approach has been explored, using the concept of spatial-temporal dis-

aggregation. The general problem considered is as follows: given daily rainfall data (observed

or simulated) from a number of locations, and one or more sub-daily data sets (again, observed

or simulated, but in the latter case constrained to be consistent with the daily values), can an

appropriate spatially-distributed sub-daily set of values be generated? Methodology due to Kout-

soyiannis for addressing this type of problem (Koutsoyiannis 1994, Koutsoyiannis & Manetas 1996,

Koutsoyiannis 2000) has been adapted and applied here. For the requirements of a full simulation

model, it is necessary to provide spatially-distributed daily rainfall (which can be obtained from
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the GLM) and one �ner temporal-scale data series. In this case single site temporal disaggregation

is required, and two approaches are considered.

1.4 Data

The primary source of continuous spatial data used in this study has been a radar data set from

the Warden Hill radar in south-west England. Data are available for the period October 1993 to

March 1997 at a resolution of 2� 2 km2 over a radius of 76km and 5� 5 km2 over a 210 km radius.

Some gaps in the record occur; obvious sources of error have been removed. However no attempt

has been made to re-calibrate the data series. Due to artefacts, completely dry images are very

rarely observed. The impact of this is discussed in detail in the report.

Raingauge data have been used for three areas. The Brue catchment in south-west England

lies within the Wardon Hill radar �eld, and has a dense network of 49 0.2mm tipping bucket

raingauges within an area of approximately 120 km2, installed as part of the HYREX experiment.

Further details may be found in Wheater et al. (1999). Data are available from September 1993

to September 1998. A second data set comes from an area of some 40 � 50 km2 in the south

Galway region of western Ireland. A network of 23 daily raingauges with records spanning the

period 1941{1996 is augmented by 2 monthly records from the late 19th century to 1994. The

third data set used is a network of 44 daily raingauges from an area of 30� 40 km2, in and around

the catchment of the river Blackwater, a tributary of the Thames located between Guildford and

Basingstoke. Further details of each of these networks are given in section 4.2.

1.5 Structure of the report

Following the strategy above, the report is structured as follows: In chapter 2 , the structure

of the spatial-temporal model is described in detail, together with its �tting to individual events

using the Wardon Hill radar data. In chapter 3, the sequence of rainfall events is analysed and a

continuous simulation model developed and tested, again using radar data. Chapter 4 introduces

the Generalized Linear Modelling methodology for daily data, illustrated using raingauge data from

three areas. These represent a range of climate conditions and raingauge densities.

Applications with limited data are presented in chapter 5. This includes implementation of

the spatial-temporal model with raingauge data, the development and testing of a new method for

spatial-temporal disaggregation based on daily point rainfall data, and the supporting temporal

disaggregation required to generate the sub-daily structure. Chapter 6 concludes the main report

with Summary and Recommendations.

More detailed information is given in a volume of Appendices. Appendix A includes speci�cation

of the spatial-temporal model and the algorithms for model �tting, the derived parameter values

(for event interiors and arrivals) and full results. Appendix B presents documentation for the GLM,

including a User's Guide. Appendix C describes the spatial-temporal disaggregation procedures,

and Appendix D gives details of the work done on single-site hybrid model development.



Chapter 2

Spatial-temporal modelling using

radar data I: modelling of event

interiors

We aim to approximate the complex spatial-temporal rainfall process using a simple stochastic

mechanism. In particular we incorporate some physical knowledge about spatial-temporal rainfall

structure into a parsimonious stochastic model, parameterized in terms of physically meaningful

quantities. This approach can be described as stochastic-mechanistic. The model is a spatial

analogue of the point process based models that have been used to represent the temporal process

of rainfall at a single site (Rodriguez-Iturbe et al 1987, 1988) and a generalisation of the simpler

spatial-temporal models of Cox & Isham (1988). The model is envisaged as having greater physical

realism than these earlier models, albeit at the expense of a certain amount of mathematical

tractability. Its formulation has been guided by inspection and analysis of rainfall radar data

(Northrop 1996). A full account of the derivation of model properties can be found in Northrop

(1998).

2.1 Model development

We develop a model based on a point process and localised areas of relatively intense rainfall called

rain cells. It is assumed that rain cells are located according to some random mechanism in space

and time and that individual rain cells have random durations, spatial extents and intensities.

Observational studies (Petterssen 1956, Austin & Houze 1972) have shown that there is a tendency

for new rain cells to form in the vicinity of existing cells, so that rain cells tend to cluster within

larger scale structures that we will call storms. This hierarchical structure can be re
ected by

specifying a point process in which rain cell locations are clustered in space and time. Storms

themselves tend to cluster in similar manner to form rain events. These rainfall elements can be

characterised in terms of their typical spatial extents and durations (see table 2.1). The model

has been �tted to rainfall radar data covering an area of approximately 10,000 km2 with rainfall

intensities averaged over pixels of area 4 km2. In particular we concentrate on a radar window

consisting of a 52 � 52 array of 2 km � 2 km pixels. The temporal separation of the radar images

11
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rainfall element spatial extent / km2 duration

rain cell 10{50 up to 40 minutes

storm 100{1000 a few hours

rain event > 1000 several hours

Table 2.1: Typical spatial extents and durations of rainfall elements

is 5 minutes and we use images produced by the lowest radar beam, i.e. the level of the atmosphere

nearest the ground. Within a radar image we can reasonably expect to detect rain cells and storms

while a rain event will typically cover the entire radar window at some point during its lifetime.

Therefore, we �t our model to the spatial and temporal interior of a rain evente, i.e., without

including the development and dissipation of rain events in time or their periphery in space and

hence require only one level of clustering in our model { rain cells clustering to form storms at this

stage of the report. In principle we could introduce another layer of clustering, storms within rain

events, if data were available over an area large enough to contain a number of rain events. In

chapter 3 we consider the problem of modelling a continuous temporal succession of events.

The model is constructed in continuous space and time but can be �tted to both rainfall radar

data and raingauge data by evaluating the theoretical properties of the discretized model over the

appropriate spatial or temporal scales respectively. Once we have estimated the parameters of the

model we are able to simulate realizations of rainfall �elds in continuous space and time. A single

parameterization can produce many di�erent realizations for use in Monte Carlo simulation studies

of catchment response.

2.2 Model description { event interiors

We assume that, within a rain event, storm centres occur in a homogeneous Poisson process of

rate � in two-dimensional space (in practice, this means some large region containing the area of

interest) and time. Following each storm centre, cell origins arrive in a temporal Bartlett-Lewis-

type cluster i.e. in a Poisson process of rate � starting with a cell located in time at the storm

centre (see Cox & Isham (1980)). The process of cell origins terminates after a time which is

exponentially distributed with mean �L = 1=
. This time is referred to as the storm duration.

Thus, the number of cells per storm, C, has a geometric distribution with mean �C = 1+�=
. The

temporal process of cell arrivals is identical to one of the single-site, i.e. purely temporal, models

proposed by Rodriguez-Iturbe, Cox & Isham (1987).

Each cell within the storm is displaced from the storm centre by a vector which is drawn from

a bivariate Gaussian distribution with mean 0 and covariance matrix

� =

 
�2x ��x�y

��x�y �2y

!
:

Displacement vectors are drawn independently for each cell. The components of � vary randomly

from storm to storm so that distinct storms can have di�erent sizes and shapes. For example, when

�x = �y, storms for which � is close to +1 or -1 will tend to have a banded structure whereas

storms for which � is near 0 will tend to be circular.
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Figure 2.1: Schematic diagram showing the spatial structure of storms within the spatial-temporal

model for event interiors. Elliptical rain cells are scattered randomly about a storm centre, accord-

ing to a bivariate normal distribution. The cells and storm centre move with the same velocity.

This schematic can be regarded as a snapshot of a storm at a single point in time.

Each cell is elliptical, with a semi-major axis of random length Ac, depositing rain at a constant

intensity X on all points in space covered by its de�ning ellipse during its duration D. We assume

that D has an exponential distribution with mean 1=�. The elliptical cell assumption is desirable

since spatial autocorrelation plots of radar data often have elliptical contours, even at small spatial

lags. For simplicity we assume that each rain cell has the same eccentricity E and orientation � as

the storm within which it is born, so that, in particular, E and � are �xed given�. The assumption

that the rain cell's intensity X is constant over its area and duration is also made for simplicity.

Although the results do not appear to be sensitive to this assumption, it is possible to consider

other shapes for the cell intensity function or to insert irregularity in the form of a high-frequency

`jitter' (Rodriguez-Iturbe et al. 1987). A schematic diagram, showing the displacement of elliptical

cells about a storm centre, is shown in �gure 2.1.

The total rainfall intensity at a spatial location u at time t, Y (u; t), is the sum of the con-

tributions from all cells active at (u; t). The variables Ac, D and X are assumed to be mutually

independent between cells and independent of �. All cells within a storm and the storm centre

itself move with the same random velocity V = (Vx; Vy). Thus, all cells are born within the exist-

ing structure of the storm and the storm shape is not distorted by the motion of the storm. Cell

clusters belonging to distinct storms are independent. We shall refer to this model as the Gaussian

displacements spatial-temporal model (GDSTM).
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A variant of this model which has also been studied is the random ellipse spatial-temporal model

(RESTM), in which the spatial displacement of rain cells about the storm centre has a uniform

distribution over an ellipse with a major axis of random length A. In the special case (of the

RESTM and of the GDSTM) when � = 0, so that each storm consists of a single rain cell, the

model is that of Cox & Isham (1988) with the generalisation that the rain cells are elliptical rather

than circular.

2.3 Distributional assumptions

We have assumed that rain cell and storm durations are exponentially distributed primarily for

mathematical convenience. [In fact the mean length of time �T that storms produce rainfall also

depends on the mean cell duration �D and the mean number of cells per storm �C . Rodriguez-

Iturbe et al. (1987), pg 281, give an expression for �T . Generally, �T > �L unless �D and/or �C
are small.] The distributional assumptions that we can make for cell and storm areas and for cell

intensity are more 
exible.

Earlier work (Northrop 1996) indicated that the increased 
exibility a�orded by assuming a

gamma distribution (rather than an exponential distribution) for the cell semi-major axis Ac is

worthwhile. In particular, under the exponential distribution a large number of small cells are pro-

duced giving images simulated from the model a `spotty' appearance. The key point in alleviating

this phenomenon is to allow the distribution of Ac to have a mode away from zero. If Ac � �(�1; �2)

the mean cell area �A is given by

�A =
�
p
1� e2 �1(1 + �1)

�22
;

where e is the eccentricity of the cell. Further investigation reveals that we can parameterize the

assumed gamma distribution for Ac in terms of a single parameter while losing little in terms of

goodness of �t. We choose to �x �2 (at a value determined from an initial study of a selection of

rain events) and estimate �1.

Any de�nition of the area covered by a storm will be somewhat arbitrary because, under the

bivariate normal displacement distribution, rain cells can be located arbitrarily far from the storm

centre. A sensible measure of the spatial extent of a storm is based on the area within which we

would expect a certain proportion of the rain cell centres within a storm to lie (see Northrop (1996)).

Let �2 denote the variance of cell displacements in a direction parallel to the storm and cell major

axes. We assume, primarily for mathematical convenience, that 1=�2 has a gamma distribution

with shape parameter  =2 and scale parameter &=2. For a given value of the cell eccentricity e the

mean storm area �S is de�ned to be

�&
p
1� e2

 � 2
:

This expression corresponds to the average area within which we would expect 40% of rain cell

centres to lie and thus can be thought of as an indication of the extent of the relatively intense part

of a storm. In a manner similar to that used for the cells above we parameterize the distribution

of 1=�2 in terms of a single parameter.

We assume that the cell intensity X has an exponential distribution with mean �X . However,
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in terms of the properties we will use for parameter estimation, it is only the relationship between

E(X) and E(X2) that matters. In this case E(X2) = 2�2X .

2.4 Model properties

We wish to �t the model to temporal sequences of radar images. Each radar image consists of a

regular array of values, each value giving the average rainfall intensity over a pixel of dimensions h

km by h km. Typically h = 2 or 5 and the temporal separation of images is 5 minutes. In order to

�t the model to these data, we need to derive properties of the spatially averaaged rainfall process

under the model. If Y
(h)
i;j (t) is the average rainfall intensity over pixel (i; j), of dimensions h km by

h km at time t, then

Y
(h)
i;j (t) =

1

h2

Z ih

(i�1)h

Z jh

(j�1)h
Y (u; t) dux duy;

where u = (ux; uy): The mean of the continuous rainfall process is given by the product of the cell

arrival rate (��C), and the expected area (�A), duration (�D) and intensity (�X) of a rain cell.

Therefore, the mean of the spatially averaged process is also given by

E[Y (h)] = ��C�A�D�X :

The covariance c(u; t) = cov[Y (0; 0); Y (u; t)] between points displaced by t hours in time and

u = (ux; uy) km in space is given by

c(u; t) =
��C

�
E(X2) e��jtjEAc;V ;E;�

h
A
2
c C(Æ=Ac)

i
+

���C�
2
X 

4��(
 + �)&
e
�
jtjE

V ;E;�[g(Æ)] ;

where

�1 = (ux � vxt) cos� + (uy � vyt) sin�;

�2 = [(uy � vyt) cos�� (ux � vxt) sin�] =
p
1�E2

and Æ2 = �2
1+�2

2. C(x) is the area of intersection of two discs of common unit radius whose centres

are a distance x apart and

g(Æ) = EAc1;Ac2

8>>>><
>>>>:

Z
jw1j�Ac1

Z
jw2��j�Ac2

1�
1 +

(w1�w2)
T (w1�w2)
2&

� 

2
+1

dw1 dw2

9>>>>=
>>>>;
: (2.1)

where Ac1 and Ac2 are the semi-major axes of two distinct cells within the same storm and � =

(�1;�2) (Northrop 1998). It can be shown that

C(x) =

(
2 cos�1

�
x
2

�
� x

q
1� 1

4
x2 x � 2

0 x � 2:
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In the interests of computational eÆciency we make use of approximations in evaluating C (x) and
g(Æ) (see Northrop (1996)). We use a simple piecewise linear approximation to C(x),

Cl(x) = (� � lx)+ (l > 0);

where z+ = max(z; 0). We set l = 1:84, the value that minimises the integrated squared error

ISE =

Z 2

0
[C(x)� Cl(x))]2 dx;

in approximating C(x) by Cl(x).
If we assume that Ac � �(�1; �2), then

EAc

n
A
2
cCl (Æ=Ac)

o
=

�1

�22

(
�(�1 + 1)

�
1� �

�
�1 + 2;

l�2

�
Æ

��

� lÆ�2

�
1� �

�
�1 + 1;

l�2

�
Æ

��)
:

We approximate g(Æ) using a Taylor series expansion of the integrand in (2.1) under the assumption

that rain cells are small relative to the storm within which they are born.

Evaluation of the second order properties of the spatially averaged rainfall process requires the

numerical evaluation of a double integral. Speci�cally,

var[Y (h)] =
1

h4

Z h

�h

Z h

�h
(h� ju1j)(h� ju2j) c(u; 0) du1 du2

c
(h)(k; t) = cov[Y

(h)
i;j (0); Y

(h)
i+k1;j+k2

(t)];

=
1

h4

Z h

�h

Z h

�h
(h� ju1j)(h� ju2j) c(u+ hk; t) du1 du2;

where k = (kx; ky). The autocorrelation function corr[Y
(h)
i;j (0); Y

(h)
i+k1;j+k2

(t)], denoted by �(h)(k; t),

of the model process aggregated over h km by h km pixels is de�ned by

�
(h)(k; t) =

c(h)(k; t)

var[Y (h)]
:

2.5 Further properties

Other properties of the model are of potential interest for use in parameter estimation and assessing

goodness of �t, particularly those that relate to the wet/dry pattern of rainfall, but most seem

inaccessible to analytic study. For example, the aggregation of wet/dry properties over space

creates analytical diÆculties. It is possible to derive an expression for the probability that an

arbitrarily chosen point in space-time is dry, although we can only extend this to consider an

arbitrarily chosen pixel when � = 0. Properties of rainfall �elds to which thresholds have been

applied (i.e. rainfall intensities below a given level are set to zero) may also be of interest. However,

simulation from a �tted model can readily be used to assess the model's performance with respect

to its ability to reproduce such properties.
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2.6 Event interior parameter identi�cation

The model is stationary in time and homogeneous in space so, in order to �t models to identify

model parameters from sequences of radar data, we need to select periods of time within which

the radar data are consistent with these assumptions. We must, therefore, restrict attention to

the interior of rain events in both space and time, i.e. without including the development and

dissipation of rain events in time or their periphery in space. In addition we make the simplifying

assumption in the model that V (= v), E(= e) and �(= �) are �xed and common to all storms and

cells within the rain event, an assumption which is reasonable over the relatively small temporal

and spatial scales involved. We �t the GDSTM to sequences (52 � 52 arrays at 5 minute intervals)

of 2 km � 2 km resolution radar data recorded by the Wardon Hill radar station in south-west

England.

2.7 Rain event selection

In order to �t the model to the interior of a given rain event, ideally we require the event to extend

over the radar window. To obtain reliable estimates of the temporal features of the model we need

this to happen for a time period of at least an hour. We use time series plots of the mean and

variance of the rainfall over the radar area and the proportion of wet pixels to identify time periods

over which these criteria may be met. Radar images from the chosen time period are then used to

assess the assumptions of spatial homogeneity, constant velocity and constant cell shape. Obviously

there will be rain events that do not meet all of the above criteria. For example an event may pass

along one side of the radar window rather than moving directly over it or be of insuÆcient spatial

extent to cover the radar window. Thus, we may consider two populations of rain events - those

which are amenable to model �tting and those which are not. In section 3.1 we model the arrival

process of rain events of these two types, and �nd that events of the second type contribute only a

very small proportion of the total rainfall recorded by the radar.

2.8 Parameter identi�cation

The complex dependencies produced by the structure of the model mean that a maximum likelihood

approach is not feasible (it is diÆcult to obtain a likelihood in useful form). Indeed, it is not

clear that such an approach would be appropriate. The rain cell intensity structure (constant cell

intensity across space and time) means that under the model the rainfall �eld is a step function

and the likelihood function places undue emphasis on such localised deterministic features.

A more subjective approach is to select properties of the data which are regarded as being

important and �nd values for the parameters that produce as close a �t to these properties as

possible. This is in the spirit of the Generalised Method of Moments of Hansen (1982) in which

an objective function of a weighted sum of squared di�erences between observed values of selected

properties and their model values is minimised numerically with respect to the parameters of the

model. The properties must be chosen carefully to enable the parameters of the model to be

estimated reliably. Properties not used for �tting can then be used to assess the adequacy of �t of

the model.
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2.8.1 Selection of �tting properties

Clearly the estimates obtained for the parameters of the model are dependent on the properties

selected for calibration purposes. It is possible that quite di�erent parameter sets may give very

similar �ts to a given set of properties. In some cases multiple minima may exist in the objec-

tive function. Problems of parameter identi�cation can be alleviated by estimating the velocity v

directly from the data using a cross-correlation method before estimating the other model param-

eters. This also has the e�ect of reducing the computing time required to estimate the remaining

parameters. Prior estimation of v helps distinguish between, for example, a few large storms mov-

ing quickly and many small storms moving slowly. In addition we consider which properties of the

data provide information on certain aspects of the model structure and design our �tting procedure

accordingly. For example, the decay of spatial autocorrelation gives information on the typical sizes

of rain cells and storms and their shape.

Before proceeding we summarize the notation used for the parameters of the GDSTM.

� � { rate of storm arrivals (number of storms per km2 per hour);

� �C { mean number of cells per storm;

� �X { mean cell intensity (mm/h);

� �D { mean cell duration (h);

� �L { mean storm duration (h);

� �A { mean cell area (km2);

� �S { mean storm area (km2);

� e { common cell and storm eccentricity;

� � { common cell and storm orientation (degrees from east);

� vx { west-east component of common cell and storm velocity (km/h);

� vy { south-north component of common cell and storm velocity (km/h).

We use the following properties of the spatially averaged rainfall process for the purposes of pa-

rameter identi�cation. We have reparameterized these expressions in terms of the 11 parameters

given above.

The mean

E[Y (h)] = ��C�X�A�D;

the variance

var[Y (h)] = a1f1(0; �A) + a2f2(0; �A; �S):

the spatial autocorrelation function

�
(h)(k; 0) = [a1f1(k; �A) + a2f2(k; �A; �S)]=var[Y

(h)]
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and the maximum spatial autocorrelation

�
(h)(vt; t) = [a1 e

�jtj=�Df1(0; �A) + a2 e
�jtj=�Lf2(0; �A; �S)]=var[Y

(h)]; (2.2)

for positive time lags, where f1(w; �A) = EAc

�
A2
cCk (Æ=Ac)

	
; f2(w; �A; �S) = g(Æ), w = (w1; w2),

a1 = �E(X2)�C�D

a2 =
��2X�C(�C � 1)�2D

�D + �L

and

Æ
2 = (w1 cos � + w2 cos �)

2 +
(w2 cos � �w1 sin �)

2

1� e2
:

Intuitively, we expect

� the form of the spatial autocorelation function �(h)(k; 0) to depend strongly on the `spatial'

parameters �A; �S ; e and �;

� that given v, �(h)(vt; t) should depend strongly on the `temporal' parameters �D and �L;

� the remaining parameters �; �X and �C to in
uence the mean and variance of the rainfall

�eld.

and this is borne out on inspection of the expressions given above. Note that

� e and � determine the shape of contours of equal �(h)(k; 0) and �A and �S determine the

manner in which �(h)(k; 0) decays with Æ;

� given v the manner in which �(h)(vt; t) decays with t depends only on �D and �L;

� the parameters �; �X and �C appear only in a1 and a2.

It is possible that di�erent spatial patterns of rainfall produce similar spatial autocovariance func-

tions. The manner in which var(Y (h)) decreases as the scale of spatial averaging h increases may

distinguish between these patterns.

In the following sections we suppress the arguments of �(h)(k; t) when it is clear to which

autocorrelation we refer.

2.8.2 Velocity estimation

We note that �(2)(k; t) is maximized for k = vt. If k̂ is an estimate of the position of the maximum

of �, v̂ = k̂=t provides an estimate of v. Let �̂ denote the observed values of � estimated using

the data within the interior of a rain event. We are only able to estimate � at a discrete set of

points, namely kx = : : : ;�2; 0; 2; : : : km and ky = : : : ;�2; 0; 2; : : : km. Thus, the position ~
k of the

observed maximum of �̂ may prove to give an imprecise estimator of v.
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However, since �(2)(k + V t; t) is an even function of k, the centroid of � is at vt. We use

an estimator of v based on the centroid of �̂, noting that as t increases, the observed spatial-

temporal correlation function, �̂(2)(k+V t; t) tends to become less even particularly for k far from

vt. However, �̂ is approximately even for t = 5 minutes. Thus, we estimate v using

v̂x =
12
PP

kxĉ
(h)(k; 1=12)PP

ĉ(h)(k; t)
;

v̂y =
12
PP

ky ĉ
(h)(k; 1=12)PP

ĉ(h)(k; t)
; (2.3)

where the summation is over values of (kx; ky) in the vicinity of ~k.

We could devise more complex estimators of v (for example using estimates of the centroid for

t = 5; 10; 15; : : : minutes) but we have found that the estimator in (2.3) works well in practice.

2.8.3 Estimation of �; �X and �C

Given the other parameters we �nd the values of �; �X and �C for which the observed and �tted

values of E[Y (2)]; var[Y (h1)] and var[Y (h2)] are equal. Closed form expressions for �̂; �̂X and �̂C

result. We take h1=2 and h2 = 8.

2.8.4 Estimation of temporal parameters

Ideally we would like to use �(v̂t; t) to estimate �D and �L. The best we can do is to use �(kt; t)

with kt chosen to be as close to v̂t as possible. In this case the dependence of � on the spatial

parameters is small. Given the other parameters we �nd the values of �D and �L for which the

observed and �tted values of �(kt; t) and �(k2t; 2t) are equal. Closed form expressions for �̂D and

�̂L result in this case. We �nd that t = 10 minutes works well in practice.

2.8.5 Estimation of spatial parameters

We note that for given values of e; �; �A and �S we can estimate the remaining parameters simul-

taneously using the arguments of the previous two sections.

Under the model the spatial autocorrelation function �̂(2)(k; 0) is very nearly elliptically isotropic

(the slight distortion caused by spatial averaging is negligible). The elliptical space lag z is given

by

z
2 = (kx cos � + ky sin �)

2 +
(ky cos � � kx sin �)

2

1� e2
:

This space lag accounts for the fact that, unless e = 0, the decay of the spatial autocorrelation

depends not only on distance but also direction.

For good estimates of e and � we expect �̂ to decay with z with little variation in �̂ for a given

value of z. For poor estimates we will see more variation in �̂ for a given z. Figure 2.2 illustrates

these points for the rain event of 6 February 1994, 1300-1400. Firstly, we use the estimates ê and

�̂ of e and � obtained by �tting the GDSTM to these data (see example in section 2.9 and in
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Figure 2.2: Spatial autocorrelation vs. elliptical space lag z. Left: z de�ned using ê and �̂. Right:

cell orientation=�̂ � 90Æ.

particular the spatial autocorrelation plots in �gure 2.3) and then we set the cell orientation at

right angles to �̂. Note that in the right-hand plot (where we have used a poor value of �) there is

much greater variation in �̂ for a given � than in the left-hand plot.

For given values of e; �; a1 and a2 we could estimate �A and �S using a (non-linear) least squares

regression of �̂ on z. However, it is well known (Fisher 1915) that for �nite random samples drawn

from a bivariate normal population,

� �̂ is biased for � with the bias of �̂ and var(�̂) depending on � and the size of the sample from

which �̂ is calculated;

� the sampling distribution of �̂ may be far from normal, particularly when the underlying

variables are non-normal (as is clearly the case for rainfall data).

Therefore, although there will be some limited dependence in our estimates, we make use of a

transformation of �, namely Fisher's logarithmic transformation

F =
1

2
ln

�
1 + �

1� �

�
: (2.4)

Guyen (1951) demonstrates that the assumption of normality is a remarkably good approximation

for non-normal samples of a reasonable size and gives approximate expressions for E(F ) and var(F )

(under the assumption that � and other higher order joint moments are known). We use these

expressions (plugging in estimates of the quantities in E(F ) and var(F ) where necessary) to estimate

e; �; �A and �S in a weighted least squares regression of F on z. Speci�cally, we minimize

nX
i=1

[F̂i � E(Fi)]
2

var(Fi)
; (2.5)

with respect to e; �; �A and �S, where we include all �̂ corresponding to values of z above a chosen

threshold.
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model property �tted value

cell arrival rate (�; km�2 h�1) 0.00034

expected cell duration (�D; mins) 39

expected cell area (�A; km
2) 23

expected cell intensity (�X ; mm/h) 0.54

expected number of cells per storm (�C) 650

expected storm duration (�L; h) 2.7

expected storm area (�S ; km
2) 310

x component of cell/storm velocity (vx; km/h) 36

y component of cell/storm velocity (vy; km/h) 34

cell/storm eccentricity (e) 0.83

cell/storm orientation (�; degrees from east) 94

Table 2.2: Parameter estimates: GDSTM �tted to the rain event of 6 February 1994, 1300{1400

2.8.6 Summary of parameter identi�cation procedure

The general strategy is to estimate the spatial parameters e; �; �A and �S using observed spatial

autocorrelation structure, updating the estimates of the other parameters in the background.

We require initial estimates of e; �; �A and �S to start the procedure. We calculate initial

estimates ê; �̂ of e and � directly from �̂(k; 0) in the following manner. The sample of pairs (kx; ky)

for which �̂(k; 0) is greater than a chosen threshold will span an elliptical region in the (kx; ky)

plane. We estimate the variance-covariance matrix for this sample and calculate the eigenvalues

��; �+ and associated eigenvectors of this matrix. The orientation of the eigenvector associated

with the largest eigenvalue �+ and
p
1� ��=�+ are used as estimates of � and e respectively. This

procedure provides estimates that are close to the �nal estimates from the minimization of (2.5).

We perform a grid search over �A and �S to identify promising initial estimates of �A and �S
given ê and �̂. The minimisation of equation (2.5) is then carried out by an iterative numeriacl

procedure using a modi�ed Newton scheme. We obtain the same estimated parameter set regardless

of the initial estimates of �A and �S in the vast majority of cases.

2.9 Model performance

For illustration we present results from the �tting of the GDSTM to a one hour sequence (13

images) of radar images recorded by the Wardon Hill radar station on the 6th February 1994.

Table 2.2 gives the estimated values of the parameters of the model. The cell and storm

dimensions are in broad agreement with those given in table 2.1. Table 2.3 shows the observed and

�tted values of a variety of properties over a range of levels of spatial aggregation. Note that the

�tted and observed values of properties used in the estimation procedure will be close (or equal)

by default. The �tted values for the rainfall coverage - the proportion ph of h km by h km pixels in

an image that are wet - are estimated using a sequence of images simulated from the �tted model.

The close agreement between many properties not used for parameter estimation indicates that the

model is performing well. In particular the model reproduces properties over a range of levels of
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Level of spatial aggregation (km)

property h = 2 h = 4 h = 8 h = 16

mean 1:78y

(mm/h) (1.78)

variance 3:65y 3.18 2:59y 1:92

(mm2=h2) (3.65) (3.22) (2.59) (1.93)

�̂(h)(0; 0; t) t=1/12 0.66 0.74 0.84 0.93

(0.62) (0.71) (0.84) (0.91)

t=1/6 0:45 0.51 0.61 0.77

(0.45) (0.51) (0.63) (0.76)

t=1/4 0.32 0.36 0.43 0.59

(0.33) (0.37) (0.45) (0.58)

�̂(h)(x; 0; 0) x=2 0:83y 0.76 0.65 0.36

(0.82) (0.72) (0.63) (0.41)

x=8 0:45 0.22 -0.23 -0.24

(0.45) (0.22) (0.01) (0)

�̂(h)(0; y; 0) y=2 0:86y 0.81 0.76 0.66

(0.92) (0.84) (0.78) (0.67)

y=8 0.56 0.45 0.33 -0.03

(0.57) (0.47) (0.20) (0.01)

�̂(h)(x; 0; 1) x=-2 0.56 0.53 0.47 0.22

(0.52) (0.51) (0.46) (0.27)

x=2 0.72 0.80 0.78 0.51

(0.77) (0.84) (0.77) (0.53)

�̂(h)(0; y; 1) y=-2 0.59 0.60 0.60 0.56

(0.57) (0.60 (0.63) (0.54)

y=2 0.69 0.79 0.82 0.70

(0.66) (0.76) (0.80) (0.71)

p̂h 0.92 0.97 1 1

(0.93) (0.97) (0.99) (1)

Table 2.3: Rainfall recorded by the Wardon Hill radar. 6 February 1994, 1300{1400. Observed

and (in parentheses) �tted values under the GDSTM. y denotes a property used for parameter

estimation.
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Figure 2.3: Assessment of the �t of the GDSTM to the rain event of 6 February 1994, 1300{1400.

Top left: temporal autocorrelation, top right: scaling of variance, bottom: spatial autocorrelation.

spatial averaging.

Figure 2.3 illustrates the goodness of �t of the model in terms of the temporal and spatial

autocorrelation functions (at the 2 km scale of spatial aggregation) and the space-time variance

across scales of spatial aggregation h. There is good agreement between the observed and �tted

values of these functions, the latter plot (in conjunction with table 2.3) demonstrating that the

model is able to reproduce properties of the empirical data over a range of pixel sizes.

As a further assessment of model �t we investigate the e�ect of imposing thresholds on the

empirical data and on data simulated from the �tted model. To impose a threshold of 1 mm/h on

an image we simply set all rainfall intensities below 1 mm/h to zero. In particular we consider the

proportion of pixels with a rainfall intensity over a given threshold, the coverage, and the mean

rainfall intensity of images that have been thresholded. Figure 2.4 shows how the coverage and the

mean intensity of empirical and simulated images is related to the threshold imposed. Each curve

has been estimated by averaging the results from a 1 hour sequence (i.e. 13 images) of data. The

curves derived from the empirical data are generally consistent with the curves derived from the

simulated data although the empirical data tends to have a greater coverage for large thresholds

than the model. A further investigation examines the rainfall totals accumulated at each pixel over



CHAPTER 2. MODELLING OF EVENT INTERIORS 25

Figure 2.4: Threshold analysis of the intensity �eld. Left: coverage vs. threshold. Right: mean

intensity of thresholded image vs. threshold. Solid line is the empirical data curve. Dotted lines

are 10 independent simulations from the �tted model.

Figure 2.5: Threshold analysis of the depth �eld. Left: coverage vs. threshold. Right: mean depth

of thresholded image vs. threshold. Solid line is the empirical data curve. Dotted lines are 10

independent simulations from the �tted model.

the 1 hour sequence of data. We de�ne the rainfall depth at a given pixel to be the sum of all

the rainfall intensities observed at the pixel over a time period of interest. Figure 2.5 shows how

the coverage and the mean depth of the empirical and simulated images is related to the threshold

imposed. These plots exhibit broadly similar features to �gure 2.4.

Figure 2.6 gives a visual illustration of the ability of the model to reproduce the internal structure

of rain events. We have included images from outside the time period used for parameter estimation,

to illustrate the movement of the rain event across the area (see section 3.2). The images have

been simulated from the �tted model in a manner intended to mimic the movement of the rain

event. This is achieved by de�ning a rain event area within which the model process is simulated

and moving this area with the same velocity as that of the storms within it. The radar images

and the realisation simulated from the �tted model exhibit broadly similar features, although the

assumption of constant rainfall intensity over the area of a rain cell means that data simulated from

the model is not as smooth as the empirical data. The peripheral drizzle apparent in the empirical
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Figure 2.6: Visual assessment of the GDSTM �tted to the rain event of 6 February 1994, 1300{1400.

The temporal separation of the images is 1 hour. Top: Observed data. Bottom: Simulation.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20 31 20 18 11 5 6 7 15 21 34 19

Table 2.4: Variation in the number of events �tted over the year

data is not present in the simulated data. We may have to address this feature if it becomes

clear that the drizzle surrounding rain events is important hydrologically. It remains to be seen

whether output from rainfall-runo� models is sensitive to this feature of the simulated data. Close

agreement between the two sequences in terms of exactly where areas of relatively intense rainfall

occur is not expected, just as close agreement between two realisations from the same stochastic

model would not be expected.

2.10 Parameter estimate summary

The GDSTM has been �tted to data from the interior of all suitable rain events from theWardon Hill

data record. The data record spans a time period from September 1993 to March 1997 inclusive.

For the purposes of simulation we will need additional information for each event, namely the

manner in which the rain event enters the radar window and its duration which we de�ne to be the

length of time during which the radar coverage is above 25% (see section 3.1). Missing radar images

may mean that this information is not available for some rain events. In such cases we are forced to

exclude these events. Thus the model has been �tted to a sample of 207 events; table 2.4 shows how

the number of these events per month varies over the year. It can be seen that there are fewer such

events in the summer months than in the winter. Figures 2.7 and 2.8 summarise the direction and
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Figure 2.7: Direction of movement of rain events.

�t �D �L �A �S �C �X e speed

(h�1) (mins) (h) (km2) (km2) (mm/h) km/h

mean 12 16 1.5 21 340 1400 0.74 0.78 47

median 7.2 14 1.1 18 270 770 0.41 0.84 42

Table 2.5: Summary statistics for model parameters

speed of the rain events to which the GDSTM has been �tted. (Following mathematical convention,

the rain event direction is de�ned as the direction in which the events are moving.) It can be seen

that rain events tend to come from west to south-westerly directions and that rain events moving

faster than 100 km/h are rare. Figure 2.9 shows a relatively even spread of cell orientations with

perhaps a slight preference for the major axes of cells to lie in a west-east direction.

Table 2.5 gives the mean and median of the distributions of the marginal parameter estimates

for the year as a whole. These values agree well with those in table 2.1. Note the we have used

the variable �t, the temporal rate of storm arrivals in the radar window, rather than � for ease of

interpretation. The fact that the median is less than the mean in all cases except for e indicates

that these distributions are positively skewed. Figure 2.10 illustrates how the mean of each of the

11 model parameters varies over the year. There is less of a clear seasonal pattern than we might

expect. However, we should note that we have selected rain events of a particular type and so we

might expect more similarity between events in, January and July, say, than if we had selected rain

events at random from these months. There is clearer evidence of seasonality in the temporal rain

event arrival process studied in section 3.1. In addition we should note that the estimated means

for the summer months are based on a small number of rain events.

Tables A.1 to A.12 in appendix A.4 list the time periods of data to which the model has been

�tted and the resulting parameter estimates.

The histograms in �gure A.1 of appendix A.4 show the marginal distributions of each of the
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Figure 2.8: Rain event speed.
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Figure 2.9: Cell orientation.
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Figure 2.10: Monthly variation in the mean of parameter estimates.
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Figure 2.11: Association between the parameter estimates for mean storm area and mean cell area

11 model parameters pooled over all rain events. Figures A.2, A.3, A.4 and A.5 show equivalent

histograms pooled over events from winter, spring, summer and autumn respectively.

We do not expect parameter estimates to be mutually independent. For example, we might

expect �A and �S to be positively correlated and indeed a plot of �̂S against �̂A for our sample

of 207 rain events reveals a positive association (see �gure 2.11; note that the four outliers with

atypically large mean storm areas relative to their respective mean cell areas could be due to storms

with widespread showers or to artefacts in the data).

Rather than attempt to specify a multivariate distribution for 11 parameters of the model, for

the purposes of simulation, we propose to sample parameter sets from a parameter library (see

section 3.2.2 for more details). This will allow for inter-parameter dependence.



Chapter 3

Spatial-temporal modelling using

radar data II: modelling of event

sequences

3.1 Rain Event Arrivals

3.1.1 Introduction

So far, we have focused attention on the interior of rain events in both space and time. The rain

events to which the GDSTM has been �tted have a spatial extent suÆcient to cover the radar

window (a square area of approximate dimensions 100 km by 100 km) for a time period of at least

an hour. In the case of the Wardon Hill radar, for which 2 km � 2 km resolution data in the radar

window have been used for model �tting, the radar also provides data at a coarser resolution (5

km � 5 km pixels) over a larger, circular region of radius 210 km. From these data we observe

that the vast majority of rain events in the Wardon Hill data record appear to be part of larger

scale weather systems moving across the region. We now consider these events and their movement

over the window, and model this process in two parts: the timing of the sequence of arrivals and

departures of rain events and the shapes of these events in so far as they are relevant to the radar.

3.1.2 Observation of Rain Events

We �rst need to de�ne what we mean by the arrival or departure of a rain event from the radar

window. Observation of sequences of radar images leads us to distinguish two types of rain event:

1. those that extend over the whole radar window for at least an hour (suitable for model �tting);

2. those that produce a signi�cant amount of rainfall for only a short period of time. These events

often appear to have similar structure and size to the previous events but only to intersect

the edge or corner of the radar window rather than covering it entirely. Alternatively, they

may be events with very localised rainfall.

31
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At other times there may appear to be very light and/or scattered rainfall. Unfortunately, it

does not seem possible to distinguish true light rainfall from radar `clutter' and other errors. In

particular, we observe particular individual, or local con�gurations of, pixels that remain wet over

long sequences when other surrounding pixels are recording no rain or changing from wet to dry

and conversely.

Visual inspection of the radar images has lead us to base our de�nitions of rain events on

the coverage, the proportion of pixels in the radar window recording positive rainfall (we term

such pixels wet). We can calculate the coverage for each image over the radar window, at 5 minute

intervals, thus obtaining a time series of the coverage. The time series for January 1996 is presented

on �gure 3.1; a gap in the series indicates missing data.

Time in days

Co
ve

ra
ge

4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time in days

Co
ve

ra
ge

15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.1: Time series of the coverage for Wardon Hill radar window (2� 2km2 data) | January

1996.

Events to which the model is �tted are selected partly on the basis that they are widespread

and the coverage gives a good indication of when such events are present in the radar window. In

addition, measures such as the mean rainfall intensity over the image can be greatly a�ected by

a single value in the data (e.g. a pixel falsely recording a very large intensity), whereas the time

series of coverage will generally be smoother and more robust to outliers.

Inspection of the Wardon Hill data record suggests that imposing a threshold of 25% separates

periods corresponding to dry or very light rainfall with background noise, from the two event types

described above. In addition, the extended events generally have a maximum coverage above 50%

whereas that for the shorter or very localised events is generally below 50%. These thresholds will

therefore be used in the next section to de�ne the arrival and departure times of two types of rain
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event. For illustration, a time series of the coverage for the 12th of January 1996 is shown in �gure

3.2, and a 15-minute image sequence corresponding to the time period 9.30{13.30 is displayed in

�gure 3.3. The coverage starts from 13% at 9.30am, crosses the 25% threshold between 9.45 and

10.00 and increases to a local maximum value of 44% at about 10.30am. At least 25% of the radar

window is covered by rainfall continuously for about two and a half hours. At around 12.45 there

is a down crossing of the 25% threshold and the coverage continues to decrease to 14% by 13.30.

The following excursion above the 25% level lasts more than four hours and the coverage reaches

a maximum of about 70%.
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Figure 3.2: Time series of the coverage for Wardon Hill radar window (2�2km2 data) | 12 January

1996.

3.1.3 Modelling Event Durations and Inter-Event Intervals

The following de�nitions for the durations of two types of rain events over the radar window and

the intervals between them are given in terms of a smoothed version of the time series of spatial

coverages. We found that a 5-point smoother applied to the series was e�ective in smoothing out

the e�ect of small oscillations around the 25% threshold (i.e. each value in the smoothed series of

the coverage is an average over a 20 minute period).

A rain event `arrives' at the window when there is an upcrossing of the 0.25 threshold in the

smoothed coverage series and `departs' from the window at the next downcrossing of this threshold,

with its duration or lifetime being the interval between these two time points. We distinguish two

types of rain events: those that attain a coverage of at least 50% at some point during their lifetimes

(type 1) and those that do not (type 2). The type 1 rain events so de�ned include essentially all
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Figure 3.3: Radar images from Wardon Hill radar window, from 09:30 to 13:30 on 12 January 1996



CHAPTER 3. MODELLING OF EVENT SEQUENCES 35

the events to which the spatial-temporal model was �tted as described in section 2. The interval

between a downcrossing of the threshold and the next successive upcrossing will be described as

a dry interval although, as noted above, there may be small amounts of genuine rainfall mixed in

with the radar errors during this interval. Treating periods where the coverage is below 25% of the

window as dry, and ignoring all positive pixel values in these periods, means that some genuine

events of light rainfall are unavoidably excluded. However, we can see from �gure 3.4, that even

if all positive values in the so-called `dry' periods represented genuine rainfall, their contribution

to the total rainfall intensity would be generally very small. Nevertheless, in summer months, the

`dry' periods would contribute amounts of rain comparable to the type 2 events, and in July, the

type 2 events and the `dry' periods would each contribute more rain than the type 1 events. Whilst

treating the `dry' periods as literally dry has only very minor e�ects on the total rainfall statistics,

it remains to be seen (this will be the subject of future research) whether such events play an

important role as regards rainfall-runo� properties. Note that the values plotted in the �gure are

monthly averages over the smoothed rainfall record, which have been scaled up to allow for missing

data.
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Figure 3.4: Average monthly amounts of rain attributed to di�erent event types.

We model the stochastic process of events and dry periods using a 3-state semi-Markov process

(we identify dry intervals with state 0, and type i events with state i, i = 1; 2). Thus, we assume

the succession of events and dry periods follows a Markov chain, while the durations of events and

dry periods are mutually independent. Note that the de�nitions of the type 1 and type 2 events

imply that these rain events are always separated by a period when the coverage falls below the

25% threshold, that is by a `dry' interval. Hence the transition matrix of the Markov chain has the
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form 0
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0 p 1� p
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1 0 0
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We model the distributions of the durations in the three states by three Weibull distributions. The

3-parameter Weibull distribution is chosen because it has a 
exible shape, allowing the representa-

tion of considerable skewness and a positive lower bound for the variable if appropriate. The model

is applied independently to each month of the year to allow for seasonality in the rainfall record.

The appropriateness of these assumptions has been investigated for the Wardon Hill data, and

the results are described below. In particular, we need to verify that the event and dry period

durations can be assumed to be mutually independent and that the sequence of states visited is

Markovian. The unknown parameter p is estimated by the proportion of dry periods that are

followed by type 1 events while the parameters for the three Weibull distributions are estimated by

maximum likelihood. Missing radar images result in censored observations of durations of events

and dry periods, but these are easily incorporated in �tting the Weibull distributions.

3.1.4 Distributions of Durations of Events and Dry Periods

Empirical Marginal distributions

A complete set of histograms and summary statistics for the durations of events and dry periods

on a month by month basis is given in the Appendix (�gures A.6 to A.17), using data available

from the Wardon Hill radar; four years of data for September to March and three years for the

remaining months. The results for January are also given here in �gure 3.5 for illustration. The

basic statistics of the empirical data for all months are summarised in tables 3.1 and 3.2. It should

be noted that the censored observations have been included without any allowance for censoring

in these histograms and summary statistics, but the values of these observations are shown on the

�gures.

We note the following points:

There are only 5 type 1 events for July over the three years data available, and only 12 each

for June and August.

The proportion of censored event durations is generally less than 10% of the observations (the

exceptions are in May, September and November) while the proportion of censored dry periods is

usually above 10% (except January and February). This is not surprising as, for most months, the

dry periods tend to be longer than the rain events. The proportions of censored observations make

it important to include these data in �tting the duration distributions.

For type 1 events, the monthly minima of the durations are systematically substantially greater

than zero. This is to be expected because, over the duration of such a rain event, the coverage has

to increase from 25% to 50% and then decrease back below 25%. Given the typical range of sizes

and speeds of rain events, this process is likely to take at least an hour or two in almost all cases.

We therefore �t three-parameter (right-shifted) Weibull distributions to the durations, where the

third parameter speci�es the minimum value of the support of the distribution.

The monthly maxima of the dry intervals can reach very high values (May, 13 days; July 7
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Figure 3.5: Histograms of durations of events and of `dry' periods | January

days). For events of type 1, the largest observed maxima correspond to the months of April (21

hours), May (27 hours) and November (26 hours). For events of type 2, the largest maxima are

in March (11 hours) and November (21 hours). Generally, the duration distributions appear very

skew, so that isolated maxima in the upper tails may make the �tting procedure unstable when

there are small numbers of observations.

Independence assumptions

In order to justify modelling the process of rain events as a semi-Markov process, we need to

verify that it is reasonable to assume that successive event or dry-period durations are mutually

independent. To this end, for each month a set of nine scatterplots has been produced; see the

Appendix, �gures A.18 to A.29.

To explain these scatterplots we de�ne some notation as follows. Consider a sequence, fXt; (Yt; It)g,
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Figure 3.6: Scatterplots showing relationships between durations of successive events and dry

periods (January). Axis units represent log10(duration in minutes)
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Dry periods(mins) Type 1 durations (mins)

Month n mean std min max n mean std min max

Jan 120 626.64 975.62 2.46 4441.68 47 375.41 201.8 119.4 1100.71

Feb 131 689.44 944.47 2.69 5003.08 57 385.42 213.68 92.16 961.71

Mar 73 1006.99 1355.36 12.6 7315.94 27 490.76 263.82 111.54 1214.7

Apr 66 922.33 1320.17 16 7919.98 26 403.19 275.90 123.06 1267.74

May 69 1319.7 3336.31 12.64 19418.32 39 493.97 430.81 35.87 1609.78

Jun 33 1495.26 1868.4 18.6 6807.92 12 280.88 181.13 77.68 672.25

Jul 40 1371.18 2128.47 6.6 10848.52 5 303.34 135.54 163.58 503.87

Aug 44 1307.11 1880.19 6.96 8366.22 12 398.75 343.45 117.37 1135.51

Sep 67 1031.52 1484.81 6.75 6445 25 363.57 185.9 53.82 844.72

Oct 89 828.98 1423.61 6.77 9885 34 417.24 279.26 118.01 1066.31

Nov 90 872.81 1704.75 6.73 11241.03 36 472.42 334.35 133.23 1575.9

Dec 112 861.41 1381.15 11.32 8519.52 48 397.06 254.09 87.56 1110.92

Table 3.1: Basic Statistics of the empirical distributions for durations of dry periods and of events

of type 1

of intervals corresponding to alternating durations of dry periods, Xt, and rain events, Yt, where

It = i if the rain event is of type i (i = 1; 2). The scatter plots are chosen to show any association

between the following pairs of intervals:

� the lengths of successive dry periods (Xt against Xt+1);

� the lengths of successive events of the same type i (Yt against Yt+1, for t such that It = It+1 =

i) for i = 1; 2;

� the lengths of successive wet and dry periods in either order (that is, of Yt against Xt, and of

Yt against Xt+1, for It = i and i = 1; 2;

� the lengths of successive events of types 1 and 2 in either order (that is, of Yt against Yt+1
when It = 1; It+1 = 2, and when It = 2; It+1 = 1.

The scatterplots described above show no evidence of dependence between successive event and

inter-event durations. Those for January are given in �gure 3.6 to illustrate the results obtained.

The data plotted in this �gure represent log10(duration in minutes).

3.1.5 Fitted Distributions for Event Durations and Dry Periods

If X follows a 3-parameter Weibull distribution, the probability density function of X has the

following form (Johnson & Kotz 1970, chapter 20):

pX(x) = (c=�)[(x � �)=�]c�1 exp[�[(x� �)=�]c]

for x � �, where c is the shape parameter, � is the scale parameter and � is the shift of origin.
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Type 2 durations (mins) p̂

Month n mean std min max

Jan 71 90.86 112.21 0.78 865 0.4

Feb 72 84.12 83.64 4.14 440.22 0.44

Mar 43 94.34 110.62 6.01 683.7 0.39

Apr 39 80.13 80.27 8.63 384.38 0.4

May 29 120.82 125.42 5.73 438.51 0.57

Jun 19 113.23 93.32 17.7 362.74 0.39

Jul 35 116.36 120.69 5.25 462.93 0.12

Aug 29 129.49 108.64 5.55 446.86 0.29

Sep 39 115.81 96.76 6.17 429.58 0.39

Oct 53 116.59 107.82 12.63 568.36 0.39

Nov 52 108.93 184.14 7.01 1283.73 0.4

Dec 63 89.61 75.28 7.5 403.42 0.43

Table 3.2: Basic Statistics of the empirical distributions for durations of events of type 2 and the

estimated Markov transition probability p̂

The corresponding survival function is given by

P(X � x) = exp(�((x� �)=�)c)

while the �rst two moments are E(X) = ��(1+c�1)+�, and Var(X) = �2�(1+2c�1)�(�((1+c�1))2.

Weibull distributions, as above, have been �tted by maximum likelihood (Johnson & Kotz 1970,

pp.255{256) to the durations of events and dry periods for each month. Figures A.30 to A.38 in

the Appendix show probability plots for each month as a means of assessing the adequacy of the

Weibull distributions to model these durations (censored observations are not included in these

plots). The results are generally encouraging; see �gure 3.7 which shows the �tted distributions

for January. The assumption of Weibull distributions for the durations seems broadly justi�ed,

although there are some obvious departures in the tails of the distributions. We also note that, in

May, durations of type 1 events appear to cluster in compact groups (see Appendix, Fig A.34). We

have found no obvious explanation of this e�ect.

The �tted parameters are given in table 3.3. In addition to examining their seasonal variation,

we can also determine whether simpler distributional forms are appropriate. For example, there

might be no need for a shift of origin (� = 0) for type 2 rain events and dry periods, while c = 1

corresponds to an exponential distribution. From inspection of the parameter values it appears

that the shape parameters for the distributions of dry periods and type 2 events are fairly constant

over the year, taking values between 0.5 and 0.7 for the dry periods, and around 1.0 for the type 2

events. However, the shape parameters for the type 1 events show more seasonal variation. Given

the time resolution of the raw data (5 minute intervals), and the small number of data points

involved in the �tting, shifts of origin (�) of under 20 minutes do not seem signi�cant, suggesting

that it should be adequate to assume that � = 0 in �tting the durations of both the dry periods

and the type 2 rain events.

To gauge the accuracy of these estimates and to investigate hypotheses about the parameter

values in more detail, con�dence intervals can be calculated. Formulae for approximate variances
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Figure 3.7: Fitting a Weibull Distribution, January (3 parameters per month and per type)

Dry periods (mins) Type 1 durations (mins) Type 2 durations (mins)

month shape, c scale, � shift, � shape, c scale, � shift, � shape, c scale, � shift, �

1 0.66 477.00 2.20 1.11 264.07 119.40 0.98 89.30 0.78

2 0.71 547.93 2.69 1.20 308.56 85.00 1.03 81.23 4.05

3 0.62 716.92 12.60 1.56 440.00 95.00 1.01 91.79 6.00

4 0.68 582.10 16.00 1.05 292.98 123.10 0.79 63.41 8.63

5 0.46 528.68 12.64 0.77 395.26 35.87 1.13 139.67 5.73

6 0.51 1021.78 18.60 0.66 175.13 77.68 1.25 111.37 17.60

7 0.44 399.11 6.60 0.41 86.57 163.58 0.82 90.00 5.20

8 0.55 894.86 6.96 0.62 217.50 117.30 0.85 118.27 5.55

9 0.70 807.59 6.75 1.98 390.50 17.00 0.98 105.38 6.17

10 0.68 548.53 6.77 1.05 306.50 116.20 0.93 97.25 12.63

11 0.54 379.60 6.73 0.87 320.70 133.23 0.92 107.00 6.95

12 0.64 496.29 10.57 1.00 313.79 87.56 1.30 97.55 7.50

Table 3.3: Estimated parameters of the Weibull distributions
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Figure 3.8: Weibull Parameters and Con�dence Intervals. Top: scale parameter, � (in minutes).

Bottom: shape parameter, c.
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Figure 3.9: Parameters of the �tted Weibull Distributions | mean (in minutes)

of the estimates of c and � based on n independent observations are given by Johnson and Kotz

(1970, p 256):

Var(ĉ) = 0:608ĉ2=n; Var(�̂) = 1:087(�̂=ĉ)2=n

leading to approximate 95% con�dence intervals for these estimates which are shown (dotted lines)

together with the estimates in �gure 3.8. Note that, as discussed in connection with �gure 3.6,

there is no evidence against the assumption of independent observations.

From �gure 3.8, it can be seen that an assumption of constant values (over months) for the

scale and the shape parameters of each of the three distributions is implausible. The data are not

consistent with the assumption of an exponential distribution (c = 1) for the durations of either

the dry periods or the durations of type 1 events, although this assumption might be acceptable

for the type 2 events.

For the durations of dry periods, and for the type 2 events, the estimates of the shift parameter

� are generally close to zero and always less than 20 minutes. In addition, there is no physical

reason to suggest a positive lower bound for these durations, so assuming � = 0 in each case seems

reasonable. However, we have already noted that, on physical grounds, type 1 events are likely to

have a minimum duration of around 11
2
{2 hours, and this is con�rmed by the majority of estimates

in table 3.3. In fact, in most cases here the estimate is itself the minimum observed duration.

In an attempt to see whether there would be a more obvious seasonal pattern were the Weibull

distributions reparameterised, we have plotted in �gures 3.9, 3.10 and 3.11, the mean, standard
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Figure 3.10: Parameters of the �tted Weibull Distributions | standard deviation (in minutes)
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Figure 3.11: Parameters of the �tted Weibull Distributions | index of variation
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deviation and an index of dispersion (here the coeÆcient of dispersion i.e. standard deviation/mean)

of the corresponding �tted Weibull distributions. There is a clear and intuitively reasonable seasonal

pattern in the mean durations of the dry periods and type 2 events. There is no particular seasonal

pattern in the means for the type 1 events. This presumably re
ects the de�nition of such events,

which could be expected to occur with di�erent frequencies over di�erent months but to correspond

to a distinct and identi�able weather type. The standard deviations of all three types of durations

are generally greater in the summer. While, at least for dry periods and type 2 events, one might

be tempted to postulate that the standard deviation increases in proportion to the mean, it may

simply be an e�ect of the relative scarcity of rain events in summer months.

These �tted properties can also be used as a means of assessing the goodness of �t of the Weibull

distributions, by comparison with the corresponding properties of the empirical distributions (see

�gures 3.12, 3.13 and 3.14). The �tted and empirical means seem in generally good agreement; the

exception is in July, for type 1 events, but we have previously noted the very small number of such

events in the data record. As is to be expected, the plots for the standard deviation and (therefore)

the index of dispersion show rather more variation, with July being an obvious outlier throughout.

3.1.6 Model Simpli�cation

In view of the results of the preceding section, we can reduce the number of parameters by setting

� = 0 for the durations of dry periods and type 2 events. The results of �tting the reduced

models have been compared with the previous ones. Fitted parameter estimates are given in table

3.4. Probability plots for each �tted Weibull distribution against the empirical distribution of the

durations are shown here for January in �gure 3.15, and in the Appendix, �gures A.39 to A.44 for

all 12 months. The model �ts seem generally acceptable. The reduction in parameters has not led

to any obvious reduction in the adequacy of �t.

Dry periods (mins) Type 1 durations (mins) Type 2 durations (mins)

month shape, c scale, � shift, � shape, c scale, � shift, � shape, c scale, � shift, �

1 0.68 463.62 0 1.11 264.07 119.40 1.03 92.27 0

2 0.74 564.19 0 1.20 308.56 85.00 1.15 88.89 0

3 0.7 791.38 0 1.56 440.00 95.00 1.07 93.21 0

4 0.73 749.21 0 1.05 292.98 123.10 1.09 82.96 0

5 0.55 689.93 0 0.77 395.26 35.87 0.98 119.94 0

6 0.66 1135.86 0 0.66 175.13 77.68 1.4 125.47 0

7 0.62 938.99 0 0.41 86.57 163.58 0.98 115.27 0

8 0.65 964.83 0 0.62 217.50 117.30 1.15 135.81 0

9 0.70 805.45 0 1.98 390.50 17.00 1.23 124.21 0

10 0.72 652.63 0 1.05 306.50 116.20 1.22 125.23 0

11 0.59 528.35 0 0.87 320.70 133.23 0.95 105.46 0

12 0.73 690.18 0 1.00 313.79 87.56 1.27 97.47 0

Table 3.4: Estimated parameters of the Weibull distributions (simpli�ed models).
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Figure 3.12: Mean of the �tted Weibull distribution against empirical mean (in minutes)
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Figure 3.14: Index of variation of the �tted Weibull distribution against empirical index of variation
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Figure 3.15: Fitting a Weibull distribution, January (simpli�ed model: 2 parameters per month

for dry periods and events of type 2, 3 parameters per month for events of type 1)
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3.2 Modelling the event sequence

We are now almost ready to combine our stochastic model for the interiors of rain events with

the above model for the sequence of rain events passing over the radar window. As noted earlier,

the vast majority of rain events in the Wardon Hill data record appear to be part of larger scale

weather systems moving across the radar window. In our model, the arrival of a rain event coincides

with the time when the radar coverage rises above 25% and its departure with the time when the

radar coverage drops below 25% again. We will therefore generate rainfall data over the window

by simulating from the GDSTM within a quadrilateral rain event area that moves across the radar

window. The shape and size of the rain event area is determined by the interval between the

arrival and departure times of the event, its velocity and an analysis of the orientation of leading

and trailing edges of rain events in the data record which is described below.

3.2.1 Leading and trailing edges

In order to specify the shape of the rain event areas we need to estimate the orientation of leading

and trailing edges for the rain events to which the model has been �tted. In an ideal situation we

would have distinct wet and dry regions and a clearly de�ned straight edge to the incoming/outgoing

rain event. Many rain events exhibit this behaviour to a reasonable extent, in that the approximate

angle at which the rain event enters/leaves the radar window can be estimated by eye on inspection

of radar images. We devise an automated method of performing this function as follows.

We classify each pixel of the image as `wet' (positive rainfall intensity) or `dry' (zero rainfall

intensity) so that we have a sample of (x; y) locations of pixel centres for each of these two popu-

lations. We use Fisher's Linear Discriminant Function (LDF) (Fisher 1936) to �nd a straight line

that splits the image into 2 regions - which can be termed `wet' and `dry' (the `wet' region will

contain mainly `wet' pixels, while `dry' pixels will predominate in the `dry' region). Fisher's LDF

chooses this dividing line to maximize the ratio of the between-region variance to the within-region

variance of the pixels. In fact we are only interested in the gradient of the estimated straight line.

We estimate the orientations �L and �T of the leading and trailing edges of the rain event using

Fisher's LDF as described above. We select one radar image for the purpose of estimating �L and

another for �T . These images are selected from the time periods during which the rain event is

in the process of entering and leaving the radar window respectively. Let r(t) denote the radar

coverage at time t and (ts; te) denote the time period used for parameter estimation. We estimate

�T using the image before the �rst image after te with a coverage less than r(te)=2. We use a similar

selection rule to select an image before ts for use in estimating �L. This procedure is preferred over

an alternative strategy in which we use the �rst and last images of a rain event with coverages

greater than 25%. For some rain events it is apparent that the latter approach is overly in
uenced

by peripheral drizzle surrounding the main part of the rain event and may produce misleading

results.

3.2.2 Selection of parameter sets

We construct a library of estimated parameter sets for each month of the year. For each rain

event, we add to this library the estimated duration of the event, together with estimates of the
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orientations of its leading and trailing edges. Suppose that we wish to select a parameter set with

which to simulate a rain event of duration dsim, where dsim has been sampled from one of the

month-speci�c Weibull distributions estimated in section 3.1. A simple strategy is to sample a

parameter set from the parameter library for the month in question at random, taking no account

of the value of dsim. However, we might expect dsim to be related to some of the parameters of

the model. For example, physical considerations lead us to expect rain event speed to be inversely

related to rain event duration - fast moving events tending to produce relatively short durations

and vice versa. Although we do not observe a strong relationship between these two variables we

�nd that we do not tend to observe fast moving events with long durations (see �gure 3.16).
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Figure 3.16: Association between speed and duration of rain events

There is no immediately apparent relationship between rain event duration and any of the other

model parameters.

In order to respect the dependence between rain event speed and duration (and any less obvious

dependence between dsim and the other parameters) we restrict our choice of parameter set to

those with a duration dobs close to the simulated duration dsim. Additionally, we should ensure

that we select di�erent types of parameter sets in the same proportions that they were observed.

For example, if we had observed 1 very intense event in the 4 Januaries from 1993 to 1997, we

should ensure that the expected number of such events in a simulation of 4 Januaries is 1. These

considerations lead us to the following parameter set selection scheme:

1. partition the time interval (0;1) into m sub-intervals, where m is the number of parameter

sets in the library for the month in question, based on the percentiles of the relevant Weibull

distribution for rain event duration;

2. order the parameter sets with respect to their durations (shortest duration �rst);

3. generate a duration dsim from the relevant Weibull distribution and determine the percentile

i of the Weibull distribution within which dsim lies.
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4. select the parameter set with the ith largest duration.

The scheme achieves the two objectives detailed above { the duration associated with the selected

parameter set will tend to be close to dsim and the unconditional (on dsim) probability of selection

is 1=m for each parameter set, where m is the number of parameter sets (for the month in question)

in the parameter library. It is the scheme used to produce the simulated data analysed in section

3.3.

The simulated rain event duration dsim for a given parameter set is restricted to a single per-

centile of the relevant Weibull distribution. If this is deemed too restrictive we may wish to increase

the range of values dsim can take for a given parameter set. One possibility is to partition (0;1)

into n (n is a factor of m) sub-intervals so that each percentile of the Weibull distribution is as-

sociated with a collection of parameters sets, from which we select one at random. If n is not a

factor of m a more complex rule is required to ensure that the probability of selection is 1=m for

all parameter sets. A better approach is to replace 4. above by

select parameter set

8><
>:

i� 1 with probability 1� p=2

i with probability p

i+ 1 with probability 1� p=2

for i = 2; : : : ; n� 1 and some suitably chosen p, and a similar rule for i = 1 and i = n. That is, we

may select the parameter set either side of the set initially selected (if such a parameter set exists).

This scheme can be extended in an obvious way to allow the selection of parameter sets further

away from the parameter set initially selected.

Finally, we note that very few type 1 events were observed in certain months of the year (see table

2.4). In particular the parameter libraries of �tted parameter sets for June and July contain only 5

and 6 parameter sets respectively. It is reasonable to expect only small di�erences between adjacent

months in the year. Therefore, when simulating rainfall for February, for example, we might select

parameter sets from a combined library containing all the parameter sets from January, February

and March. Such a scheme would have the e�ect of smoothing seasonal variation in parameter

values. A similar problem pertains to the treatment of rain event durations.

3.2.3 Simulation and data storage

The simulation program described and listed in appendix A.3 simulates the temporal process of dry

periods and type 1 and type 2 rainfall described in section 3.1. Within each period of type 1 rainfall

we generate rainfall data by simulating from the spatial-temporal model described in section 2.1

within a quadrilateral rain event area that moves across the radar window. The selection scheme

given in section 3.2.2 is used to select a parameter set for this purpose, the velocity of the selected

parameter set determining the velocity of the quadrilateral rain event area. At this stage we do not

simulate data within periods of type 2 rainfall. By de�nition these events do not cover the entire

radar window and further investigation is required to characterise their movement, size and shape.

The absence of type 2 events from the simulation is anticipated to have relatively little impact as

events of the second type contribute only a very small proportion of the total rainfall recorded by

the radar (see section 3.2).

The data produced by the simulation program are stored in a similar format to the Wardon

Hill radar data themselves. Simulated rainfall intensities are stored to the nearest 1/32 mm/hr in
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all cases. The Wardon Hill radar data are stored to the nearest 1/32 mm/hr for small intensities

rising to the nearest 2 mm/hr for very large rainfall intensities. Thus, the data produced by the

simulation program can easily be adjusted so that it is in the same form as the Wardon Hill data.

For further details on data storage see appendix A.3.

3.3 Continuous Simulation Performance

We now assess the performance of the spatial-temporal model by comparing basic summary statis-

tics for simulated and empirical data, to see whether their statistical properties are similar. The

statistics calculated include the mean, standard deviation, spatial autocorrelation function and

temporal autocorrelation function. The proportion of wet pixels through both space and time is

also calculated.

3.3.1 Calculation of summary statistics

The performance of the spatial-temporal model is assessed at various spatial and temporal scales.

The spatial scales considered are 4km2, 16km2, 64km2, 256km2 and 10; 000km2, and the temporal

scales considered are 15 minutes, 1 hour and 24 hours. We focus mainly on the hourly time scale

and the 64km2 spatial scale. Therefore, each time scale is considered at the 64km2 spatial scale

and each spatial scale at the hourly time scale. The actual combinations of spatial and temporal

scales considered are:

� Hourly & 64km2

� Hourly & 4km2

� Hourly & 16km2

� Hourly & 256km2

� Hourly & 10; 000km2

� 15 mins & 64km2

� Daily & 64km2

For both the simulated and the empirical data the rainfall intensity values are stored as 5 minute

images which consist of 52 � 52 4km2 square pixels. Therefore, to obtain measurements at larger

spatial scales we simply average over the relevant number of 4km2 pixels. Similarly, to obtain

measurements over longer temporal scales we average over the relevant number of 5 minute images.

By averaging the images over both space and time we obtain resulting images at the required spatial

and temporal scale which are then used to calculate the summary statistics.

Before taking averages of the original 5 minute, 4km2, images for the empirical data, all of

these images with a coverage of less than 25% have been set to zero (i.e. all pixels within the image

have been set to a rainfall intensity of zero). As explained earlier (section 3.1), such images are

badly contaminated by radar `noise' making their use in assessing the performance of the model
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problematic. This procedure was also carried out on the original 5 minute, 4km2, simulated images

to allow for a more informed comparison.

For the remainder of this section, when we refer to pixels and images we are referring to those

which have already been aggregated to the appropriate space and time resolution.

All of the summary statistics are given on a monthly basis. As there are 3 years and 7 months

(September 1993 { March 1997) of empirical data, we obtain 3 or 4 estimates of the summary

statistics for each month of the year. A weighted average of these 3 or 4 estimates is calculated to

give the �nal summary statistics. Generally, the weights are determined by the number of images

in each month (to allow for the missing data). For the simulations, we have 4 complete years of

data, so the monthly summary statistics given are each averages over 4 values.

The statistics calculated fall into two main categories: unconditional statistics and conditional

statistics. The unconditional statistics are calculated over all pixels, whereas the conditional statis-

tics are only calculated over pixels which are `wet' (i.e. pixels where the mean rainfall intensity

is nonzero). While the unconditional statistics provide us with an overall picture, the conditional

statistics allow us to focus speci�cally on rain events. These statistics provide us with valuable and

complementary information. The various statistics calculated are as follows:

Unconditional Statistics:

(1) Overall Mean - This is simply the mean rainfall intensity, in millimetres per hour, taken

over all pixels through both space and time.

(2) Overall Standard Deviation - This is the standard deviation of rainfall intensity taken

over all pixels through both space and time.

(3) Within Image Standard Deviation - For each image the spatial within image variance of

rainfall intensity is calculated over all pixels. Having calculated this for all images, the

square root of the average of these within image variances is taken, to give an average

within image standard deviation.

(4) Overall Proportion Wet - This statistic is simply the proportion of pixels through both

space and time that are wet.

(5) Spatial Autocorrelation Function (SACF) - Each aggregated image is made up of a

square grid of square pixels. Any given pixel p within the image will generally have 8

neighbouring pixels, as shown in the diagram below.

(-1,1) (0,1) (1,1)

(-1,0) p (1,0)

(-1,-1) (0,-1) (1,-1)

The labels for the neighbouring pixels have been obtained by de�ning the pixel p to

be at the origin in a Cartesian (x; y) co-ordinate grid. From this diagram we can see

that there are eight SACF lags to calculate if we just consider neighbouring pixels. To

calculate the image SACF at lag (1,1), for example, we use all pairs of pixels within the
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image having the same relative orientation as pixels p and (1,1). A SACF at lag (1,1) is

calculated for each image which contains some wet pixels and an average of these values

is taken. The SACF for all other lags is calculated similarly. It is obvious from the

above description that the SACF at lag (1,1) is identical to that at lag (-1,-1). Similarly,

the SACF at lag (-1,1) equals that at lag (1,-1), the SACF at lag (1,0) equals that at

lag (-1,0) and the SACF at lag (0,1) equals that at lag (0,-1). Therefore, we need only

calculate the SACF at 4 of the 8 lags: (1,0), (0,1), (1,1), and (-1,1).

(6) Temporal Autocorrelation Function (TACF) - The TACF is calculated at time lags 1, 2

and 3. To calculate the TACF at lag 1 we proceed as follows. A particular pixel location

is chosen in space. Fixing on this spatial location we then step through time identifying

all pairs of values which are separated by one time lag. This procedure is carried out for

each spatial pixel location. From these pairs of values we can then obtain the TACF at

lag 1. The TACF at lags 2 and 3 are calculated similarly.

Conditional Statistics:

(1) Overall Mean - This is the mean rainfall intensity of all wet pixels taken through both

space and time.

(2) Overall Standard Deviation - This is the standard deviation of rainfall intensity for all

wet pixels taken through both space and time.

(3) Within Image Standard Deviation - For all images which contain two or more wet pixels,

the spatial within image variance of rainfall intensity is calculated over the wet pixels

only. Once this within image variance has been calculated for all partially wet images,

the square root of the average of these variances is taken to give an average within image

standard deviation.

(4) Proportion Wet Conditional On Wet Images - This statistic is slightly di�erent from the

other conditional statistics in the sense that it is not calculated over wet pixels only.

Instead it is conditional on partially wet images. For all images which have one or more

wet pixels, the proportion of pixels which are wet within the image is calculated. Once

this has been calculated for all partially wet images an average of these proportions is

taken.

(5) Spatial Autocorrelation Function - This statistic is calculated in a similar fashion to

its unconditional counterpart; however, when calculating each image SACF we only

compare pairs of values if they are both non-zero.

(6) Temporal Autocorrelation Function - This statistic is calculated in a similar fashion to

its unconditional counterpart; however, in this instance we only compare pairs of values

for a particular pixel location if they are both non-zero.

When calculating the spatial autocorrelation functions above it should be noted that due to

the geometry of an image there are fewer pairwise pixel comparisons for the diagonal lags than for

the other lags. To compensate for this we have used the number of pairwise pixel comparisons as

the divisor in the calculation of the autocovariance function, as opposed to the more traditional

divisor which is the total number of pixels in the image. A similar procedure was also adopted

for the calculation of the temporal autocorrelation functions where there are more pairwise pixel

comparisons at lag 1 than there are at each of lags 2 and 3. This is especially important for the
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empirical data where there are periods of missing images. The advantage of our procedure is that

we are able to make a more informed comparison between the ACF at various lags; however, we no

longer guarantee that the ACF will be restricted to the range �1 � ACF � +1. Some discussion

regarding the choice of estimator for an autocorrelation function may be found in Priestley (1981,

section 5.3.3) and in Kendall & Ord (1990, chapter 6).

3.3.2 Results

Four simulations, each of 4 years in length, were produced. Each of the 4 simulations was kept

separate when calculating the summary statistics. Therefore, for a given spatial and temporal com-

bination, we have 4 sets of summary statistics for the simulated data and 1 set of summary statistics

for the empirical data. To simplify the comparison between the simulated and the empirical data,

an average set of simulation summary statistics was produced over the four simulations.

Within this section we focus attention primarily upon the results for the hourly and 64km2

scale which are represented graphically in �gures 3.17 to 3.19. These results will be discussed, and

comparisons made with the results obtained at the other spatial and temporal scales. Tables and

plots giving the results at all spatial and temporal scales can be found in Appendix A.5.

From the plot of the unconditional overall means we can see that the simulated data are able to

capture the seasonal e�ect which is apparent in the empirical data, with more rain being produced

in the winter months. For the majority of the months, the means for the average simulation are

close to those for the empirical data, although there are a few months where the �tted model

overestimates the mean rainfall intensity. If we consider the conditional means we see that for some

months, such as June and November, these are almost identical for the average simulation and the

empirical data. However, for other months (e.g. August), the �tted model again overestimates

the observed value. We note that the model of storm interiors matches the means exactly. It is

therefore likely that observed discrepancies are an artefact of the event sampling procedure.

The plots for the unconditional and conditional overall standard deviations are generally quite

encouraging. Notice the similarity in the plots for the unconditional overall standard deviation and

overall mean. The plots for the unconditional and conditional within image standard deviations

provide a very similar picture to that of the overall standard deviations.

For the overall proportion wet, the values for the average simulation and the empirical data

are in close agreement. It does appear though that for the majority of the months the overall

proportion wet is slightly greater in the empirical data. This suggests that it rains slightly less

frequently in the simulations but, when it does rain, the intensity is greater. The results for the

conditional proportion wet statistic also look generally good. At this stage it is worth comparing

the plot for this statistic at the hourly and 64km2 scale against the same plot at the hourly and

4km2 scale (results for this scale are presented graphically in �gures 3.20 to 3.22). At the 4km2 scale

the average simulation line is generally above that for the empirical data, whereas at the 64km2

scale both lines have shifted upwards but now the empirical data line is generally above that for the

average simulation. This indicates that the empirical data have more large scale structures than

the simulations at the 64km2 scale, but that these structures are less homogeneous than those in

the simulations. Referring to the model parameters graphed in �gure 2.10 (page 29), structures on

this scale would correspond to large rain cells in the model. The discrepancy between observed and

simulated statistics here is probably due to the fact that the model represents rain cells as solid
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Figure 3.17: Plots of summary statistics for the simulated and empirical data (hourly & 64km2).
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Figure 3.18: Plots of summary statistics for the simulated and empirical data (hourly & 64km2).
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Figure 3.19: Plots of summary statistics for the simulated and empirical data (hourly & 64km2).
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ellipses, whereas in reality cell boundaries are likely to be less well de�ned.

Turning now to the unconditional spatial autocorrelation function (SACF), the results are gen-

erally very good. For all 4 spatial lags, the values for the average simulation and the empirical data

follow similar patterns and are in close agreement, although the values for the average simulation

do tend to be slightly greater than those for the empirical data. It is worth noting that for both

the average simulation and the empirical data, the SACF is greater at lags (1,0) and (0,1) than it

is at lags (1,1) and (-1,1). This is to be expected given that in the SACF at lags (1,0) and (0,1) we

are comparing pixels that are closer together than at the other 2 lags. Another noticeable feature

of all 4 plots is that the value for July dips for both the average simulation and the empirical data,

and that there is a large variation between the July values for the 4 individual simulations. This

is almost certainly simply a re
ection of the scarcity of data for type 1 events in July (just 5 were

observed in the empirical data | see table 2.4). At this stage it is worth comparing the 4 plots for

the unconditional SACF at the hourly and 64km2 scale (�gure 3.18) with the equivalent plots at

the hourly and 4km2 scale (�gure 3.21). We can see that the SACF is lower at the larger spatial

scale, as we would expect, for both the average simulation and the empirical data. Furthermore,

the di�erence between the average simulation and the empirical data seems to increase at the larger

spatial scale. Turning to the conditional SACF we see that the results are very similar to those for

the unconditional values.

These discrepancies in the spatial autocorrelations may be explained as follows. The conditional

SACF focuses on pairs of wet pixels, which are likely to be part of the same rain cell. In the model,

such pixel values are perfectly correlated, because each cell has a constant intensity, whereas the

empirical correlations of such points will be lower. It is noteworthy that the discrepancy of the

spatial ACF plots in an east-west direction (spatial lag (1; 0)) is minor compared with that in other

directions, which is consistent with the predominant orientation of the rain cells (see �gure 2.9).

The unconditional temporal autocorrelation function (TACF) plots show good agreement be-

tween simulated and empirical data. For all three lags, the two sets of values are in close agreement.

The TACF decreases with increasing lag, as expected, for both the simulated and empirical data.

The equivalent plots and tables at the daily time scale (see Appendix A.5) show that the average

simulation and the empirical data are still in close agreement but that there is practically no cor-

relation evident at the daily time scale. If we now turn to the conditional TACF plots, we see that

again the results are in quite good agreement, although the agreement decreases with increasing

lag. There is also less correlation evident in the conditional plots than there is in the unconditional

plots which re
ects the fact that the latter is in
ated by pairs of successive zero values. Finally, no-

tice that the largest di�erence in the two sets of results occurs in July at lag 3, again not surprising

given the small number of type 1 events present in the empirical data.

Overall, if we now compare the set of results obtained at the hourly and 64km2 scale with the

other sets of results (given in the Appendix A.5) we can observe the e�ect of spatial and temporal

scale upon the various summary statistics. Tables 3.5 and 3.6 summarise these e�ects in broad

terms.

The changes indicated in the tables are expected on intuitive grounds and are generally consis-

tent in both the simulated and the empirical data. This suggests that the spatial-temporal model

performs consistently and acceptably over the various spatial and temporal scales.
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Figure 3.20: Plots of summary statistics for the simulated and empirical data (hourly & 4km2).
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Figure 3.21: Plots of summary statistics for the simulated and empirical data (hourly & 4km2).
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Figure 3.22: Plots of summary statistics for the simulated and empirical data (hourly & 4km2).



CHAPTER 3. MODELLING OF EVENT SEQUENCES 62

Change E�ect

Increase Spatial Scale Unconditional Mean - Unchanged

Conditional Mean - Decrease

Unconditional and Conditional St Devs - Decrease

Unconditional and Conditional Prop Wet - Increase

Unconditional and Conditional SACF - Decrease

Unconditional and Conditional TACF - Increase

Table 3.5: E�ect of increasing spatial scale upon summary statistics for rainfall intensity

Change E�ect

Increase Temporal Scale Unconditional Mean - Unchanged

Conditional Mean - Decrease

Unconditional and Conditional St Devs - Decrease

Unconditional and Conditional Prop Wet - Increase

Unconditional and Conditional SACF - Increase

Unconditional and Conditional TACF - Decrease

Table 3.6: E�ect of increasing temporal scale upon summary statistics for rainfall intensity

3.3.3 Extreme-value performance

The evaluation of the model's ability to reproduce the extreme-value behaviour of rainfall should

be carried out for di�erent spatial and temporal scales. We shall consider the usual hourly and

daily scales while areas of 2 � 2km2 and 16 � 16km2 will be examined to see if the model is able

to reproduce annual extremes at di�erent spatial scales. (It might, for example, be expected that

convective rainfall has a greater e�ect on the smaller-scale extremes.)

There are less than 4 years of radar data with which model simulations can be compared, so

that it is necessary to pool data from di�erent locations over the analysed region to be able to

carry out a meaningful extreme-value analysis. Although dependent data sets are being used in

�tting the extreme-value distributions, the same procedures are used for observed and simulated

data, and it was felt that further re�nement was not justi�ed in the light of the data limitations.

In selecting locations for this pooling, we have chosen regions within the observed and simulated

spatial �elds from which raingauge data are also available, enabling additional comparisons to be

made. Overall, data from �ve regions are considered for the pooling, corresponding to raingauges

at Godminster Farm, Yeovilton, Downside Abbey, Sidmouth and Boscombe Down (see �gure 3.23).

To compare a 4-year realisation of the continuous-simulation model with the radar data therefore,

both empirical and simulated data are aggregated to the appropriate temporal and spatial scale

for the analysis, and simulated and observed annual extremes are pooled across all �ve regions to

obtain samples of size 20 for extreme-value analyses. Each of the four simulations considered in

the previous has been studied in this way.

For each of the data sets obtained by pooling over regions, an extreme-value analysis is per-
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Figure 3.23: Sites at which the GDSTM extreme value performance is evaluated

formed on the annual maxima at hourly and daily timescales. Using extreme-value theory, we

expect the distribution of these maxima to converge towards one of three extreme-value distribu-

tions, EV-I (Gumbel), EV-II (Fr�echet) or EV-III. In practice, since EV-III has an upper bound, it

is not useful for rainfall maxima. The EV-II distribution is more skewed than EV-I which has a

�xed skewness coeÆcient of 1.1396. It is sometimes preferred to the EV-I for rainfall, but on the

basis of the available data (where only 20 annual maxima are available), it is not possible to decide

between an EV-I and an EV-II at a 95% con�dence level. Moreover, if a Generalised Extreme Value

distribution (which incorporates the EV-I, EV-II and EV-III as special cases | see, for example,

Joe, 1997, p.170) is �tted to the data here, the shape parameter is not such as to warrant the use

of an EV-II | see Kotegoda (1980), for example. We shall therefore focus upon �tting an EV-I

distribution to all the data sets. This is done using the method of moments, and plots are produced

showing the extreme rainfalls for di�erent return periods, represented on the horizontal axis using

the reduced variate:

x = � ln

�
� ln

�
1�

1

T

��

where T is the return period.

In addition to carrying out conventional extreme-value analyses, Flood Studies Report extrema

(NERC 1975) are estimated. In this method, the expected rainfall R(D;T;A) for any duration D

and return period T and area A is estimated on the basis of the 2 day rainfall with a 5 year return

period, i.e. R(2 day, 5 year), as well as the ratio R(1 hour; 5 year)=R(2 day; 5 year) and the Areal

Reduction Factor (ARF) for given A and D.



CHAPTER 3. MODELLING OF EVENT SEQUENCES 64

Finally, estimates of extreme-value rainfall based upon 18 years of data from the Boscombe

Down gauge (1980-1997) together with the above ARFs from the Flood Studies Report are used

to provide a comparison based upon hourly rainfall which involves no regionalisation (although the

Boscombe Down gauge is located slightly outside the radar window used in �tting the GDSTM |

see �gure 3.23).

There are two issues to bear in mind when comparing results obtained from radar data (which

include the empirical radar data results along with those for the GDSTM) with those obtained

using raingauge data. The �rst is the fact that radar-derived results re
ect spatial averages whereas

raingauge results are for points in space: this is corrected for by the use of appropriate ARFs, as

detailed above. The second issue is that of radar/raingauge calibration. In general, radar tends to

systematically underestimate rainfall amounts, the problem becoming more acute with increasing

distance from the radar station. As a result, we would expect radar-derived extremes to be smaller

than those derived from gauges even after applying an ARF to the gauge data.

Results for hourly data: The estimated Gumbel �ts for the four simulations are found to be on

either side of that for the pooled historical radar data both for the 2� 2km2 and 16� 16km2

resolutions (see �gures 3.24 and 3.25). This indicates the model's ability to produce extreme

values which are approximately distributed as the observed data.

The Flood Studies Report estimates diverge from the radar estimates for return periods which

are of an order of magnitude larger than the size of the radar data set. This is not surprising

given that they are estimated on the basis of long term data sets of which the four years of

radar data may not be a representative sample.

Results for daily data: At this time-scale, the radar data appear much more representative of

the long term raingauge behaviour as summarised in the Flood Studies Report statistics than

at the hourly time-scale, as seen in �gures 3.26 and 3.27.

The extreme values inferred from the Gumbel �t to the simulations are very close to those

yielded by a Gumbel �t to the radar data at the resolution of 16 � 16km2. At the �ner

resolution of 2�2km2, the model underestimates the estimated radar data extreme values for

large return periods: however, all of the simulations yield results which are well within the

radar-derived con�dence intervals. Notice also that at the �ner resolution, the simulations

are comparable with the results obtained from an EV-I �t to the 18-year record at Boscombe

Down.

The overall conclusion here is that the GDSTM appears able to reproduce the extreme value

statistics of the radar �elds well, as far as can be determined from the limited data available. The

di�erent results obtained from the various observational series highlight the uncertainty associated

with extreme value analyses on the basis of small data sets, and the potential discrepancies between

radar and raingauge data. In particular, notice the di�erence between the two sets of results from

Boscombe Down obtained using the Flood Studies Report methodology and by �tting an EV-I.

The wide con�dence intervals associated with the EV-I �t to the radar data also indicate the level

of uncertainty here. Taking this into consideration, any discrepancies between the results from

GDSTM simulations and from the radar data are minor.
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Figure 3.24: Hourly 2� 2km2 GDSTM extreme value performance

Figure 3.25: Hourly 16� 16km2 GDSTM extreme value performance
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Figure 3.26: Daily 2� 2km2 GDSTM extreme value performance

Figure 3.27: Daily 16� 16km2 GDSTM extreme value performance
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3.4 Summary of continuous space-time modelling

In the work described in the previous chapter, a homogeneous model for the spatial and temporal

interior of single rain events was developed and �tted to data from events that cover the radar

window for a substantial period of time. Almost all rainfall over the window is generated by such

events moving across the window from outside. In this chapter, two categories of event have been

distinguished by analysis of the event sequence: in the �rst, the event covers the whole window

for a substantial period of time (type 1 events), and in the second the event only partially covers

the window, typically `clipping' a corner (type 2 events). In addition, there may be light, spatially

and temporally intermittent rainfall but this cannot be distinguished from noise in the data. The

continuous simulation model developed here generates a random sequence of type 1 and type 2

events of appropriate durations separated by `dry' intervals, according to a semi-Markov model.

The durations of the events as they pass over the window, and of the dry periods in between them,

are modelled by members of the Weibull family of probability distributions. In practice, type 2

events have been found to generate relatively small amounts of rainfall over the window, and a

good �t to data has been achieved by setting the intensities of such events to zero.

Thus, the simulation proceeds by sampling a set of parameters for each event from a library of

parameter sets obtained from historical events. These parameters are augmented by the velocity

of the �tted event and the angles of its leading and trailing edges as it passes over the window.

An event with these parameters is then simulated in such a way that it passes over the window

for the required duration. Possibilities for assessing the performance of the continuous simulation

model are restricted by the limited amount of empirical data available. Nevertheless, the model

performed extremely well in reproducing basic statistical properties, including the proportion of

wet pixels, over a range of time and spatial scales. Clearly, more data are needed before the extreme

values can be fully assessed. However, the model reproduces very well the hourly extremes of the

empirical data. While the daily extremes are underestimated for high return periods, nevertheless

these are well within estimated 95% con�dence intervals. We note that the assumption of spatial

stationarity implicit in the model does not appear to have posed signi�cant problems for this data

set.



Chapter 4

Generalized Linear Modelling of Daily

Data

The stochastic spatial-temporal models described in the previous chapters have great potential for

the simulation of long rainfall sequences, so as to reproduce both spatial and temporal dependencies

using a simpli�ed, but realistic, representation of the structure of rainfall processes. Their main

drawback is that they are stochastically stationary in both space and time. Seasonal variability

in rainfall has been captured via the use of di�erent parameter sets for each month of the year;

however, at the present stage of model development, there is no scope for the incorporation of long-

term changes in climate (temporal nonstationarity) or of systematic orographic e�ects (spatial

nonstationarity).

The need for radar data to calibrate these models imposes a further restriction on their use.

Even in regions where radar data are available, record lengths are limited as the technology is

relatively new. In view of concerns that the climate of the UK has been unusual during the 1990s

(see, for example, DOE (1996), DETR (1999)), it may be unwise to rely too heavily upon short

runs of recent data to provide reliable model parameterisations which will hold into the future. This

problem can, to some extent, be resolved by using long subdaily raingauge records (if available)

to parameterise the model: ways in which this can be done are presented in section 5.1 of this

report. However, long records of sub-daily rainfall may themselves be relatively sparse. A possible

solution would be to parameterise the models using a combination of long single-site records and

short spatial data sequences; however, further development is required to investigate this.

To address these areas of weakness in the Poisson-based model simulation strategy, a parallel line

of research has investigated ways in which long records of daily rainfall data (which are relatively

abundant within the UK) can be used to quantify spatial and temporal nonstationarity over an

area. The methodology is that of Generalised Linear Models (McCullagh & Nelder 1989), which

were introduced into the study of rainfall patterns by Coe & Stern (1982); Stern & Coe (1984).

Such models for daily data may be of interest in their own right, or may be used in conjunction

with the Poisson cluster models of the previous chapters. The simplest scenario occurs when a daily

rainfall modelling exercise reveals no signi�cant temporal or spatial nonstationarity: in this case, the

Poisson cluster models can be used with con�dence if suitable data are available. For example, over

small areas with little topographic variability, it is likely that any spatial nonstationarity is minor

and can e�ectively be ignored. However, for more general application, some way of incorporating

68
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nonstationarity into Poisson-type models will become necessary. Some preliminary work in this

area is reported below, in chapter 5.

We now give an overview of the Generalised Linear Modelling strategy. Subsequently, in section

4.2, three case studies are presented which illustrate the methodology.

4.1 Model development

The basic idea behind Generalised Linear Models (GLMs) is to predict a probability distribution

for some quantity of interest using observations of various other related quantities. In our case the

quantity of interest is the daily rainfall amount at a site; possible predictors include previous days'

rainfall amounts, the month of the year and variables representing topographic e�ects.

Formally, a GLM for a n� 1 vector of random variables Y = (Y1; : : : ; Yn)
0, each dependent on

p predictors (the values of which can be assembled into a n� p matrix X whose (i; j)th element is

the value of the jth predictor for Yi), takes the form

g(�) = X� (4.1)

where � = (�1; : : : ; �n)
0 is the vector mean of Y, g(:) is a monotonic function (the link function)

and � is a p� 1 vector of coeÆcients (by g(�) we mean the n� 1 vector, � say, whose ith element

is given by g(�i)). Model (4.1) is a natural extension of the simple linear regression model. A

constant term in the model can be de�ned by including a column of 1s in the matrix X.

When, as here, the Y s arise as one or more time series and we wish to include previous values of

the series as predictors, we are implicitly studying the conditional distributions of each Y given the

past, and the usual GLM methodology carries over straightforwardly | see, for example, Fahrmeir

& Tutz (1994), chapter 6. In implementation, we broadly follow Coe & Stern (1982); Stern & Coe

(1984). They adopted a two-stage approach, as follows:

Stage 1: model the pattern of wet and dry days at a site using logistic regression. If we denote

by pi the probability of rain for the ith case in the dataset, conditional on a predictor vector

xi, then the logistic regression model is given by

ln

�
pi

1� pi

�
= xi� : (4.2)

Stage 2: �t gamma distributions to the amount of rain on wet days. The rainfall amount for the

ith wet day in the database is taken, conditional on a predictor vector �i, to have a gamma

distribution with mean �i where

ln�i = �i
 (4.3)

for some coeÆcient vector 
.

These two models will be referred to as `occurrence' and `amounts' models respectively.
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4.1.1 Interactions

A common feature of the rainfall process, which can be incorporated into the GLM framework, is

that predictors interact with each other. As an example of this, consider the temporal dependence

structure within a rainfall time series. Intuitively, in the UK we would expect dependence between

successive days' rainfall amounts to be weaker in the summer than in the winter. This is because

summer rainfall tends to be dominated by short-lived convective events, rather than the longer-

lasting frontal systems which predominate in winter. Any coeÆcients in a GLM, which correspond

to predictors representing previous days' rainfall in (4.2) and (4.3), should therefore probably vary

with the season. A simple strategy for incorporating this e�ect is to represent these coeÆcients

themselves as linear combinations of other predictors. From the point of view of model speci�cation,

this is equivalent to adding an extra predictor to the model whose value is the product of the

interacting predictors: hence interactions can be incorporated straightforwardly within the overall

framework.

The presence or absence of interactions within a GLM can tell us a great deal about the

mechanisms which are driving the rainfall process. For example, if signi�cant interactions are

found between a long-term trend and predictors representing seasonality, one of the e�ects of the

trend may be to induce wetter winters and drier summers.

4.1.2 Model �tting

Fitting a GLM involves choosing an appropriate set of predictors (x in (4.2) and � in (4.3)) and

estimating the corresponding parameter vectors � and 
. In each case, if the responses are con-

ditionally independent given the predictors, maximum likelihood estimates of parameters can be

obtained using iterative weighted least squares (McCullagh & Nelder 1989), and standard tech-

niques such as likelihood ratio tests (see, for example, Cox and Hinkley, 1974, section 9.3) can be

used to assess the signi�cance of individual predictors. For example, if a single extra predictor is

added to a model and results in a log-likelihood increase of more than 1.92 (3.22), it is formally

considered to be signi�cant at the 95% (99%) level. However, in general it is necessary to �t mod-

els simultaneously to data from several sites, and simultaneous responses at di�erent sites are not

conditionally independent given the predictors because of spatial dependence between sites. Chan-

dler & Wheater (1998a) reviewed available methods for dealing with such spatial dependence when

�tting models: they argued that � and 
 may still be estimated as though sites were conditionally

independent, so long as individual sites have long records. Such an approach yields consistent

parameter estimates (so that � and 
 will be well estimated); however, standard methods for as-

sessing the uncertainty of such parameter estimates (e.g. con�dence intervals and likelihood ratio

tests) will tend to under-represent the true uncertainty.

Notwithstanding these objections, the `likelihood'-based approach to parameter estimation,

ignoring spatial dependence, does provide useful comparisons, and an informal appraisal of nominal

standard errors and likelihood ratios can provide a useful guide to model selection. This is illustrated

by the case studies considered in section 4.2.
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4.1.3 Modelling nonlinear dependencies

In rainfall modelling applications, it is common to encounter situations where the response (rain-

fall occurrence or amount) is associated with a particular predictor, but where the relationship

is best thought of as between the response and some nonlinear transformation of the predictor.

Examples include the investigation of possible long-term cycles in the climate of an area (where the

fundamental predictor for any day's rainfall is the year in which it occurs, but a cyclical pattern

implies that the relationship is really with a sine wave derived from the year), and the realistic

modelling of orographic variability (typically, the underlying predictors might be site eastings and

northings, but any variability in rainfall amounts is unlikely to be well represented by putting these

into equations (4.2) and (4.3) directly).

Such nonlinear transformations may be divided into two categories, as follows:

Category 1: in this case, there is an obvious parametric form for the transformation. The example

of �tting a cyclical trend function falls into this category. In such a case the component of x

or �, to be included in the model (4.2) or (4.3), takes the form

f (t;�) (4.4)

for some known function f(:), where t is the value of the underlying predictor and � is a

vector of parameters in the transformation. Usually � is unknown and must be estimated:

this can be done simultaneously with all the other parameters, using an extension of the

usual iterative weighted least squares algorithm as described by Green (1984). The resulting

estimates would be maximum likelihood estimates if all sites were conditionally independent.

Direct application of the algorithm may not always produce convergence to the maximum

likelihood estimate owing to computational instability: however, a stable algorithm can be

obtained by making some small modi�cations, as described in section 2.3 of Wei (1997). This

modi�ed algorithm is the one which has been used here, and which is implemented in the

software described in Appendix B.

Category 2: in this case, there is no obvious way in which a nonlinear transformation may

be parametrised. This would be the case, for example, if we were interested in trying to

model regional variability over a large area. In cases such as this, our approach has been to

assume that the transformation of interest is a smooth one (i.e. continuous and di�erentiable)

and is square integrable over the range of values of the underlying predictor. It is diÆcult

to imagine any realistic practical applications where these assumptions do not hold. In

this case the transformation can be expressed, to any desired degree of accuracy over the

range of values of the underlying predictor, using an orthogonal series representation | see,

for example, Priestley (1981, section 4.2.2). Speci�cally, suppose we wish to represent the

unknown transformation f(:) over the interval (a; b). Let f j : j = 0; 1; 2; : : :g be a collection
of functions satisfying Z

b

a

 j(t) k(t)dt =

(
1 j = k

0 otherwise.

Then, for t 2 (a; b), f(t) can be expressed as the in�nite sum

f(t) =

1X
j=0

Aj j(t) : (4.5)
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for some set of coeÆcients fAj : j = 0; 1; 2; : : :g.
In practice, providing the  s are chosen intelligently, most of the coeÆcients Aj will be

very small and can be neglected, so that f(:) can be represented to a very good degree of

approximation using a small �nite collection of  s. The point is that equation (4.5) reduces

a highly nonlinear dependency into linear dependence upon a set of known functions: if we

put a subset of the  s directly into the GLMs (4.2) and (4.3) as predictors, the coeÆcients

fAjg will be subsumed into the coeÆcient vectors � and 
, and the problem is reduced into

essentially linear form.

Orthogonality of the basis functions ( s) is not required for this approach to work. However,

if they are orthogonal and the data points are scattered approximately uniformly over the

range (a; b), then they will produce predictors which are approximately uncorrelated. As a

consequence, the model will be robust against mis-speci�cation of any of the individual  s

(see, for example, Chandler (1998b)).

The disadvantage of orthogonal series representation is that it may be quite parameter-

intensive, as several  s may be needed to obtain an adequate representation of an e�ect.

This problem can be minimised by careful selection of basis functions. For example, if a

transformation is likely to be essentially monotonic, it might be represented eÆciently using

a polynomial basis such as Legendre polynomials (Abramowitz & Stegun 1965). E�ects which

are more oscillatory may be represented more parsimoniously using Fourier series.

The main use of orthogonal series in this work has been to represent regional variability as

a bivariate function of site eastings and northings. A straightforward extension of the usual

orthogonal series arguments shows that, if f j : j = 0; 1; 2; : : :g forms an orthogonal basis

for eastings e�ects and f�k : k = 0; 1; 2; : : :g forms a basis for northings e�ects, then the

collection f j�k : j; k = 0; 1; 2; : : :g forms a basis for regional e�ects. Furthermore, this basis
is orthogonal. But within the GLM framework, this collection consists simply of interactions

between the  s and �s (see section 4.1.1 above), and so representation of regional variability

is straightforward. It is also worth mentioning that all the orthogonal basis sets used in this

work have  0 = �0 = 1, which is incorporated in our models in any case as a constant term

and does not need to be considered further.

There is one potential pitfall when using orthogonal series to model regional e�ects with few

sites. If the total number of  s, �s and their interactions approaches the number of sites,

there is a danger of severely over�tting the model to match exactly the observed pattern of

rainfall at the sites. As a general rule, the total number of site e�ects in the model (including

interactions) should be kept below the number of sites available.

4.1.4 Model checking

Having �tted a GLM to records of daily data, there are several simple but informative checks which

may be used to assess its adequacy. Questions which might be asked at this stage include:

� Will the results be reproducible?

� Can the model be simpli�ed?

� Does the model need to be extended?
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The question `Is the model correct?' is hardly relevant here: atmospheric processes involve the

interaction of many complex physical mechanisms for which data are unlikely to be available. Even

if the data were available, it is unlikely that a perfect model could be found | especially using

the rather simple formulations (4.2) and (4.3). Of far more importance is that the model is �t for

purpose, and that results will be reproducible. See Chandler (1998a) for further discussion.

Formal methods for dealing with the questions above rely on methods such as hypothesis testing

and calculation of con�dence intervals. In the case where GLMs are �tted simultaneously to data

from several sites as though they were independent, such methods are not available (recall the

discussion in section 4.1.2 above). However, even if they were available it is not clear that they

would be useful. This is because such methods implicitly assume that an underlying `true model'

exists, and that results will be reproducible if this model can be found. When modelling a complex

process, any hypothesis testing procedure which tests a simple model against an extended model

will tend, given enough data, to reject the null hypothesis that the simple model represents `truth'.

In daily rainfall modelling problems, the amounts of data involved are typically large (running

into hundreds of thousands of observations), whence formal methods may result in complex models

which re
ect nothing more than the fact that the rainfall process cannot be modelled perfectly.

This is not to say, however, that formal procedures are of no use in this situation. The danger is

of over-interpreting the results of such procedures. Approximate con�dence intervals, for example,

may usefully be employed to give an informal assessment of uncertainty in parameter estimates,

but should not be used in isolation to determine whether or not a predictor should be included in

a model.

Other methods for assessing model adequacy are essentially informal, and fall broadly into three

categories: assessment of the predictive ability of a model, checks that the forecast probability dis-

tributions are correct and checks that there are no discernible unexplained patterns in the available

data.

Assessment of predictive ability: A natural way to decide whether or not a predictor should be

included in a model is to examine its impact on the model's predictive ability. For continuous

responses such as rainfall amounts, predictive ability can usefully be assessed using a measure

analogous to the R2 of standard regression. This measures the proportion of variability in

the data which is explained by the model, and is given by

~R2 = 1� Mean squared prediction error

Variance of original observations
: (4.6)

It is necessary to use Mean Squared Error in the numerator, rather than the error variance, to

allow for the fact that in a GLM, the mean of the errors may not be zero (this is a consequence

of observations being individually weighted in the �tting procedure).

~R2 may also provide a useful summary measure for some categories of discrete response, but

may be diÆcult to interpret for a binary response such as rainfall occurrence. This is a subject

which has received some attention in the literature: for a recent article arguing in favour of

its use, see Ash & Shwartz (1999). An alternative way of assessing predictive performance

for a rainfall occurrence model is to imagine that we forecast rain for the ith case in the

database if the predicted probability, pi, is greater than 0.5, and forecast no rain otherwise.

A table can then be constructed showing the numbers of correct and incorrect predictions

for each group of forecasts (rain/no rain), and the overall percentage of correct predictions
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may be interpreted as a summary measure of overall predictive performance. Of course, if

the true probability of rain is close to 0.5, low predictive ability is unavoidable. Therefore, it

is useful to include expected performance levels under the model in such tables of predictive

performance, as an aid to interpretation. The computation of expected proportions of correct

predictions is straightforward: details may be found in Chandler & Wheater (1998a).

Checks on forecast probability distributions: the GLM framework deals with uncertainty

in a response variable by specifying a probability distribution conditional on the values of

predictors. The family of distributions chosen (for example, the gamma family for rainfall

amounts here), and the way in which the predictors are related to the mean of the forecast

distribution (via the log odds transformation for the occurrence model (4.2) and the log trans-

form in the amounts model (4.3)), are accounted for in the parameter estimation procedure.

One implication of this is that, if the chosen family of distributions is unrealistic, parameter

estimates may be biased. Correct speci�cation of the forecast distributions is also important

if the �tted models are subsequently to be used in simulations, particularly if extreme events

are of interest.

For continuous responses such as rainfall amounts, the easiest way to check the form of the

forecast distribution is via quantile-quantile plots of suitably-de�ned residuals. A residual

measure can be chosen such that, if the forecast distributions are correct, all residuals have

the same distribution. Examples for the gamma distribution are the Pearson residual:

r
(P )
i

=
Yi � �i

�i
(4.7)

and the Anscombe residual:

r
(A)
i

=

�
Yi

�i

�1=3
; (4.8)

where Yi is the observed value for the ith case in the database, and �i is the �tted value.

The Pearson residual is the proportional error in predicting Yi: if the shape parameter of

the gamma distribution is � then r
(P )
i

is expected to have mean zero and standard deviation

1=
p
�; if the gamma assumption is correct, then r

(P )
i

+1 has a gamma distribution with scale

and shape parameters both equal to �. Since this distribution is the same for all cases in the

dataset, a Q-Q plot showing observed versus expected quantiles of the distribution of r(P )+1

should appear as a straight line if the gamma assumption is correct.

The reason for considering Anscombe residuals in addition to Pearson residuals is that their

distribution is extremely close to Gaussian | see, for example, Hougaard (1982) | and this

will provide an elegant means of incorporating spatial dependence into a rainfall amounts

model (see section 4.1.5 below). The de�nition at (4.8) yields residuals having the same

mean and variance for each case in the dataset: these depend on � and can be determined

straightforwardly using numerical methods, as described in Chandler & Wheater (1998b).

A normal probability plot of Anscombe residuals from a rainfall amounts model therefore

provides an alternative method of checking distributional assumptions here.

Checks on the forecast probabilities for a rainfall occurrence model can be made using an

extension of the ideas discussed above for assessing predictive performance for such a model.

The basic principle is that, if we collect together all of the days when the forecast probability

of rain is close to some preassigned value p�, then the overall proportion of these days upon
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which rainfall was actually observed should be close to p
�. An overview of the ideas is

given by Dawid (1986). For practical implementation, we collect together groups of days for

which forecast probabilities are in the intervals (0:0; 0:1); (0:1; 0:2); : : : ; (0:9; 1:0) and compute

observed and expected proportions of rainy days within each of these groups. Unless there

is agreement across the whole range of forecast probabilities, there is something wrong with

the probability structure of the model.

Checks for unexplained patterns: A further check is necessary to ensure that all e�ects, for

which information is available, have been accounted for in an appropriate way. Traditionally

in regression modelling, such checks are carried out by plotting suitably-de�ned residuals

against predicted values, and against the predictors themselves. Such plots may be produced

both for predictors which appear in the model, and for potential predictors which may need to

be accounted for. Any apparent structure in these plots indicates a problem with the model.

A typical feature of daily rainfall datasets is their large size, which makes residual plots

diÆcult to interpret (there are so many data points that the plot generally appears as a

solid mass and any structure is obliterated). For this reason, rather than plotting individual

residuals we focus on summary statistics for residual measures over subgroups of observations.

For example, to check that seasonality is well reproduced we can compute the mean and root

mean squared error of suitably-de�ned residuals for each month of the year, and plot these:

any pattern in the plot, or values which are `signi�cantly' di�erent from zero, indicate seasonal

structure which has not been captured.

To aid visual interpretation of such plots, it is helpful to include approximate con�dence bands,

indicating the range within which mean residuals are expected to lie under the model. Again,

such con�dence bands should be interpreted informally with large datasets. If all residuals are

expected to have mean �" and variance �2" under the model, and a mean residual (r, say) is

computed over a large subset ofM cases, then 95% limits for this mean are at ���1:96s.e.(r),

where s.e.(r) is the standard error of the mean residual under the model. If all theM residuals

are independent (e.g. if the model is correct and all residuals are from the same site), then

this standard error is �"M
�1=2. Otherwise, if some of the M residuals represent di�erent

sites on the same day, this standard error will need to be in
ated to account for spatial

dependence between the sites. Ideally, a separate in
ation factor should be computed for

every subset of residuals considered. However, this is likely to be computationally expensive

and, in view of the fact that the con�dence limits are to be interpreted informally, probably

over-sophisticated. The approach adopted here has been to calculate a single in
ation factor,

for the mean residual obtained from all of the data, and to apply this to standard errors

obtained for all subsets considered. This is likely to provide a reasonable approximation to

the correct standard errors, especially when (as is usually observed to be the case) all inter-site

correlations are very similar.

The details of the calculation are as follows: the overall mean residual is de�ned as

r =
1

N

TX
t=1

SX
s=1

�tsrts ; (4.9)

where T is the number of days in the database; S the number of sites; �ts is an indicator

taking the value 1 if a residual is available for site s on day t, 0 otherwise; rts is the residual

at site s on day t; and N is the total number of observations (=
P

T

t=1

P
S

s=1 �ts). If all cases
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were independent, the standard error of r would be �"N
�1=2. When there is dependence

between residuals at di�erent sites on the same day (but independence between days), denote

by cs1s2 the correlation between residuals at sites s1 and s2 on the same day (which is assumed

constant over all days, and can be estimated straightforwardly). Then we have

Var(r) =
1

N2

TX
t=1

SX
s1=1

SX
s2=1

�ts1�ts2Cov(rts1 ; rts2)

=
�
2
"

N2

SX
s1=1

SX
s2=1

TX
t=1

�ts1�ts2cs1s2

=
�
2
"

N2

SX
s1=1

SX
s2=1

ns1s2cs1s2 ; (4.10)

where ns1s2 is the number of days for which sites s1 and s2 both have data. Now comparing

the square root of (4.10) with the \independence" standard error, we see that the in
ation

factor required to correct for spatial dependence isvuutN�1

SX
s1=1

SX
s2=1

ns1s2cs1s2 : (4.11)

The residual measures used here to check for unexplained patterns are: for the rainfall

amounts model, the Pearson residuals de�ned at (4.7); and for the occurrence model, studen-

tised (or Pearson) residuals de�ned by

r
(S)
i

=
Yi � pip
pi(1� pi)

: (4.12)

where here Yi takes the value 1 if the ith case in the database was a wet day and 0 otherwise,

and pi is the forecast probability of rain for that case. The individual r(S)s are of little use,

because they can only take two values; however, means based on large groups of residuals will

be informative. Some discussion of the use of this residual measure may be found in Cox and

Snell (1989, section 2.7).

The one remaining aspect of model checking relates to reproducability of results. In this work,

reproducability is examined by carrying out all of the checks outlined above on extra data which

were not used in a model �tting exercise. This requires decisions to be made, at the beginning

of an analysis, regarding how a dataset is to be split into `�tting' and `validation' samples. Some

possible strategies are as follows:

� Use the early part of the data record (typically, one might consider using the �rst 75{80%) for

model �tting, and the remainder for validation. This is quite a stringent test of a model: in

particular, it is likely to fail if rainfall patterns during the �tting and validation periods di�er

signi�cantly (unless the di�erence is due to continuous changes which can be parameterised

on the basis of the �tting data). Another potential problem is that slight errors in parameter

estimates relating to trend functions may result in poor performance in the validation set,

leading to exaggerated doubts regarding model adequacy. For example, if a long-term cycle
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were �tted to the �rst half of a record, and the cycle maximum were estimated to occur in

1987, then during the validation period the model would predict gradually falling rainfall

amounts after 1987. If in fact the cycle maximum were to occur in 1991, there would be quite

a serious divergence between model and data over the validation period. From an engineering

design point of view, however, such a model may still be a useful tool so long as it represents

realistic rainfall amounts at the time of the cycle maximum, regardless of what this time

actually is.

� Remove whole years, at regularly spaced intervals through the data record, and use these

for validation after �tting the model to remaining years. Although this would overcome the

problems of the strategy above, it may be regarded as not a suÆciently demanding test:

on the validation data, the model might be expected to perform quite well since when it

was �tted, it was allowed to `see' what happened on both sides of the validation years. It

could be argued that such a test does not really give an indication as to whether or not

results will be reproducible into the future. Notice that classical cross-validation | whereby

each observation in turn is deleted from the dataset and predicted using a model �tted on

all the remaining observations | is an extreme example of this strategy, and is certainly

inappropriate for our purposes.

� Use a subset of sites for model �tting, and another subset for validation. Again, this perhaps

does not represent a stringent enough test, since there may be a high degree of association

between the �tting and validation datasets as a result of spatial dependence between sites.

The strategy chosen for selecting a validation dataset will inevitably depend upon the available

data. Ideally perhaps, the �rst strategy should be adopted, since it yields insights into how models

may be expected to perform into the future. However, if available record lengths are relatively short

(e.g. less than 30 years), then it may be considered appropriate to maximise the use of the limited

temporal information available. In this case, the third strategy would be preferable, particularly

in cases where data are only available from a few widely-separated locations (in which case spatial

dependence between the sites will be limited).

4.1.5 Modelling spatial structure

The discussion so far has related to the parametrisation and checking of GLMs which will enable

modelling of the marginal sequences of daily rainfall at each site. From the point of view of assessing

evidence for temporal and spatial nonstationarity, to determine the appropriateness of using the

stationary Poisson cluster models described in section 2, this may be all that is required in a

particular application. However, it may also be of interest to model the daily rainfall at all sites

simultaneously | either for purposes of simulating sequences of daily rainfall, or so as to derive a

full multivariate distribution for comparison with output from a Poisson cluster model.

There are various ways in which spatial dependence might be included in models of daily rainfall:

a review is given in Chandler & Wheater (1998a). Here, we use separate structures for the amounts

and occurrence models. The structures are described separately. as follows:
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Spatial structure | amounts model

The most straightforward way of incorporating spatial dependence into the gamma model for

rainfall amounts is via the Anscombe residuals de�ned at (4.8). As these are normally distributed

to a very good degree of approximation, all of the dependence structure in rainfall amounts can be

expressed using correlations between Anscombe residuals at each pair of sites. One might choose

to model the correlations as a function of inter-site distance and direction: however, in all the work

reported here, correlations between Anscombe residuals at all pairs of sites are so similar that they

can be regarded as e�ectively constant. The reason for this is presumably that the three study

areas considered below are all small relative to weather systems (which correspond to `rain events'

in the terminology of section 2), so that on any particular wet day, all sites tend to be exposed to

a very similar rainfall regime.

Simulation of rainfall amounts at `wet' sites for a particular day therefore proceeds: �rstly, by

sampling a vector of Anscombe residuals from a multivariate normal distribution with an appropri-

ate mean and covariance structure; and secondly by inverting the transformation (4.8) at each site.

Simulation of multivariate normal random vectors is straightforward and relies on the fact that if

X has a multivariate normal distribution with mean � and covariance matrix �, and if Y = AX

for some matrix A, then Y has a multivariate normal distribution with mean A� and covariance

matrixA�A0 (see, for example, Krzanowski, 1988, section 7.2). In our case, we generate a vector of

independent standard normal variates (with identity covariance matrix) and �nd a matrix A such

that AA0 = C, where C is the desired covariance matrix. Such an A can be found by calculating

the Cholesky decomposition of C (see, for example, section 2.9 of Press et al. (1992) for details

and an algorithm) | this will always work providing C is nonsingular. Problems with singular

covariance matrices are unlikely to occur in practice.

There is one potential drawback with this method for dealing with spatial dependence in rainfall

amounts: it takes no account of `dry' sites (since the amounts model is only de�ned at sites where

the rainfall amount is nonzero). Therefore it is not guaranteed to produce small amounts of rain

near sites which are dry, although wet sites which are close to each other will tend to have similar

rainfall amounts. The extent to which this might be a problem is not known.

One �nal point relates to the use of the model to interpolate missing data in the historical

record. If data from some sites are missing, but others are observed, then Anscombe residuals can

be computed from the observed sites and the conditional distribution of the missing residuals, which

remains multivariate normal, can be calculated (Krzanowski 1988). Missing residuals can then be

simulated from this conditional distribution, and back-transformed to interpolate the missing data

values. This technique can be used to determine uncertainty in the historical record due to missing

data, by simulating missing data many times to construct uncertainty envelopes for historical

rainfall statistics.

Spatial structure | occurrence model

Incorporating spatial dependence into the binary rainfall occurrence model is rather more diÆcult

than for amounts. The structure chosen has been more or less dictated by the following require-

ments:

� It should be amenable to simulation. In particular, it needs to be able to cope with the fact
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that on each successive day, the marginal probabilities of rain at each of the sites will change.

� It should be estimable from historical data.

� It should take into account the fact that any network of sites is merely sampling an underlying

stochastic process which operates in continuous space (in this way we hope to maintain the

capability of simulating at a di�erent set of locations from those which were used in model

�tting).

A variety of di�erent techniques have been investigated, including:

1. Specify the dependence via the correlation structure of the wet/dry �eld, in the spirit of Lunn

& Davies (1998) and Park, Park & Shin (1996). However, it is well known that correlations

between binary variables (Yi and Yj say, with P (Yi = 1) = pi � pj = P (Yj = 1), without loss

of generality) are constrained by the probabilities pi and pj. In the example here, we must

have P (Yi = Yj = 1) � pj, so that Cov(Yi; Yj) � pj(1 � pi) and Corr(Yi; Yj) �
q
pjqi=(qjpi)

where qi = 1�pi. At each site, the probability of rainfall occurrence changes from day to day

and it is therefore very diÆcult to specify a correlation-based dependence structure which is

guaranteed to be consistent with the marginal probabilities at each site over any extended

period of time.

2. Generate a continuous-valued process with appropriate dependence structure, and de�ne sites

with values above some threshold to be wet, otherwise dry. An example of this approach is

given by Emrich & Piedmonte (1991). However, it su�ers from the same drawbacks as the

previous approach in that dependence is usually speci�ed via correlation structure. Moreover,

every time the marginal probabilities change, typically a high-dimensional set of equations

has to be solved numerically, which is likely to be ineÆcient for the present application.

3. Specify the dependence via odds ratios between pairs of sites (see, for example, Cox and

Wermuth, 1996, section 3.7). The motivation here is that odds ratios are not constrained by

the probabilities when just 2 sites are involved. However, for more than 2 sites simultaneously

it is not easy to determine whether any set of odds ratios are consistent with each other,

particularly in simulation when the probabilities change from day to day.

4. Incorporate the dependence by including other sites' rainfall occurrence on the same day as

extra predictors in the logistic regression model. The result may be regarded as an example

of a Markov Random Field auto-logistic model (Besag 1974). This approach, however, leads

to complications in �tting the models, and simulation costs are increased because of the need

to use iterative simulation methods such as the Gibbs Sampler (Geman & Geman 1984). In

addition, our experience has been that this type of model is liable to yield unrealistic results

for this particular application.

The approach �nally adopted here makes use of the observation that, at spatial scales up to at

least several hundred square kilometres, spatial dependence in daily rainfall occurrence is mainly

due to the fact that all sites tend to be in
uenced by the same weather systems on particular

days. This process can be modelled by including a hidden weather state which categorizes each

day as `wet' or `dry' over the entire area. In order to develop a model whose parametrisation is not
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constrained by the marginal probabilities of rainfall occurrence, the e�ect of the hidden weather

state is modelled on the log odds scale.

In order to de�ne the model, some notation is required as follows: daily rainfall amounts are

to be generated at each of a set of spatial locations x1; : : : ;xS . The random variable Yj takes the

value 0 if the rainfall amount at site xj is zero, 1 otherwise. We have a logistic regression model

(4.2) which gives P (Yj = 1) = pj.

Associated with the current day is a random variable X which represents the `weather state'

on that day. X = 1 with probability � (representing a `wet day') and 0 otherwise (a `dry day'). X

is not directly observable.

The Y s are modelled as conditionally independent given X. A plausible stochastic process

giving rise to this type of behaviour would be a nonstationary Boolean-type model, whereby discs

(of either �xed or random radius) are attached to events of a nonstationary spatial Poisson process.

Any sites covered by at least 1 disc give Y = 1, all other sites have Y = 0. Such a process will

exhibit local autocorrelation between locations separated by less than the diameter of a disc, but

beyond this sites will be independent (by virtue of the underlying Poisson process). This mechanism

is similar to that used in the Poisson cluster models of chapter 2, and the `discs' here might be

thought of as corresponding to rain cells in those models: the point is that rain cells tend to be a

few kilometres in diameter, whence it may only be reasonable to assume conditional independence

of the Y s here as long as all pairs of sites are fairly well separated.

The probability of rain at each of the sites on day t is modelled using

ln

 
P (Yj = 1jX = x)

1� P (Yj = 1jX = x)

!
= ln

 
pj

1� pj

!
+ x lna+ ln b (�; pj ; a) : (4.13)

Here lna is constant for all sites and days, and is free over the range (�1;1). ln b(:) is a function of

�, pj and a, chosen to ensure that the unconditional probability of rain at site j is pj. We abbreviate

it to bj for convenience. By rearranging equation (4.13) to �nd the unconditional probability that

Yj = 1, and setting this equal to pj, we �nd that bj must be a root of the quadratic equation

apjb
2
j + [1 + � (a� 1)� pj (a+ 1)] bj � (1� pj) = 0 : (4.14)

To determine which of the two roots of this equation should be used, �rst note that, from (4.13),

a > 0 and bj > 0. Note also that both � and pj lie in the range [0; 1] since they are probabilities.

Writing the left hand side of (4.14) as Ab2
j
+Bbj +C, we must therefore have 4AC � 0. If 4AC is

strictly less than 0 then exactly one positive real root to the equation is guaranteed, and is given

by

�B +
p
B2 � 4AC

2A
: (4.15)

When 4AC = 0, a valid solution for bj can still be found: this will arise when pj = 0 or 1 (the case

a = 0 need not concern us since then lna would be unde�ned in (4.13)). When pj = 0 we obtain

bj = (1� �+ �a)�1, and when pj = 1 we obtain bj = 1 � � + a
�1. Both quantities are strictly

positive for the allowable range of values of � and a.

It is of interest to examine the behaviour of (4.13) in the limit as a!1, since this will a�ect

the model's ability to reproduce features such as the proportion of days when all sites are wet. It

can be shown that the limiting value of the probability of rain at site j depends on both pj and on

�, on both wet and dry days. The following table summarises the behaviour as a!1:
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x = 0 x = 1

Case I: pj > � (pj � �)=(1 � �) 1

Case II: pj < � 0 pj=�

Notice that no matter how large a is, we cannot make P (Yj = 1jX = 1) arbitrarily close to 1 if

pj < �. Similar results hold if we let a! 0 (e�ectively letting X = 1 correspond to a `dry' day).

A further aspect of interest is the covariance structure of the model (4.13). The covariance

between Yi and Yj (i 6= j) is de�ned as P (Yi = Yj = 1)� pipj, and can be shown to be equal to

Cov (Yi; Yj) =
(1� �)pipj (1� pi) (1� pj) (1� bi) (1� bj)

� [1� pi (1� bi)] [1� pj (1� bj)]
: (4.16)

The corresponding correlation is

Corr (Yi; Yj) =
(1� �) (1� bi) (1� bj)

� [1� pi (1� bi)] [1� pj (1� bj)]

q
pipj (1� pi) (1� pj) : (4.17)

We now consider how to estimate the necessary parameters in the model (4.13) from historical

data. There are two parameters to estimate on any given day: � and a. An obvious simple choice

for � is to set it equal to the mean of the ps. In this case the marginal predictions of the GLM at

all sites are used to determine whether a day will be `wet' or `dry'. This will provide an automatic

means of incorporating features such as seasonality into the weather states, since these ought to

be re
ected in the ps. If subsequently the model does not perform as expected, it may be worth

considering more sophisticated approaches for determining � (it was noted above, for example, that

even on a `wet' day, the probability of rain at all sites cannot be made arbitrarily close to 1 unless

� is less than all of the marginal probabilities).

How to choose a is less obvious. It can be estimated using observed Y values at some or all of the

n sites on each of the T days, and also the corresponding ps predicted by the GLM. Where the ps are

known, the corresponding � can be calculated. The sequence of Xs is not observed. It is possible,

numerically, to obtain a maximum likelihood estimate of a; however, this may be undesirable since

the model structure, while plausible, is probably a fairly crude approximation of reality (recall the

discussion above indicating a Boolean process which could be considered as underlying the model).

An alternative estimation procedure is a method of moments. From a practical point of view, the

importance of representing spatial structure in rainfall occurrence patterns stems mainly from the

need to reproduce the distribution of spatial coverage (i.e. the proportion of sites which are wet).

Therefore we propose to use some feature of the observed coverage distribution to estimate a. The

chosen feature is the variance: other features, such as the overall proportion of days on which all

sites are wet (or dry), have the undesirable property that they are highly dependent on the number

of sites with available data on each day. The idea is to choose a so as equate the observed and

theoretical variances of the coverage distribution. The theoretical variance of the coverage, for

a given value of a, can be derived from the expression for covariances at (4.16). The observed

variance can be calculated straightforwardly from the time series of coverages, weighting each day

by the number of active sites. Equating the two can be achieved using straightforward numerical

methods.

As with the amounts model previously, the spatial dependence structure used here can be

used to interpolate missing data in the historical record. Suppose on a particular day we observe
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Y1 = y1; : : : ; Yk = yk (k < n), and wish to �ll in the remaining values Yk+1; : : : ; Yn. Rearranging

(4.13), we �nd that

P (Y1 = y1; : : : ; Yk = ykjX = x) =
Y
yi=1

a
x
bipi

1� pi (1� axbi)

Y
yi=0

�
1� a

x
bipi

1� pi (1� axbi)

�
:

Now we can use Bayes' Theorem to �nd the conditional probability distribution of X on the basis

of the observed Y s:

P (X = 1jY1 = y1; : : : ; Yk = yk) =
P (Y1 = y1; : : : ; Yk = ykjX = 1)P1

x=0 P (Y1 = y1; : : : ; Yk = ykjX = x)P (X = x) :
(4.18)

Recalling that P (X = 1) = � = 1 � P (X = 0), we can therefore interpolate missing data by

simulating X = 1 with probability given by (4.18), and then sampling the remaining missing sites

independently from (4.13) as before.

4.2 Model performance

To illustrate the GLM approach to daily rainfall modelling, we now present the results of three case

studies. The �rst is from the Galway Bay region of Western Ireland and is presented in some detail.

The others are from the Brue catchment in South-West England, and the Blackwater (a tributary of

the Thames located between Guildford and Basingstoke). For the latter studies, only an overview

of the modelling will be given, as the basic procedure is the same. The catchment sizes are roughly

1200km2, 120km2 and 400km2 respectively, although for the Brue and Blackwater, gauges are used

which lie outside the catchment (substantially so in the case of the Brue). The Galway study uses

23 daily raingauge records; the Brue has only 4 moderately long records, together with 49 tipping-

bucket gauges within the catchment for which data are available between 1994 and 1997; and the

Blackwater has 44 daily records.

4.2.1 West of Ireland

The area around Gort, to the South of Galway in Western Ireland (see �gure 4.1) has histori-

cally been subject to extreme 
ood events. The area a�ected is a low-lying Karst system, fed by

rivers draining the Slieve Aughty mountains to the east. Under extreme conditions (associated

with extended wet periods) ephemeral lakes, known as turloughs, over
ow and coalesce, causing

widespread 
ooding involving inundation of property and damage to livestock and roads. In the

past such widespread 
ooding occurred once in the 1920s and again in the 1950s; then in early

1990, 1991, 1994 and 1995.

A preliminary report after the 1991 event (Daly 1992) identi�ed changing rainfall patterns as

a possible cause of the increased 
ooding. Subsequently an extensive investigation, funded by the

Irish OÆce of Public Works, was carried out in an attempt to suggest and evaluate possible 
ood

alleviation measures; the work reported here is an extension of work carried out as part of that

study, which is reported in OPW (1998). The objectives of the study were:

1. To investigate the extent to which the 
ooding may be attributed to abnormal rainfall (rather

than other factors such as changes in land use).
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Figure 4.1: The Galway study area, and locations of raingauges. Top: location of the study area

within Ireland, and positions of the gauges with long monthly records. Bottom: detail of the study

area, showing positions of daily raingauges.
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2. To examine the evidence for long-term temporal variability in the rainfall record, with a view

to quantifying the nature and extent of any apparent changes.

3. To provide a tool for simulating future rainfall scenarios, which could be used to provide

inputs to hydrological models of the area in order to assess the likely e�ectiveness of potential


ood alleviation measures.

Two separate sources of data were used in the work reported here: daily rainfall data from

a network of 23 gauges run by the Irish Meteorological OÆce, and monthly data from gauges at

Birr and Sligo. Figure 4.1 shows the locations of all the gauges. The daily data span the period

1941{1996, although not all gauges have contemporary records. Typically, between 6 and 9 gauges

have been operational at any time since the beginning of the 1960s. For these gauges, any non-zero

rainfall value less than 0.1mm has been recorded as a `trace' amount. The record from Birr runs

from 1873 to 1994, and that at Sligo from 1890 to 1994. The periods of record for each gauge are

shown in table 4.1.

Various exercises were carried out to ascertain the quality of the data used in this study. For

details, see Chandler & Wheater (1998a). To summarize: both daily and monthly records had

previously been quality-controlled by the Irish Meteorological Service, and any value 
agged as

dubious was discarded. The study area was visited to inspect all gauges which are currently oper-

ational. In addition, simple exploratory statistical analyses were carried out to highlight unusual

features of the data. The main conclusions were that some of the daily gauge records may be a

little unreliable, and that over-detailed interpretations of any analyses should be avoided. A couple

of particularly suspect gauges were discarded from any subsequent analysis.

The monthly records were tested, using a technique similar to the jacknife (Efron & Tibshirani

1993), to ensure that they could be regarded as representative of rainfall patterns within the study

region. Again, Chandler & Wheater (1998a) contains details of the procedure used. These records

have not been incorporated formally into analyses reported here | they have been used only to

suggest the nature of possible long-term trends in rainfall patterns.

To investigate long-term trends, time series plots of various summary statistics were examined,

at monthly and annual timescales, for individual gauges and for the whole area. In general, records

from individual gauges are too variable for any clear pattern to emerge, as are areal statistics at

monthly timescales. However, the annual series of areal mean daily rainfalls indicates that during

the 1960s, annual rainfall amounts tended to be rather lower than either before or since. This

feature is most pronounced in the winter months (December{February): �gure 4.2 shows the time

series of mean winter daily rainfalls in the study area. To determine whether this apparent trend

is part of a longer-term pattern, the long records from Birr and Sligo were examined. Figure 4.3

shows the mean winter rainfall, averaged over 5-year time periods, at Birr from 1875 to 1995. The

pattern here is very similar to that in �gure 4.2 for the period where the records overlap. The

plot also indicates that the rainfall since the 1960s conforms to previous behaviour. There is some

suggestion of a cyclical pattern (lows in the 1890s, 1960s and possibly the 1930s, and highs around

1920, 1990 and possibly 1950).

These results are in broad agreement with other studies of trends in Northern European climate.

For example, the 1996 report of the UK Climate Change Impacts Review Group (DOE 1996)

indicates that the decade from 1984{1995 was unusual relative to a `baseline' climate de�ned over

the period 1961{1990. Our conclusions agree with this, but also suggest that this choice of baseline
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Gauge Data type Period of operation

G3 Daily December 1941 { September 1991

G4 Daily July 1943 { July 1971

G5 Daily July 1943 { July 1996

G9 Daily January 1954 { April 1972

G10 Daily July 1943 { July 1996

G11 Daily May 1944 { February 1951

G12 Daily March 1951 { April 1989

G13 Daily March 1952 { August 1976

G14 Daily August 1952 { April 1982

G15 Daily January 1960 { September 1975

G18 Daily January 1971 { March 1979

G19 Daily May 1975 { July 1996

G20 Daily April 1978 { April 1990

G21 Daily July 1982 { November 1996

G22 Daily June 1982 { June 1995

G23 Daily June 1984 { July 1996

G24 Daily November 1984 { December 1994

G25 Daily June 1985 { November 1996

G26 Daily September 1993 { July 1996

G39 Daily November 1965 { November 1996

G7B Daily June 1943 { July 1996

G8B Daily June 1943 { December 1990

G17B Daily January 1975 { November 1996

Birr Monthly January 1873 { December 1994

Sligo Monthly January 1890 { December 1994

Table 4.1: Periods of record for each raingauge used in the Galway study. Refer to �gure 4.1 for

locations of the gauges.
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Mean areal daily rainfall, December - February

Dotted line indicates mean of series

Year

19911986198119761971196619611956195119461941

M
ea

n 
da

ily
 r

ai
nf

al
l o

ve
r 

ar
ea

  
(m

m
)

7

6

5

4

3

2

1

0

Figure 4.2: Mean daily rainfall, during the December{February period, over the entire Galway

study area for the years 1941{1995.

period is unrepresentative. Some other studies also report this period as being atypical | for

example P�ster (1992) found that in Central Europe, winters during the period from 1965{1979

were 25% wetter than the long-term average of the previous 60 years.

A �nal piece of exploratory data analysis for the daily rainfall record uses analysis of variance

(ANOVA) to indicate how predictable the daily rainfall sequence is. An ANOVA can be regarded

as a regression model with categorical predictors (e.g. Dobson (1990), p.4). It is likely that gauge

location and month of the year are both factors which a�ect daily rainfall amounts. Therefore a

2-way ANOVA has been carried out, which corresponds e�ectively to �tting a regression model

with a separate parameter for every possible month/site combination. This model explains 2.86%

of the variance in daily amounts, indicating that the rainfall sequence is dominated by noise at a

daily timescale. However, at longer timescales the structure becomes clearer (for example, �tting

the same ANOVA model to monthly data explains 24.0% of the variance).

For the modelling exercise, data for all years up to and including 1994 were used for model

�tting and the remainder (1995{97) were kept for validation. The validation set is rather small:

however, it was felt that the early 1990s appeared so atypical that they needed to be incorporated

into the model �tting, in order adequately to assess the evidence for changing climate in the area.

Models were �tted sequentially, starting with `obvious' predictors and successively adding extra

predictors and interactions. In the early stages of building a model, the value of extra predictors was

assessed by examining `log-likelihoods' for each model; in the later stages, predictive performance
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Rainfall at Birr, December-February
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Figure 4.3: 5-year mean winter rainfall at Birr, for the years 1875{1995.

and residual analyses, as described above in section 4.1.4, were used to guide the �tting. Broadly,

the sequence in which predictors were added to a model was as follows:

1. Seasonality (initially represented by predictors sin(2��month=12) and cos(2��month=12)).

2. Previous days' rainfalls. For each model, up to 5 previous days were considered.

3. Site e�ects, via orthogonal series and site altitude.

4. Interactions between the main e�ects already in the model.

5. Long-term trends, if residual analyses indicated that these were necessary.

In examining the evidence for changing rainfall patterns, three separate trend functions were con-

sidered, as follows:

� Constant linear trend. Although it is implausible to extrapolate such a function inde�nitely

outside the range of our data, it may well provide a good approximation to any monotonic

trend over the period of record.

� No trend until time t0; then linear trend afterwards. This is intended as a crude approximation

to what would be observed if human-induced climate change were occurring (t0 being the year

in which the change started to occur).

� Cyclical trend, as suggested by the Birr and Sligo records (see �gure 4.3).
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No. of
Model parameters Log-likelihood

1: No trend 26 -67695.2

2: Linear trend throughout record 33 -67546.8

3: Linear trend after t0 34 -67545.1

4: Cyclical trend 35 -67537.4

Table 4.2: Log-likelihoods (ignoring spatial dependence) for rainfall occurrence models �tted to

Galway daily rainfall data, 1941{1994.

Thus four models (corresponding to `no trend', plus one for each of these three trend functions)

were �tted for rainfall amounts, and four for rainfall occurrence.

For both occurrence and amounts models, there was compelling evidence for the inclusion of

trend functions. In summarising the results here, we give log-likelihoods (ignoring spatial depen-

dence) for all 4 models �tted, and compare the performance of the `no trend' model with that of the

best �tting of the other three. Full details of all 4 models �tted for both amounts and occurrence

may be found in Appendix B.1.

West of Ireland | occurrence model

Table 4.2 gives the log-likelihoods attained by each of the �tted occurrence models. The three mod-

els incorporating trend functions perform similarly in likelihood terms, and are all clearly much

better than the model with no trend function (the addition of 7, 8 and 9 parameters respectively

yielding an increase of at least 150 in the log-likelihood). There is little evidence for the changepoint

model over a simple linear trend; however, the cyclical trend model does appear to o�er an im-

provement over both of these. The estimated cycle length is 75.46 years (with a nominal standard

error of 6.46 years), and the estimated time of the cycle maximum is 1949.8 (nominal standard

error 6.46). It is worth reiterating that the true standard errors are probably larger than this, as a

result of spatial dependence which has not been accounted for here.

We now give an overview of the �tted models 1 and 4.

Fitted occurrence model | no trend: The predictors in the �tted `no trend' model can

loosely be summed up as follows:

� Constant term.

� Site e�ects, represented via:

{ Sine and cosine terms at the �rst Fourier frequency for both eastings and northings,

together with their interactions (recall the discussion in section 4.1.2). The area

over which the Fourier representation holds is illustrated in �gure 4.4.

{ Site altitude.

� Seasonality, represented by an annual sine wave.

� Temporal dependence, represented by indicator variables for rainfall occurrence on each

of 5 preceding days.
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Observed % correct

Dry Wet Observed Expected

Forecast dry 26126 12632 67.4 67.6

Forecast wet 17816 84084 82.5 82.6

OVERALL % CORRECT: 78.4 78.5

Table 4.3: Observed versus expected predictive performance for basic occurrence model. `Forecast

dry' row corresponds to days when the predicted probability of rain was less than 0.5; `forecast

wet' corresponds to other days.

� Temporal persistence, represented by an indicator for rainfall occurrence on all 5 pre-

ceding days.

� Interactions between:

{ Site e�ects and temporal dependence e�ects.

{ Site e�ects and temporal persistence e�ects.

{ Seasonal e�ects and temporal dependence e�ects.

{ Seasonal e�ects and temporal persistence e�ects.

Full details of the model may be found in Appendix B.1.

The interactions between seasonal and temporal dependence/persistence e�ects are as ex-

pected, and re
ect the fact that temporal autocorrelation in rainfall sequences is stronger in

winter than in summer. Interactions involving site e�ects are harder to visualise, but presum-

ably re
ect slight regional variation in exposure to di�erent types of system. Interpretation

of site e�ects is aided by extracting the corresponding terms in the �tted model, and con-

touring the function represented by these terms. Figure 4.4 shows the main site e�ects in the

model, produced by extracting predictors corresponding to orthogonal series representations

of eastings and northings. Note that the e�ect of site altitude, which appears in the model

as a separate predictor, is therefore not included in the �gure | the map shows systematic

regional e�ects after accounting for altitude. The structure shown in the �gure makes sense

from a physical point of view | the main features are an area of increased rainfall occurrence

centred on end of Galway Bay, and an area of decreased occurrence in the South-East of the

area. Comparing with �gure 4.1, this latter area is seen to correspond to mountains which lie

to the East (i.e. in the rain shadow) of uplands in the South-West, and therefore we might

expect reduced rainfall occurrence here.

To check the model, we �rst assess its predictive ability, as detailed above in section 4.1.4.

Firstly, table 4.3 gives the observed versus expected performance of occurrence forecasts made

on the basis of whether or not the predicted probability of rain was greater than 0.5 | for

example, there are 26,126 cases in the database where the predicted probability of rain was

less than 0.5 and where no rain was observed. This table shows good agreement between

observed and expected performance.

The next check is that the forecast probabilities agree with observed rainday frequencies.

Table 4.4 shows the results of this check. The columns represent ranges of forecast probabil-

ities | the column headed \1" contains all days with forecast probabilities between 0 and

0.1, column \2" contains days with forecasts between 0.1 and 0.2, and so on. Again, the
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Figure 4.4: Main �tted site e�ects for basic rainfall occurrence model. The solid box is the area

over which the Fourier representation of site e�ects is de�ned.

agreement between observed and expected rainday proportions is good, throughout the range

of the distribution.

Having satis�ed ourselves that the model is adequate as regards predictive performance, it

is necessary to check for any apparent structure in residuals. Figure 4.5 shows the mean

and mean squared error of studentised residuals from the model, for each month of the year

and for each year in the �tting dataset. The studentised (or Pearson) residuals should all

have a mean of zero and root mean squared error of 1. There is little seasonal structure in

the monthly residual plots | the monthly means are, with the exception of December, not

signi�cantly di�erent from zero at the 95% level, and December itself is not signi�cant enough

to excite attention considering 12 means are being tested here, and there is a 5% probability

that any one of these will appear signi�cant by chance. Moreover, the monthly root mean

squares are all close to 1. The annual plots tell a di�erent story, however, with a clear trend

in the annual mean residuals and a decrease in the annual root mean square towards the end

of the series. This is a strong indication that a trend function should be added to the model.

Notice in particular that the series of annual mean residuals appears to decrease until the

mid 1980s, and then to increase again | recall from the discussion above that the best-�tting

model for rainfall occurrence contains a cyclical trend with period 75.46 years and maximum

in 1949.8 (corresponding to a minimum in 1987.5).

A similar exercise was carried out to check that site e�ects were adequately captured by
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Forecast

decile
1 2 3 4 5 6 7 8 9 10

Observed 0.000 0.218 0.240 0.364 0.454 0.531 0.679 0.759 0.850 0.924

Expected 0.000 0.190 0.250 0.346 0.449 0.541 0.661 0.762 0.853 0.920

N days 0 367 17761 11965 8665 5853 5232 17483 48614 24718

Table 4.4: Observed versus expected proportions of days with rain, for data grouped according to

forecast probability of rainfall occurrence (basic occurrence model).

the model. Out of 21 sites contributing to the �tting database, 5 had mean residuals which

were signi�cantly di�erent from zero at the 95% level. These were sites G11 (mean 0.897

with associated standard error 0.0204), G14 (mean -0.0380, standard error 0.0099), G19

(mean -0.0531, standard error 0.0151), G21 (mean 0.0868, standard error 0.0153) and G17B

(mean 0.0370, standard error 0.0122). Referring to �gure 4.1, sites G11 and G19 are almost

coincident, as are G14 and G21. The fact that the residuals at sites G11 and G21 are

positive, whereas those at G19 and G14 are negaive, suggests that these discrepancies are not

due entirely to mis-speci�cation of site e�ects, but may be related to another factor (such as

di�erent periods of operation for each site, for example).

The same sequence of checks was carried out on the residuals obtained by applying the �tted

model to the validation dataset (years 1995{1997). The only point worth noting here is that

the overall the mean Pearson residual for the validation dataset is signi�cantly less than zero.

This is a convincing demonstration that a trend function needs to be included in the model;

in the light of this overall lack of �t, there is little point in reporting the results of any more

detailed analyses on the validation data.

We now report the results from the best-�tting occurrence model incorporating a trend func-

tion.

Fitted occurrence model | cyclical trend: As reported above, the best trend function

found to �t the historical rainfall occurrence pattern was a 75.46 year cycle with a minimum

in 1949.8. There was signi�cant evidence that this trend interacted with site e�ects and with

seasonality. The seasonal interactions can be interpreted in terms of wetter winters and drier

summers as the trend function increases. The interactions with site e�ects are best presented

graphically, by extracting all terms corresponding to these site e�ects and plotting the value

of the function de�ned when the value of the trend function is 1. This gives a map showing the

e�ect of a unit increase in the trend function, as shown in �gure 4.6. This is almost exactly

the opposite of the main site e�ects shown in �gure 4.4 (the �tted main site e�ects for the

models incorporating a trend are all similar to those for the basic model). The intepretation

is that as the trend function increases, regional variability over the area decreases and the

occurrence regime becomes more homogeneous.

The same checks were carried out for this model as for the previous one. The results relating

to predictive performance are very similar, and indicate a satisfactory �t. The seasonal

structure of residuals, illustrated in �gure 4.7, is much the same as before. However, note

from �gure 4.7 that there is now no trend in the mean annual residuals. Some of the annual

means (notably those corresponding to 1954, 1958 and 1994) do fall outside the con�dence
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Figure 4.5: Seasonal and annual structure of Pearson residuals from basic occurrence model. Dotted

lines on mean plots show approximate 95% con�dence limits under the assumption that the model

is correct, adjusted for spatial dependence between sites.

limits, which suggests that there are still some inadequacies in the model, but this is a great

improvement upon the results for the basic model presented in �gure 4.5. The most obvious

discrepancy between observed and expected residual behaviour for the new model is in the

annual root mean square, which still shows a decrease over the last 10 or so years of the �tting

dataset. The implications of this are not understood.

The remaining check is for site e�ects. Here, there are still some sites with mean residuals

signi�cantly di�erent from zero. These are G14 (mean -0.0353, associated standard error

0.0099), G21 (mean 0.0680, standard error 0.0153), G25 (mean 0.0965, standard error 0.0173),

G26 (mean 0.1279, standard error 0.0491) and G17B (mean 0.0686, standard error 0.0122).

Sites G14, G21 and G17B were problematic for the basic occurrence model as well: for G14

and G21, it was conjectured that part of the problem may have been to do with di�erent

periods of record and the absence of a trend function in the model. It appears from these

results that there is something else causing problems for these sites, but it is diÆcult to see

how the problem could be resolved. The problems with the basic model at sites G11 and

G19 do indeed appear to have been related to their periods of record. However, sites G25

and G26 were well �tted by the basic model, and now cause problems. In the case of G26,

this is probably because it only started recording in September 1993 (see table 4.1), so its

results are primarily in
uenced by data from 1994 which, from �gure 4.7, has signi�cantly

high residuals. The problem with G25 is not understood.

For the validation dataset, the overall mean Pearson residual for this model is negative (-

0.0300) but not signi�cantly di�erent from zero. The good agreement between observed

and expected predictive performance remains, as does that between observed and expected



CHAPTER 4. GENERALIZED LINEAR MODELLING OF DAILY DATA 93

-0.2 -0.1 0.0 0.1 0.2

Increase in log odds

G3

G4

G9

G11
G12

G13

G14

G15

G18
G20

G24

G8B

G5

G10

G19

G21
G22

G23

G25

G26
G39

G7B

G17B

KEY TO GAUGE SYMBOLS: Historical daily gauges
Operational daily gauges

Effect of unit increase in trend function
(occurrence model with cyclical trend)

0 5 10km

Figure 4.6: Regional e�ect of cyclical trend function upon log odds for rainfall occurrence, according

to �tted model.

rainday frequencies. The one exception is for days when the forecast probability of rain is

between 0.2 and 0.3 | here, the observed proportion of days with rain is 0.158 in contrast

with the expected proportion of 0.247. Based as this is upon the results of 1130 days, this is

a highly signi�cant discrepancy, although its interpretation is unclear.

The seasonal and annual results from the validation dataset are much as expected. There

is a tendency for negative residuals (in the monthly analysis, June and December both have

signi�cant negative mean residuals), and 3 of the 10 sites which were recording during the

validation period (G5, G10 and G19) have signi�cant negative mean residuals. In contrast,

site G7B has a signi�cant positive mean. Note that none of these four sites was 
agged as

problematic in the �tting dataset.

In summary: there is strong evidence for a trend in the pattern of rainfall occurrence over the area.

Of the trend functions considered, the one most strongly supported by the data is cyclical. The

trend appears to interact with site and seasonal e�ects. There remain some areas, particularly in

the representation of site e�ects, where the model could possibly be improved. However, in view

of concerns regarding the quality of some of the data used here, it is possible that some of the

problems may be due to data errors. In any case, it is diÆcult to see how some of them could be

resolved (particularly the lack of �t, in opposite directions, at sites G14 and G21 which are almost

identically located).
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Figure 4.7: Seasonal and annual structure of Pearson residuals from occurrence model with cyclical

trend. Dotted lines on mean plots show approximate 95% con�dence limits under the assumption

that the model is correct, adjusted for spatial dependence between sites.

West of Ireland | amounts model

For the amounts model, the same �tting procedure was followed as for the occurrence model.

Table 4.5 shows the log-likelihoods achieved by the models incorporating di�erent trend functions,

together with the number of parameters estimated for each model. Again, there is evidence for the

inclusion of a trend function, but now the best supported function is linear after some time t0. The

estimate of t0 is 1972.6, with a standard error of 2.6 years.

We now report the results for models 1 and 3 in table 4.5.

Fitted amounts model | no trend: The predictors in this model may be summarised as

follows:

� Constant term.

� Site e�ects, represented in the same way as for the occurrence model above.

� Seasonality, represented by:

{ An annual sine wave.

{ An additional indicator variable for the month of November.

� Temporal dependence, represented by log(1+rainfall x days ago) for x = 1; 2; 3; 4; 5 and

by indicators for `trace' values on each of the preceding 5 days (i.e. values which were

recorded as \less than 0.1mm").

� Temporal persistence, represented by an indicator for rainfall occurrence on all 5 pre-

ceding days.
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No. of
Model parameters Log-likelihood

1: No trend 34 -241099.9

2: Linear trend throughout record 37 -241057.9

3: Linear trend after t0 38 -241029.5

4: Cyclical trend 37 -241046.7

Table 4.5: Log-likelihoods (ignoring spatial dependence) for rainfall amounts models �tted to Gal-

way daily rainfall data, 1941{1994.

� Interactions between seasonality and temporal dependence e�ects.

� Interactions between seasonality and temporal persistence e�ects.

Full details of the model may be found in Appendix B.1.

As with the occurrence model, the interactions between seasonality and temporal dependence

re
ect the seasonal variability in temporal autocorrelation of rainfall sequences.

A map showing the �tted site e�ect structure (again, omitting the e�ect of altitude) is given

in �gure 4.8. The pattern is very di�erent from that for rainfall occurrence (�gure 4.4)

and is dominated by a trough running North-South through the centre of the study area,

with enhanced rainfall amounts to the East and West. The coincidence of these areas of

enhancement with the high ground in the area (see �gure 4.1) may indicate that dependence

of rainfall amounts upon altitude is not linear on the log scale (since altitude also appears as

a predictor in the model). However, it should be noted that little data are available within

the centre of the Eastern area of enhancement in �gure 4.8, and the apparent enhancement

here may simply be an artefact of the Fourier representation used (which e�ectively forces the

�tted function to be periodic, so that the pro�le along the Eastern edge of the area must be

the same as that along the Western edge where data, from sites G15 and G23, are available).

The �tted model explains 5.9% of the variance in observed non-zero rainfall amounts. Bearing

in mind that only 2.9% of the variance is attributable to month and site e�ects (according

to the ANOVA results reported previously), this actually represents quite a good level of

predictive ability. The improvement is due to the inclusion of previous days' rainfalls as

predictors. To check the assumption that rainfall amounts are gamma distributed, �gure 4.9

shows a normal probability plot of Anscombe residuals from the model. The plot is straight,

indicating an adequate �t, from the 10th to the 99.9th percentile of the distribution. The

cases in the bottom decile have all been examined: almost all of these correspond to trace

values, for which the exact rainfall amount is unknown and which, in the �tting software, are

replaced by their approximate conditional expectations under the �tted model as described

by Chandler & Wheater (1998b). The net e�ect of this is to under-represent the number

of very small values in the database, which explains the pattern seen at the bottom end of

the plot. The curvature at the top end may represent an error in the gamma assumption

in this upper tail, or it may be related to errors in the normal approximation to Anscombe

residuals. However, since the curvature only becomes apparent around the 99.9% point of

the distribution, it is perhaps not a cause for concern | it will only a�ect events whose

occurrence probabilities are less than 1 in 1000.
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Figure 4.8: Main �tted site e�ects for basic rainfall amounts model.

The seasonal and annual structure of Pearson residuals from this model is shown in �gure

4.10. There is no seasonal structure in the residual plots. Most of the annual mean residuals

lie within the 95% con�dence bands; however, there is a clear increasing trend through the

1970s and 1980s. From this plot, it might appear that either a cyclical trend function with

a minimum around 1970, or a linear increase beginning around 1970, should be added to the

model to capture this e�ect. This has already been con�rmed by the log-likelihoods presented

in table 4.5. The annual root mean squares of the residuals are all close to their expected

value.

There is quite a lot of structure in the mean residuals from each site, for this model | 11

out of 21 sites have mean residuals which are signi�cantly di�erent from zero. Those with

signi�cant positive residuals are G4, G19, G23, G39 and G17B, and those with signi�cant

negative residuals are G5, G12, G13, G15, G18 and G8B. Referring to �gure 4.1, there is

little systematic pattern here, so the indication may be of some other e�ect (such as a trend)

which has been omitted from the model.

For the validation dataset, this model overpredicts signi�cantly (the mean Pearson residual

is -0.063, with a standard error of 0.022). Despite this, its predictive performance in terms

of root mean squared error does not su�er | in fact, ~R2 as de�ned at equation (4.6) is 0.074

over the validation dataset, so that the model e�ectively explains 7.4% of the variability

here, despite its bias. There is some seasonal pattern to the residuals for the validation set

| a tendency for negative residuals between March and September and positive residuals
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Figure 4.9: Normal probability plot of Anscombe residuals from basic rainfall amounts model.

elsewhere, although the only months in which the means are signi�cantly di�erent from zero

are August and December. Of the 10 sites active during the validation period, only G7B and

G17B had mean residuals which were signi�cantly di�erent from zero.

Fitted amounts model | linear trend after changepoint year: The extra predictors in

this model, over and above the basic model just described, are the trend function itself, and its

interactions with seasonal e�ects (no other signi�cant interactions were found). As with the

occurrence model, this indicates that an e�ect of the trend may be to induce wetter winters

and drier summers.

This model explains 6.0% of the variance in daily rainfalls for the �tting data, which is a small

improvement over the basic model. The normal probability plot of Anscombe residuals looks

almost identical to that for the basic model in �gure 4.9. The seasonal and annual structure

of residuals is shown in �gure 4.11. As previously, there is no seasonal structure here. The

annual plots show that the inclusion of a trend has gone some way towards removing the

structure apparent in �gure 4.10, although there is now a suggestion of alternating blocks of

low and high residuals, and one single year (1947) with a mean residual which is signi�cantly

di�erent from zero. There is also a suggestion of a decline in the annual root mean squared

residuals for this model during the 1990s.

The site-by-site analysis for this model remains slightly disappointing | residuals at sites

G4, G19, G23 and G17B still have signi�cant positive means, and those at G5, G12, G18,

G21 and G8B have signi�cant negative means (although at almost all the sites, the means

are closer to zero than they were for the basic model). As mentioned above, there appears to

be little systematic organisation of the locations of sites with positivie and negative residuals,

so it is diÆcult to see how the problem could be recti�ed.

For the validation data, this model actually performs worse than the basic model. The main

problem is that it systematically overpredicts rainfall amounts (from the results of the basic
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Figure 4.10: Seasonal and annual structure of Pearson residuals from basic amounts model. Dotted

lines on mean plots show approximate 95% con�dence limits under the assumption that the model

is correct, adjusted for spatial dependence between sites.

model, this is to be expected, since the basic model itself overpredicted, and the extended

model incorporates an increasing trend in rainfall amounts). In terms of Mean Squared Error,

the new model explains 7.0% of the variability in daily rainfall amounts for the validation

data (compared with 7.4% for the basic model). Apart from this systematic overprediction,

the basic structure of the residuals for the validation dataset is much the same as that for the

basic model.

Simulation of the �tted models

So far, the checks on the �tted models have focused upon the adequacy of the forecast conditional

probability distributions for each day, given preceding days' observations. The main area of concern

appears to be in the representation of site e�ects, although there is also some indication from the

validation exercise that any extrapolation of �tted trend functions outside the range of available

data should be treated with caution.

For hydrological applications, it is necessary to focus additionally upon the unconditional per-

formance of a daily model, since it is possible that small errors in the speci�cation of conditional

probability distributions may cumulate when the model is simulated over a long period of time.

Moreover, the combined performance of the occurrence and amounts models taken together needs

to be assessed. This can be achieved by simulating the �tted models together, and carrying out

appropriate comparisons between simulated and observed sequences.

To simulate the �tted models, spatial dependence structures need to be estimated. As detailed
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Figure 4.11: Seasonal and annual structure of Pearson residuals from amounts model incorporating

linear trend starting at 1972.6. Dotted lines on mean plots show approximate 95% con�dence limits

under the assumption that the model is correct, adjusted for spatial dependence between sites.

previously, for the amounts model spatial dependence is incorporated via the correlation structure

of the Anscombe residuals, and a constant correlation between all pairs of sites has been found to be

adequate. This is estimated by averaging the inter-site correlations for all site pairs (appropriately

weighted to account for di�erent numbers of contributing observations from each pair). For amounts

model 3 (incorporating a linear trend after 1972.6), the estimated inter-site correlation is 0.7518.

Spatial dependence in the occurrence model is incorporated via the hidden weather state model

de�ned at equation (4.13). The estimate of lna in the occurrence model 4 (incorporating a cyclical

trend) is 5.4064.

An initial exercise in checking the simulation performance involves assessing the ability of the

model to reproduce winter rainfall amounts, since according to �gure 4.2 these are closely associated

with 
ooding events. To investigate this, a subset of sites (codes G10, G19, G21, G23, G25, G39

and G17B) was identi�ed, all of which were operational and yielding reliable data throughout the

1990s. 1000 simulations of the �tted models were run, from December 1989 to February 1997:

all available data from December 1989 were used to initialise each run, and then the models were

allowed to simulate freely from January 1990 onwards. The winter rainfall, averaged over all 7 sites,

for each year of each realisation was calculated so that 1000 sequences of simulated winter rainfall

were obtained. The percentiles of the winter rainfall distributions thus obtained were plotted for

each year: the results are shown in �gure 4.12. For comparison, an estimate of the actual winter

rainfalls, averaged over these sites, is required: since these sites occasionally have missing data, this

has been obtained by simulating the model 1000 times in `interpolation mode' (so that it merely

generates missing values conditional upon all available data), and taking the median of the resulting

winter rainfalls.
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Figure 4.12: Simulated versus observed winter rainfalls for the Galway study area, 1990{1997.

`Winter' is de�ned as the months of January and February, together with December the previous

year. The simulated distributions are obtained from 1000 realisations. The `observations' series is

the median of 1000 realisations of the model running in interpolation mode to �ll in any missing

data.

Figure 4.12 shows that the models do a reasonable job at reproducing the variability in winter

rainfall distributions. This gives us some con�dence that, despite the problems with site e�ects

highlighted in the basic residual analyses, the models may still provide accurate simulations of

catchment average rainfall over long time periods. From the �gure, the 1990 and 1994 events both

have exceedance probabilities between 0.01 and 0.05; that for the 1995 event falls just below the

0.01 mark. These probabilities cannot be quoted as conventional return periods due to the fact

that we are working with nonstationary models: moreover, in view of uncertainty surrounding

the adequacy of the models, they should perhaps not be interpreted too literally. However, for

comparison a simple analysis assuming stationarity allocates a return period of around 950 years to

the 1995 event (OPW 1998). We conclude that winter 
oods may be much less rare, in the presence

of such trend functions as have been identi�ed, than they would be in a stationary climate.

A further analysis examines summary statistics for simulated daily rainfall records. Comparison

of such statistics with observations must be made rather carefully, allowing both for di�erent record

lengths in the observed data and for the fact that the data themselves are regarded as a single

realisation of an underlying stochastic process. The comparison presented here has been carried

out as follows:

� Three sites (numbers G39, G10 and G7B) were selected for comparison. The selection criteria

were:

{ All the sites had at least 30 years of overlapping record (see table 4.1), whose quality



CHAPTER 4. GENERALIZED LINEAR MODELLING OF DAILY DATA 101

was generally deemed to be reasonable.

{ The performance of the sites in the residual analyses for the �tted models did not

highlight any serious problems.

{ The sites are widely spread across the catchment.

� A single run of the model, in interpolation mode, was made from January 1966 to December

1995 (the period of complete years for which data are available from all three sites), to �ll in

missing values. Data from all other sites were made available for this run, to maximise the

accuracy of the interpolation. This run was regarded as a complete observational series.

� Using observed data from the three selected sites for December 1965 only to initialise simu-

lation, 1000 runs of the model were made from December 1965 to December 1995.

� Annual means, averaged over the three sites, were calculated for the observed series and for

each of the simulations. For each simulation, the mean squared di�erence (MSD) between

simulated and observed annual means was calculated and this was used to identify the single

simulation which followed the observations most closely in terms of overall trends. Daily

statistics from this simulation were then compared with those of the observations.

The aim of this procedure is to obtain a simulation which can be regarded as comparable with

observations on an annual timescale, in order to provide a viable starting point for comparison of

the daily statistics. An alternative would have been to compute daily statistics for each of the

1000 simulated realisations, in order to derive a range of values for each statistic | however, this

alternative is extremely labour-intensive. To give an idea of the variability between simulations,

�gure 4.13 presents plots of the observed annual rainfall series, together with series obtained from

three simulations: the one used for comparison, the one with the largest MSD and the one with the

median MSD. All three of the simulated annual series here look qualitatively similar, so the chosen

simulation does not appear to be in any way unrepresentative.

Figures 4.14, 4.15, and 4.16 show a selection of observed and simulated summary statistics for

the marginal time series at each site, for each month of the year. Although the comparison is with

a single simulated sequence only, there is broad agreement between observation and simulation

for most of these statistics at all sites. There is a tendency for the simulation to give a slightly

higher mean and standard deviation on wet days than the observation, and the month of March

particularly stands out in the standard deviation plots. However, the proportion of wet days in

each month, and the autocorrelation at lags 1,2 and 3 at each site, are well reproduced. Given that

this simulation represents only one realisation of the model, the performance indicated in these

�gures appears reasonable.

Figure 4.17 shows the performance relating to summary statistics for each pair of sites. The

statistics for each pair are the proportion of days when both sites are wet, the overall lag zero

cross-correlation, and the lag zero cross-correlation taken only on days when both sites experienced

rain. It is seen that the simulation slightly under-represents the proportion of days when both

sites are wet, for all three pairs of sites: this translates through into a slightly reduced inter-site

cross-correlation. However, the inter-site correlation when both sites are wet is well reproduced.

This indicates that the correlation structure of the amounts model is performing well, but that

the dependence structure of the occurrence model may not produce enough days when all sites are

simultaneously wet. This is either to do with the parameter estimation procedure for the model, or
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Figure 4.13: Observed and simulated annual rainfall series, averaged over sites G10, G39 and

G7B, 1966{1995. 1000 simulated series were generated and ranked according to the mean squared

di�erence (MSD) between simulation and observation. The simulations shown are those with the
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to do with the fact that the model structure does not allow the probability of rain to be arbitrarily

close to 1 simultaneously at all sites (recall the discussion in section 4.1.5).

This completes the analysis for the Galway Bay study. The broad conclusions are as follows:

� The �tted models are interpretable, and provide insights into the mechanics of the rainfall

process in the area. The extent of spatial and temporal nonstationarity can be quanti�ed:

from the analyses presented here, both are present to a signi�cant degree.

� Simulations from the model reproduce various statistics of the rainfall reasonably, at daily

and 3-monthly timescales. The main de�ciency appears to be in reproducing the probability

of simultaneous rainfall occurrence at more than 1 site.

� It is diÆcult to achieve good model performance at all sites individually, although the ex-

tent to which this re
ects problems with data quality is not known. For practical purposes

the problem may not be too serious, since processes such as runo� represent some sort of

averaging over a catchment: overprediction at one site will tend to be compensated for by

underprediction at another.

� Out-of-sample model validation exercises indicated that extrapolation of trend functions out-

side the range of available data should be treated with caution. One problem is the sensitivity

of �tted trend functions to site e�ects: as a result of di�erent periods of record from di�erent

sites, a small change in �tted site e�ects can have a marked impact upon the `optimal' trend
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Figure 4.14: Observed and simulated statistics for daily rainfall at site G10, 1966-1995
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Figure 4.15: Observed and simulated statistics for daily rainfall at site G39, 1966-1995
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Figure 4.16: Observed and simulated statistics for daily rainfall at site G7B, 1966-1995
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Figure 4.17: Observed and simulated statistics for daily rainfall at pairs of sites, 1966{1995.

function chosen. Another problem is that any parametric trend function �tted to the avail-

able data can at best be a plausible approximation to any underlying trend over this range.

Recognizing these problems, a prudent analysis of the e�ects of changing rainfall patterns

in the West of Ireland would include a variety of scenarios which appear well supported by

the available data, and would recognise the inherent uncertainty associated with this type of

problem.

4.2.2 The Brue

The second case study relates to the Brue catchment in South-West England, which is also consid-

ered elsewhere in this report. The data available are as follows:

� Data from 49 0.2mm tipping-bucket raingauges located in the catchment of the Brue itself.

The earliest data from this network are from September 1993; data are available until August

1998. The data have been thoroughly checked and quality-controlled by the Institute of

Hydrology and by the authors | for details of the procedures used, see Wheater, Isham,

Cox, Chandler, Kakou, Northrop, Oh, Onof & Rodriguez-Iturbe (1999). Dubious periods of

data have been removed from each individual gauge's record.
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Figure 4.18: Locations of raingauges used in Generalised Linear Modelling exercise for the Brue

catchment.

� Data from 3 daily gauges located at Sidmouth, Yeovilton and Downside Abbey. All of these

gauges are outside the Brue catchment | in the case of Sidmouth, considerably so. The

records run from 1980 to 1999.

� Data from a single recording raingauge at Boscombe Down, to the East of the catchment.

These data have been supplied, and quality controlled, by the UK Meteorological OÆce. The

record runs from 1980 to 1999 | however, years 1997 and 1998 contain unrealistically high

values which are inconsistent with records from all of the other gauges, and have therefore

been discarded for the analyses reported here.

A sketch map of South-West England and Wales, showing the locations of the gauges, is given

in �gure 4.18.

The data from the 49 gauges within the Brue catchment provide a unique opportunity to study

the �ne-scale structure of rainfall. However, as a result of their limited temporal extent they are

unlikely to provide any useful information regarding trends in rainfall patterns. For this reason, we

have chosen to use data from the four gauges outside the catchment, together with a single gauge

inside the catchment, to �t models and then use the remaining data from within the catchment

for validation purposes. In this way, the validation exercise will give a useful indication of how the

GLM methodology might be expected to perform when very little data are available from within a

catchment, and only sparse daily records are available nearby.

The gauge selected from the Brue network, for inclusion in the �tting dataset, is that at God-

minster Farm: this was selected because there were few problems in its 5 years of record. Figure

4.18 shows the locations of the �tting and validation sites. The �ve gauges in the �tting set cor-

respond to the locations used for extreme value analyses of the continuous space-time model, in
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section 3.3 of this report.

The �tting dataset here is rather small compared to those in the other two case studies |

around 26,000 observations. One consequence of this is that small e�ects, which might show up as

statistically signi�cant with a larger dataset, do not appear signi�cant here. A further aspect is

that with only 5 sites available for model �tting, we cannot hope to obtain complex representations

of regional e�ects. As a result, the �tted models are simpler for this study than for either of the

other two.

The occurrence and amounts models for this study were built up starting with `obvious' pre-

dictors, such as seasonality and previous days' rainfalls: extra predictors were then added and

their usefulness assessed on the basis of increases in nominal log-likelihood, predictive performance

and residual analysis. The �nal �tted models are now summarised | full details may be found in

Appendix B.1.

Brue | rainfall occurrence model

The occurrence model for the Brue contains 13 predictors, as follows:

� A constant term.

� Site altitude.

� An annual cycle representing seasonality (sine and cosine terms).

� Indicators for rainfall occurrence up to 5 days previously.

� Indicators for rainfall occurrence on both the previous 2 days and on all 3 previous days.

� Interactions between the seasonal terms and the indicator for rainfall occurrence 1 day pre-

vously.

These are broadly similar to the predictors found for occurrence in the Galway study, with the

exception of the detailed regional representation of site e�ects which cannot be carried out here

due to lack of data.

There is nothing from the residual analysis of this model to suggest any obvious lack of �t

anywhere. Tables 4.6 and 4.7 show the predicted performance, and �gure 4.19 shows the seasonal

and annual structure of model residuals. In the plot of annual means, there is possibly a suggestion

of an increase towards the end of the record, but none of the means is signi�cantly di�erent from

zero and it would be diÆcult to argue for the inclusion of a trend function on the basis of this plot.

We now report the results of the validation exercise using data from the dense raingauge network

within the Brue catchment. Altitude information is not available for 4 of the 48 sites which were

not used in �tting the model so, since site altitude is a predictor in the model, these sites were

excluded from the validation.

In the validation data, the good predictive performance remains. The table of observed and

expected proportions of wet days, grouped according to the forecast probability of rain, shows some

apparent discrepancies (table 4.8). In fact, most of these are not statistically signi�cant: the \inde-

pendence" standard errors associated with each of the observed proportions need to be in
ated, as
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Observed % correct

Dry Wet Observed Expected

Forecast dry 9035 3481 72.2 72.2

Forecast wet 4045 9617 70.4 70.4

OVERALL % CORRECT: 71.3 71.2

Table 4.6: Observed versus expected predictive performance for occurrence model for Brue catch-

ment �tting data. `Forecast dry' row corresponds to days when the predicted probability of rain

was less than 0.5; `forecast wet' corresponds to other days.

Forecast

decile
1 2 3 4 5 6 7 8 9 10

Observed 0.000 0.172 0.243 0.355 0.440 0.560 0.661 0.749 0.809 0.000

Expected 0.000 0.182 0.240 0.346 0.450 0.547 0.661 0.752 0.810 0.000

N days 0 2632 5687 2373 1824 1622 4114 7001 925 0

Table 4.7: Observed versus expected proportions of days with rain, for data grouped according to

forecast probability of rainfall occurrence (occurrence model for Brue catchment, �tting data).
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Figure 4.19: Seasonal and annual structure of Pearson residuals from occurrence model for Brue

catchment. Dotted lines on mean plots show approximate 95% con�dence limits under the assump-

tion that the model is correct, adjusted for spatial dependence between sites.
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Forecast

decile
1 2 3 4 5 6 7 8 9 10

Observed 0.000 0.135 0.212 0.412 0.523 0.597 0.653 0.767 0.854 0.000

Expected 0.000 0.184 0.240 0.345 0.449 0.540 0.659 0.756 0.806 0.000

N days 0 8305 11389 4287 4367 3540 7523 20039 2410 0

Table 4.8: Observed versus expected proportions of days with rain, for data grouped according to

forecast probability of rainfall occurrence (occurrence model for Brue catchment, validation data).

described in section 4.1.4 previously, to allow for the strong spatial dependence within the validation

dataset (a result of the large number of sites within a small area). The formula (4.11) in fact yields

a value of 5.076 for the in
ation factor with this dataset, and the only signi�cant di�erence is in

column 2 of the table. To illustrate the argument: column 4 in the table apparently shows the worst

performance. Out of 4287 days in this group, 41.2% were observed to be wet instead of an expected

34.5%. If the true proportion in this group is 0.345 and all of the observations are independent, the

associated standard error of the sample proportion will be
p
0:345 � (1� 0:345)=4287 = 0:0073.

In
ating this by a factor 5.076 yields a corrected standard error of 0.0369, so that 95% limits for

the sample proportion are 0:345 � (1:96 � 0:0369) = (0:273; 0:417). The observed proportion does

fall within these limits.

The overall residual performance for the validation data is good: the mean Pearson residual is

0.009 with a standard error of 0.020, and the standard deviation of the Pearson residuals is 0.97.

These agree well with the expected values of 0 and 1. There is, however, some seasonal structure

to these residuals, with a tendency for negative values in te summer months and positive values

in the winter. February and December both yield positive mean residuals which are signi�cantly

di�erent from zero. Additionally, there appears to be annual structure to the residuals here |

a monotonic decrease from 1994 to 1997. The annual mean residual for 1994 is 0.136, with an

associated standard error of 0.042; that for 1997 is -0.163, with a standard error of 0.043. These

are clearly highly signi�cant, although there was no indication of this kind of structure in these

years for the �tting data (�gure 4.19).

The overall performance at individual sites in the validation dataset is remarkably good | out

of 44 sites in the dataset, only 4 have mean residuals which are signi�cantly di�erent from zero. The

means are positive in all 4 cases: in the worst case, the mean residual is 0.067, with an associated

standard error of 0.026.

Brue | rainfall amounts model

The amounts model for the Brue contains 11 predictors, as follows:

� A constant term.

� Site altitude.

� An annual cycle representing seasonality (sine and cosine terms).

� Log(1 + rainfall x days ago), for x = 1; 2; 3; 4.
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Figure 4.20: Normal probability plot of Anscombe residuals from rainfall amounts model for Brue

catchment.

� Indicator for rainfall occurrence on all 4 previous days.

� Interactions between the seasonal terms and log(1 + previous day's rainfall).

The basic structure of this model is very similar to that of the occurrence model. The �tted

model explains 3.0% of the variance in non-zero daily rainfall amounts. This is rather smaller than

the corresponding �gure for the Galway study. The reduction is due, at least in part, to the few

sites used in the �tting | the variability due to di�erences between sites is simply not present in

this dataset.

Figure 4.20 shows the normal probability plot of Anscombe residuals for this model. At the

lower end, the shape is similar to that seen in the Galway study and, as before, indicates that very

small rainfall amounts are not being recorded | this is not a matter for concern. There is a small

amount of curvature in the upper tail, again starting around the 99.9% point of the distribution

but this time in the opposite direction to that seen in the Galway study. As before, there should

be few objections to a model which appears accurate for events as rare as 1 in 1000.

As with the occurrence model, there is no seasonal or annual structure to the residuals here

(the plots are shown in �gure 4.21). However, 4 of the 5 sites exhibit mean residuals which are

signi�cantly di�erent from zero: Downside Abbey and Sidmouth have positive means, whereas

those at Boscombe Down and Yeovilton are negative. Referring to �gure 4.18, it is unlikely that

this can be resolved in a constructive way on the basis of the available data.

For the validation sites, the model in fact overpredicts signi�cantly on average (the average

overprediction for daily rainfall is 0.5mm). This bias accounts for slightly more than half the

reduction in ~R2, to 1.1% (from 3.0% for the �tting dataset) and, as expected, dominates the

residual analyses broken down by month, year and site.
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Figure 4.21: Seasonal and annual structure of Pearson residuals from amounts model for Brue catch-

ment. Dotted lines on mean plots show approximate 95% con�dence limits under the assumption

that the model is correct, adjusted for spatial dependence between sites.

Brue case study | summary

The results of this case study are of particular interest to a practitioner who is in the situation

of having to model a catchment with extremely limited data. The validation exercises for both

occurrence and amounts models indicated that it may be diÆcult to reproduce rainfall structure

over a catchment, unless data are available from quite nearby. For the occurrence model, both

seasonal and annual structure were present in the validation residuals, for which there was no

evidence at all from the �tting sites. If anything, the �tting sites indicated an increase in residuals

towards the end of the record, whereas the validation sites showed exactly the opposite. For the

amounts model, the main problem was a systematic bias in the validation. It is worth noting that in

the �tting data, the single gauge from within the catchment did yield a negative mean residual for

this model, although it was not signi�cantly di�erent from zero. In retrospect, perhaps a prudent

approach would have been to add an indicator variable to the model, taking the value 1 if a site

lies within the catchment and 0 otherwise. The e�ect of this would be to adjust all of the �ts from

within the catchment upwards, which would have solved most of the problems with the validation

for this model.

The other point to note from this case study is the lack of evidence for long-term trends. It

should be noted, however, that the data are of limited temporal extent. Even the longer records

only go back to 1980, and this may not be long enough to identify any long-term structure.

For this case study, the �tted models have not been simulated to compare observed and simu-

lated rainfall summary statistics. However, the simulation exercise for the Galway study indicated

that at locations where the models �t well (as assessed using residual analyses), properties of sim-
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Figure 4.22: Map of Blackwater catchment, showing locations of raingauges.

ulated data agree well with those of observations. Such a conclusion seems intuitively reasonable,

in view of the variety of residual checks which are carried out at the model �tting stage: we would

therefore expect to obtain similar results from a simulation exercise applied to this case study.

4.2.3 The Blackwater

The �nal case study to illustrate the GLM methodology comes from the Blackwater, a tributary of

the Thames located between Guildford and Basingstoke (�gure 4.22). The catchment itself covers

an area of some 20� 20km2. There is some topographic variation within the catchment: the North

Downs run roughly East-West across its Southern boundary. Data are available from a network of

44 gauges in and around the catchment. 4 of these gauges provide subdaily data: the remainder

are daily gauges. The lowest gauge is at 37m above sea level, and the highest is at 183m. The

earliest records start in 1961; data are available to 1997. The dataset is large, containing some

350,000 observations.

The analysis reported in this section has been carried out by the Institute of Hydrology with the

authors' assistance, by way of demonstrating the GLM �tting software. This has limited the time

available to work on this dataset. As a result, there has not been time to perform any validation

analyses, or to carry out many detailed checks of the �tted models. However, this example does

indicate what can be achieved using the GLM methodology and software within a rather short

space of time.

The basic approach to the modelling was the same as in the Galway study: start by including

obvious predictors representing seasonality and temporal dependence, and then examine residual

plots for guidance on how to parameterise regional e�ects and to look for evidence of trends. One
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attractive feature of this dataset is the large number of sites available, which allows us to incorporate

rather detailed representations of regional e�ects.

A summary of each of the �nal �tted models (occurrence and amounts) is now given. Full

details may be found in Appendix B.1.

Blackwater | rainfall occurrence model

The �nal rainfall occurrence model for the Blackwater contains 38 predictors. The basic structure

is as follows:

� A constant term.

� Site e�ects, incorporated via sine and cosine terms at the �rst 2 Fourier frequencies in an

orthogonal series representation, over a rectangle from Eastings 460000 to 500000 and from

Northings 138000 to 170000 (see �gure 4.22 for co-ordinate system). Site altitude is not a

statistically signi�cant predictor.

� A cyclical trend function. The estimated cycle length is 51.8 years (nominal standard error

5.0 years) with a maximum at 1982.5 (nominal standard error 0.3).

� Seasonality, represented by whole-year and half-year cycles.

� Temporal dependence, represented by rainfall occurrence indicators for 1, 2 and 3 days pre-

viously.

� Temporal persistence, represented by an indicator for rainfall occurrence on each of the pre-

vious 3 days.

� Interactions between the trend and seasonal e�ects.

� Interactions between seasonal and temporal dependence e�ects.

These predictors broadly �t the pattern of the other two case studies: notice in particular

that there is compelling evidence for a trend in rainfall occurrence and that this has signi�cant

interactions with seasonal e�ects.

A map showing the �tted site e�ects for this model is given in �gure 4.23. The magnitude of

the e�ects is generally quite small (compared, for example, with the results for the Galway Bay

study). Where the map does show large e�ects (for example, signi�cant enhancement to the South

of gauges 32 and 33, and a corresponding reduction to the North of 25 and 26), there are few sites,

and this may be an artefact of the �tting procedure, which puts the best possible smooth surface

through the available gauge locations. There are no obvious physical features in the map of the

area (�gure 4.22) which would suggest any major regional variability.

The predictive performance of the �tted model is good. Tables 4.9 and 4.10 show the results.

The only slight discrepancy between observed and expected performance is for days when the

predicted probability of rain is between 0.1 and 0.2 (table 4.10). Here, the observed proportion

of wet days is 0.214, which is signi�cantly di�erent from the expected proportion of 0.191 (the

standard error for the observed proportion is around 0.0035). However, although this is formally
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Figure 4.23: Main �tted site e�ects for rainfall occurrence model, Blackwater catchment (also

showing locations and numbers of raingauges).

signi�cant in a statistical sense, the magnitude of the discrepancy is rather small and its practical

consequences will be negligible.

Figure 4.24 shows the seasonal and annual structure of residuals from the �tted model. The

seasonal structure of the rainfall has clearly been well captured by the model. 4 out of 37 mean

annual residuals fall outside the 95% con�dence bands: however, none of these is far outside and

there does not seem to be any systematic overall structure to the plot, so this is not a major cause

for concern. There is some suggestion that the annual root mean square was slightly greater than

its expected value until around 1970: however, the e�ect is small, and does not necessarily represent

a problem with the �tted trend function: it may equally well arise from a problem with some sites

which were active before 1970.

The residual analysis for sites tells much the same story as that for the Galway study: around

half the sites have mean residuals which are signi�cantly di�erent from zero. Those with signi�cant

negative residuals are numbers 9, 10, 13, 14, 19, 22, 29, 30, 32, 38, 39, 48 and 52; those with

signi�cant positive residuals are 16, 17, 20, 21, 33, 34, 37, 44, 49, 50 and 51. Referring to �gure

4.23, most of these sites are towards the edge of the site network: there is an area towards the centre

of the catchment (roughly corresponding to Eastings 470{485 and Northings 138{160) where there

are few problems. Although there does appear to be structure regarding the locations of these sites,
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Observed % correct

Dry Wet Observed Expected

Forecast dry 115526 49564 70.0 70.0

Forecast wet 54968 132117 70.6 70.7

OVERALL % CORRECT: 70.3 70.4

Table 4.9: Observed versus expected predictive performance for occurrence model �tted to Black-

water catchment data. `Forecast dry' row corresponds to days when the predicted probability of

rain was less than 0.5; `forecast wet' corresponds to other days.

Forecast

decile
1 2 3 4 5 6 7 8 9 10

Observed 0.000 0.214 0.239 0.354 0.440 0.554 0.654 0.752 0.799 0.000

Expected 0.000 0.191 0.243 0.352 0.441 0.558 0.659 0.748 0.808 0.000

N days 0 11794 83602 42127 27567 14584 61468 103038 7995 0

Table 4.10: Observed versus expected proportions of days with rain, for data grouped according to

forecast probability of rainfall occurrence (occurrence model for Blackwater catchment).

this does not appear carry through to their signs, so it would be diÆcult to rectify the problem in

any systematic way. The indication may be of very local e�ects upon rainfall (relating to gauge

placement, for example), since the �tted surface in �gure 4.23 is already quite detailed, providing

resolution of features down to a scale of around 5km.

Blackwater | rainfall amounts model

The predictors in the �tted rainfall amounts model for this catchment are more or less the same as

for the occurrence model, except that temporal dependence is represented by log(1+rainfall x days

ago) for x = 1; 2; 3 instead of indicator variables for rainfall occurrence on each of the previous 3

days. The amounts model also indicated a cyclical trend: the estimated cycle length was 64.8 years

(nominal standard error 13.6 years) with a cycle maximum at 1955.1 (standard error 6.5). It is

perhaps worth noting that the di�erence in the estimated cycle lengths for this model and for the

occurrence model is not statistically signi�cant (the observed di�erence is 64:8 � 51:8 = 13, and

the nominal standard error of this di�erence is approximately
p
5:02 + 13:62 = 14:5). Moreover,

the estimates of the trend parameters for this model would give a cycle minimum at 1987.5: the

estimate of the maximum for the occurrence model was 1982.5. Taking into account the standard

errors of all the estimates, it is therefore quite conceivable that the underlying trends for both

amounts and occurrence in this area are the same, but that they work in opposite directions (in

years of enhanced rainfall occurrence, amounts are reduced and vice versa).

Figure 4.25 shows a map of �tted site e�ects for this model. The structure is markedly di�erent

from that of the occurrence model for this catchment, and is dominated by a band of enhanced

rainfall amounts running from North-East to South-West. As before, features such as that to the

South of gauges 32 and 33, and that to the North of 48 and 49, should be interpreted with caution,
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Figure 4.24: Seasonal and annual structure of Pearson residuals from occurrence model for Black-

water catchment. Dotted lines on mean plots show approximate 95% con�dence limits under the

assumption that the model is correct, adjusted for spatial dependence between sites.

owing to scarcity of data.

The �tted model explains 3.3% of the variance in non-zero daily rainfall amounts. Again, this

is rather smaller than the corresponding �gure for the Galway study. In this case the reduction

is probably a consequence of the more homogenous topography in this catchment. A normal

probability plot of Anscombe residuals from the �tted model is presented as �gure 4.26. The shape

is similar to that for the Galway study, although the curvature in the upper tail is increased for

this catchment and now starts around the 99.5% point of the residual distribution. This is still

probably adequate for many purposes (representing events with an exceedance probability of 1 in

200).

Figure 4.27 shows the seasonal and annual structure of residuals from this model. These plots all

indicate that the model has captured these aspects of rainfall variability in the area well. The only

suggestion of a pattern is in the annual root mean square, which appears to be systematically below

its expected value prior to 1970. This period was also identi�ed as anomalous in the corresponding

plot for the occurrence model | again, it may represent a feature of sites which were operating at

that time.

The residual analysis by site highlights the usual problems: sites 16, 17, 20, 21, 28, 33, 34, 37,

46, 49, 50 and 51 all have signi�cant negative mean residuals, and 9, 10, 13, 14, 19, 22, 29, 30,

32, 38, 39, 48 and 52 all have signi�cant positive means. This pattern is almost identical to that

for the occurrence model, with the signs reversed. Similar comments therefore apply. However,

the striking coincidence between the two patterns of signi�cant residuals suggests that part of the

problem may relate to data quality. Suppose, for example, that the observer at site 37 tends to
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Figure 4.25: Main �tted site e�ects for rainfall amounts model, Blackwater catchment (also showing

locations and numbers of raingauges).

record rainfall amounts of less than 0.1mm of rain as zero, but that the observer at site 38 records

all amounts of less than 0.2mm as zero. In this case, site 37 would record more wet days than site

38, but the mean rainfall on wet days would be lower. This would give exactly the kind of residual

behaviour for the two models which has been observed at these sites.

Summary of Blackwater case study

This example indicates that it is possible to obtain a reasonable model for daily rainfall with a

couple of days' work, using the GLM methodology. However, even with a lot of raingauges which

enable resolution of site e�ects down to scales of around 5km, it is still not possible to obtain good

�ts at all sites. This indicates either that there is systematic variability in rainfall at a very local

scale, or that di�erences between observers and siting of individual raingauges may be additional

factors which a�ect the recorded rainfall to a degree which can be detected using this methodology.
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Figure 4.26: Normal probability plot of Anscombe residuals from rainfall amounts model for Black-

water catchment.

4.3 Summary of GLM modelling

The GLM approach has been studied as a powerful and 
exible tool for studying temporal and

spatial nonstationarity in rainfall, which is suitable for application to daily raingauge data. The

broad conclusions from the case studies above are as follows:

� The methodology is capable of detecting patterns in noisy daily rainfall records. Although

these patterns tend to be weak, in all the case studies considered they have been interpretable

and realistic. Moreover, the overall structure of the models �tted is similar in all cases.

� Daily rainfall sequences have high noise levels, so that �tted models will tend to explain only

a small fraction of the observed variability. However, at long time scales even weak signals

can produce dramatic e�ects in hydrological terms (as in the Galway study).

� The assumed form of the probability distributions for daily rainfall can be expected to hold

up to around the 99.9% point.

� The methodology is relatively quick and simple to use, given the publically-available software

detailed in Appendix B.2. It would be fairly quick for a practitioner to �t a model, so as to

judge the extent of temporal and spatial nonstationarity in an area.

� Fitted models are capable of reproducing many summary statistics for daily rainfall sequences

well. There is, however, a slight tendency for the variability in daily rainfall sequences to be

over-represented, and for spatial dependence in rainfall occurrence to be under-represented.

There is scope for further work in this area to verify the extent to which these problems may

arise in areas other than western Ireland.
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Figure 4.27: Seasonal and annual structure of Pearson residuals from amounts model for Black-

water catchment. Dotted lines on mean plots show approximate 95% con�dence limits under the

assumption that the model is correct, adjusted for spatial dependence between sites.

� It would be unwise to rely too heavily upon a single scenario regarding trends in climate,

even if it appears well supported by this methodology over the range of time for which data

are available. Validation exercises in these case studies have shown that such scenarios do

not necessarily extrapolate well into the future. However, the methodology may enable an

informed qualitative assessment of increasing or decreasing risk to be made, on the basis of

available data.

� It appears diÆcult to capture exactly the rainfall patterns observed at individual sites. This

is almost certainly a result of extremely local structure in observed rainfall �elds. A natural,

and plausible, way of overcoming this de�ciency is to incorporate random e�ects into the

model | see, for example, Fahrmeir & Tutz (1994).

� For catchments with limited data, but where data are available from outside the catchment,

models should be structured in such a way as to exactly �t, as far as possible, the observed

rainfall structure at gauges within the catchment. This can potentially be achieved through

the use of appropriate indicator variables. In this case the role of the sites outside the

catchment is to increase the precision of model parameter estimates, and to guide the choice

of appropriate predictors for a model.



Chapter 5

Applications with limited data

In chapters 2 and 3, a continuous-simulation model was developed which can be calibrated from

radar data and which is stochastically stationary in both space and time. Chapter 4 introduced an

alternative strategy which uses daily rainfall data to quantify the extent of temporal and spatial

nonstationarity in a catchment. In this chapter, we consider a set of problems associated with the

use of limited data. First (sections 5.1 and 5.2), we return to the idea of using the GDSTM for

continuous simulation, but consider the case when radar data are not available. In this case, the

spatial-temporal rainfall model will have to be �tted using raingauge data only. Since we are looking

at generating hourly sequences, we shall �rst consider the case when a set of hourly raingauge data is

available. Secondly, we address the general problem of multivariate spatial-temporal disaggregation

(section 5.3). This arises, for example, if daily raingauge data are available from several sites, but

data at �ne temporal resolution are limited (e.g. a single subdaily timeseries). We may wish

simply to generate a consistent historical multivariate subdaily series, or we may wish to simulate

subdaily series into the future in such a way as to respect the temporal and spatial nonstationarities

embodied by a Generalized Linear Model for daily data. If GLMs are used for multivariate daily

simulation, a consistent sub-daily time series at a single site is required for the spatial-temporal

disaggregation; single-site temporal disaggregation is discussed in section 5.4,.

5.1 Spatial-temporal model implementation with raingauge data

5.1.1 Modelling strategy

The GDSTM presented in chapter 2 is a continuous space-time model and therefore is able to gen-

erate rainfall at a given point. The continuous time rainfall can then be used to obtain simulations

of hourly rainfall. In calibrating the model from radar data, allowance must be made for the fact

that the radar images can be regarded as instantaneous snapshots in time, but averages in space.

Raingauge data, on the other hand, represent points in space but averages over time intervals. To

�t the model to raingauge data therefore, properties of temporally but not spatially averaged data

are required, in contrast with the �tting procedure for radar data in chapter 2. In this case, we have

on the one hand a simpli�cation since we do not need to integrate the point properties spatially,

while on the other, they will need to be integrated over the hourly time-interval. The proportion

dry at one point can be computed analytically for a given point in time, but the corresponding

121
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expression for a time-interval is not easily usable for computations.

There are also di�erences in the spatial scales which are represented in the radar data and

the set of raingauge data. Generally, the gauges will be too widely separated for the detection of

such �ne spatial features as are represented in radar data at 4km2 resolution. Typically, we might

consider a raingauge network with a density of the order of one per 16km2 at the most. This will

have implications for the model structure: the mean cell area as found in chapter 2 for Wardon Hill

radar data is such that a typical cell would a�ect at most 2 of the raingauges. This is insuÆcient

to allow for the estimation of the properties of cell areas. Consequently, the data provided by such

a raingauge network must be viewed as allowing for the �t of a hierarchical spatial-temporal model

from which the �ner cellular structure is absent.

One obvious possibility is to �t the GDSTM to raingauge data, but regarding it as a model for

storms clustered within rain events, rather than (as previously) for cells clustered within storms. By

doing this, we are slightly changing the assumptions made about the arrival of rain events (in chapter

3, events arrived according to an alternating renewal process with Weibull durations, whereas if

we regard the model as for storms clustered within rain events, rain events arrive according to a

Poisson process) and about the distributions of storms inside events (in chapter 3, storms were

uniformly distributed within an event whereas here they will be displaced from the center of an

event according to a bivariate normal distribution). However, the practical consequences of these

di�erences are likely to be minimal. In particular, since the gauged area will be of an order of

magnitude which is small compared to that of the event, the assumption that storms are normally

distributed around the centre of the event does not represent a signi�cant di�erence in practice

from the modelling strategy in chapter 2.

5.1.2 Model parameters and rainfall statistics

The GDSTM of chapter 2 is de�ned in terms of 11 independent parameters, which have the following

physical or geometrical interpretations when applied to data from a raingauge network:

� Rate of event arrivals (number of events per km2 per h): �

� Mean storm duration (h): �D

� Mean event duration (h): �L

� Mean storm area (km2): �A

� Mean event area (km2): �S

� Mean number of storms per event: �C

� Mean storm intensity (mm/h): �X

� Component of storm/event velocity in the x direction (east) (km/h): Vx

� Component of storm/event velocity in the y direction (north) (km/h): Vy

� storm/event eccentricity: e

� storm/event orientation (in radians from east): �
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All other parameters are derived in terms of these 11 parameters using the equations of chapter 2.

In its initial formulation, the model assumes that the parameter values are constant during

a \rainfall event" but vary among di�erent events. However, in the application of this section

we will assume that these parameters have constant values within each month, as the relatively

small amounts of data available through raingauge measurements do not allow reliable parameter

estimation for smaller time periods. The parameters can be estimated in terms of the �rst and

second order rainfall statistics.

As we have seen above, rainfall statistics for raingauge data are only available for the temporally

aggregated rainfall intensity process at the point of interest, that is, in terms of the discrete time

process:

Yi(x; y) =

Z ih

(i�1)h
Y (x; y; t)dt (5.1)

where Yi(x; y) denotes the mean rainfall intensity at the discrete time interval i with a �xed length

h, and Y(x,y,t) is the point instant rainfall intensity at point (x, y) at time t.

The mean rainfall intensity is independent of the time scale of aggregation h and is given by:

E [Yi(x; y)] = ��D�A�C�X (5.2)

The second order properties depend on the scale of aggregation and are determined in terms of the

point-instant covariance function:

c (ux; uy; �) := Cov [Y (x; y; t) ; Y (x+ ux; y + uy; t+ �)] (5.3)

where ux, uy and � are spatial and temporal displacements (lags) as in chapter 2. This is a

complicated function of all the model parameters that can be evaluated only numerically. A Taylor

series expansion for the expression is given by Northrop (1996).

Given the covariance function, the second order properties of the temporally aggregated process

Yi are given by (k � 1):

Var [Yi (x; y)] = 2

Z h

0
(h� t)c(0; 0; t)dt (5.4)

Cov [Yi (x; y) ; Yi+k (x+ ux; y + uy)] =

Z h

�h

(h� jtj) c (ux; uy; kh+ t) dt (5.5)

These statistics can only be evaluated by numerical integration (apart from special simple cases,

e.g. when the velocity is 0). However, in practice we have found that the computational costs

involved are small, and it is perfectly feasible to estimate model parameters by minimising the

departures of theoretical statistics (as evaluated from the equations above) from historical rainfall

series statistics.

5.1.3 Case study: Catchment and data

The Brue catchment located in South-West England is used as a case study area (�gure 5.1). The

catchment is equipped with 49 raingauges but only 8 of them were used to assess the ability of the

methodology to perform with limited data. Five years of data were available, covering the period

September 1993 to August 1998 (in fact the data of September 1993 were suspect in most of the

raingauges and was excluded from the analyses).
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Figure 5.1: Schematic of the case study area and the raingauges used. Each site is labelled with

the gauge number used in this study, along with its altitude.

5.1.4 Basic statistical properties of rainfall

Statistical analyses of the rainfall time series, at both hourly and daily time scales, were performed

for the eight raingauges. Their results for two representative months, namely January and July, are

summarised graphically in a series of �gures. �gure 5.2 shows marginal statistics (mean, variation,

skewness and proportion dry) for each site; �gure 5.3 shows the autocorrelation functions. Figures

5.4 and 5.5 show cross-correlation coeÆcients among the di�erent raingauges for time lags 0, 1 and

2: in �gure 5.4 they are plotted against the distance between gauges, wherease in �gure 5.5 they

are plotted against the angle formed by each pair of gauges. Results for other months are very

similar to those of January and July and in no case do they contradict the results and interpretation

discussed below.

Stationarity of the rainfall �eld: Since the GDSTM rainfall is stationary in time, by �tting

it to an entire month's rainfall record we are implicitly assuming that the rainfall process is

stationary in time within each month. The analysis reported above indicates that the rainfall

process can be regarded as spatially stationary in the case study area. As shown in �gure 5.2,

marginal statistics do not vary signi�cantly among di�erent raingauges. The di�erences in

the coeÆcients of skewness that appear in some cases are attributed to their high statistical

variability and the short (5 years) record length available for their estimation, rather than to

regional di�erences of the process. The sample autocorrelation functions, shown in �gure 5.3,

provide additional evidence for the spatial stationarity of the process.

The conclusions here appear at odds with those determined from the GLM methodology in
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Figure 5.2: Marginal statistics of rainfall for the di�erent raingauges for hourly (left) and daily

(right) time scales and for months January (top) and July (bottom)
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Figure 5.3: Autocorrelation functions of rainfall for the di�erent raingauges for hourly (left) and

daily (right) time scale and for months January (top) and July (bottom).
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Figure 5.4: Cross-correlation coeÆcients of rainfall among the di�erent raingauges for time lags 0,

1 and 2, versus the distance between gauges, for hourly (left) and daily (right) time scale and for

months January (top) and July (bottom).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-180 -135 -90 -45 0 45 90 135 180

Angle, a (o)

  ρ

Lag 0 Lag 1 Lag 2

ρ0 = 0.8

ρ1 = 0.47

ρ2 = 0.26

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-180 -135 -90 -45 0 45 90 135 180
Angle, a (o)

  ρ

Lag 0 Lag 1 Lag 2

ρ0 = 0.93

ρ1 = 0.31

ρ2 = 0.32

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-180 -135 -90 -45 0 45 90 135 180

Angle, a (o)

   ρ

Lag 0 Lag 1 Lag 2

ρ0 = 0.8

ρ1 = 0.47

ρ2 = 0.26

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-180 -135 -90 -45 0 45 90 135 180
Angle, a (o)

  ρ

Lag 0 Lag 1 Lag 2

ρ0 = 0.78

ρ1 = 0.24

ρ2 = 0.07

Figure 5.5: Cross-correlation coeÆcients of rainfall among the di�erent raingauges for time lags 0,

1 and 2 versus the angular separation of the gauges, for hourly (left) and daily (right) time scales

and for months January (top) and July (bottom).
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section 4.2.2, where site altitude was found to have a statistically signi�cant e�ect upon both

rainfall occurrence and amounts at a daily timescale. However, in practical terms the e�ect

is small (the GLM for rainfall amounts explains only 3% of the variance in daily rainfall, and

altitude accounts for only a part of this), so for most purposes it may be considered adequate

to assume spatial stationarity.

Isotropy of the rainfall �eld: In �gure 5.5, where the cross-correlation coeÆcients among pairs

of raingauges are plotted against the direction of the straight line joining the raingauges,

no evidence of any e�ect of the orientation appears. Therefore, the spatial rainfall �eld can

be regarded as isotropic. This also implies that there is no preferential velocity of storms,

in a statistical sense. That is, velocities of di�erent rainfall events must add up to a zero

resultant. Additional evidence for this is provided by �gure 5.4, which shows the cross-

correlation coeÆcients of rainfall among the di�erent raingauges for time lags 0, 1 and 2,

versus the distance between gauges. Were a nonzero storm velocity V a�ecting the rainfall

�eld, this e�ect would be revealed in the lagged cross-covariance structure of the rainfall

process. For example, considering two points 1 and 2 separated by a vector L = V� , whose

point intensity processes are denoted by X1(t) and X2(t) respectively, the lagged correlation

Corr[X1(t);X2(t + �)] would be expected to be greater than the lag-zero cross-correlation

Corr[X1(t);X2(t)]. However, as shown in �gure 5.4, this is not the case for any of the pairs

formed by the eight stations and for any lag � > 0. We must note, however, that the emerging

insigni�cance of storm movement must be attributed to the consideration of all storms of a

month as an ensemble (rather than as events with di�erent velocities) and the adoption of

rather coarse time scales (hourly and daily). An investigation was carried out using a �ner

time-scale (10 min) and the results obtained were similar. It is probable that at an even �ner

time scale or for a larger spatial extent, some e�ect of storm movement would become evident

in the cross-correlation structure.

Cross-correlation structure: In �gure 5.4 it is apparent that the lag-zero spatial correlation

decreases slightly with increasing distance whereas lagged spatial correlations exhibit no sig-

ni�cant variation with distance within the catchment. This has implications for model �tting,

as will be discussed below.

Other properties Figure 5.4 shows that the spatial correlation of rainfall is impressively high,

even at the hourly scale, a fact that, among others, indicates a good quality of the raingauge

data. Both �gures 5.3 and 5.4 show that the auto- and cross-correlations are higher in the

wet season (January) than in the dry season (July).

5.1.5 Model �tting

Given the analyses of the previous section, the GDSTM can be simpli�ed for the present applica-

tion by ignoring (setting to zero) four of its parameters, i.e., the storm eccentricity e, the event

orientation � and the two velocity components Vx and Vy. The remaining parameters are estimated

using a method of moments: �, �D, �L, �A, �S and �C are estimated using second order properties

of the process, and the remaining parameter �X is estimated from the mean intensity (equation

(5.2)).

In order to estimate the spatial structure of the model from second-order properties, it is

necessary to incorporate lag zero cross-correlations into the �tting procedure. However, with data
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available only from a discrete network of sites, it is unclear how this can best be achieved. One

approach would be to calculate separate lag zero cross-correlation coeÆcients for each pair of sites

(S(S � 1)=2 coeÆcients in total where S sites are involved), and include all of these coeÆcients in

the �tting so as to obtain as close a match as possible to the observed cross-correlation structure

at all inter-site distances. However, given the variability in observed cross-correlations from pairs

of gauges separated by similar distances (see �gure 5.4), this would probably not be worth the

computational expense involved. A more promising strategy is to �t a curve to the observed cross-

correlations, treat the �tted curve as an observed cross-correlation function, and parameterise the

GDSTM using the �tted cross-correlation at some speci�ed spatial lag. In the work reported here,

the following relationship has been used:

�(d) = exp
�
�adb

�
(5.6)

where �(d) is the cross-correlation between sites separated by a distance d. The parameters a and

b are determined by least squares. The relationship (5.6) corresponds to a semi-variogram of the

form

�(d) = Var [Yi(x; y)� Yi(0; 0)] = C(0) [1� �(d)] = C(0)
h
1� exp

�
�adb

�i
(5.7)

where d =
p
(x2 + y2), and C(0) = V ar[Yi(0; 0)] = V ar[Yi(x; y)] is the process variance.

It should be noted that the autocorrelation structure de�ned at (5.6) is probably not exactly

the same as that implied by the GDSTM which we are �tting. However, this does not cause any

problems in practice, since the only role of (5.6) in this application is to provide a simple and

automatic interpolation of the observed cross-correlations. It provides a very reasonable �t in all

cases, as illustrated in �gure 5.4.

We are now in a position to describe the estimation of the parameters �, �D, �L, �A, �S and

�C . The properties used in the �tting were as follows:

� The variance, lag one autocorrelation, and lag zero cross-correlation at a distance of 5km, at

both hourly and daily timescales. The spatial separation of 5km was chosen as it is equal

to about the mean distance between the stations in our case study. The six second-order

statistics used here are regarded as `primary' �tting statistics.

� The lag two autocorrelation and the lag zero cross-correlation at a distance of 10 km, again

at both hourly and daily timescales. These four properties are regarded as `secondary' �tting

statistics.

Of course, the mean of the process should also be regarded as of primary importance in model

�tting: however, recall that the mean is subsequently used to estimate �X using equation (5.2), so

an exact �t to the observed mean is guaranteed.

The historical values of the variance and the autocorrelations were estimated as averages of point

values at the eight raingauges, whereas the historical lag zero cross-correlations were estimated from

equation (5.6). The theoretical values are given in terms of the unknown parameters by equations

(5.2) and (5.5). The objective function to be minimized has the form

f(�; �D; �L; �A; �S ; �C) =
X
i

wi

�
mi � hi

hi

�2
(5.8)
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Figure 5.6: Seasonal variation in �tted model parameters, for simpli�ed GDSTM applied to hourly

raingauge data in the Brue catchment.
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Parameter description Parameter Parameter Parameter

symbol set 1 set 2

Rate of event arrival (km�2 h�1) � 1� 10�5 2:66 � 10�6

Mean storm duration (h) �D 0.6022 0.6164

Mean event duration (h) �L 14.64 14.79

Mean storm area (km2) �A 499.9 615.4

Mean event area (km2) �S 313.3 1542.6

Mean number of storms/event �C 47.4 137.4

Mean storm intensity (mm/h) �X 0.56 0.57

Value of objective function 0.0236 0.0178

Table 5.1: Two di�erent sets of parameter values for March, for simpli�ed GDSTM �tted to

raingauge data from the Brue catchment

where hi and mi denote historical and modelled (theoretical) values respectively for the ith �tting

property, and the fwig are weights which were set equal to 1 for each of the six `primary' statistics,

and 0.1 for each of the `secondary' statistics. The optimisation was performed numerically using

the tools described in Appendix C. The �tted parameter values are shown in �gure 5.6.

Generally, the objective function in equation (5.8) has several local optima. Thus, di�erent

sets of parameter values may result in an acceptable preservation of the rainfall process statistics.

As an example, two di�erent sets of parameter values for March are given in table 5.1. It is seen

that both sets yield very similar values of the objective function. In terms of the reproduction of

these statistics, either parameter set may therefore be chosen. Discrimination between them would

require that other statistics be considered. We note that for the �rst parameter set, �A is larger

than �S , which means that most of the storm centres are clustered over an area which is on average

smaller than the average extent of a storm. As a result of this lack of physical realism, coupled with

the slightly lower objective function value achieved by the second parameter set, it is the second

parameter set which has been used for the work reported below.

5.2 Continuous simulation performance with raingauge data

To assess the model performance we now compare several properties of synthetic point rainfall

series, generated by simulating the �tted model, with their corresponding historical properties.

5.2.1 Simulation model

The simulation model developed for this study, and described above, �rst generates events and

storms for a certain spatial region and time period and then calculates the rainfall time series at

points of interest, together with their statistical characteristics.

The simulation area is wider than the region of interest and the simulation time period is longer

that the period of interest. Let us assume that the region of interest is a rectangle with sides lx and

ly, and the time period of interest is an interval of length d (see �gure 5.7). Events located outside
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Figure 5.7: Schematic of the simulation space of the model. The inner parallelepiped is the space

(i.e. area and time period) of interest and the outer parallelepiped is the actual simulation space.

this rectangle (but nearby) can cover all or part of the region. Similarly, events generated before

the time period of interest may continue into that period. Therefore, to simulate accurately the

rainfall process in the inner parallelepiped of �gure 5.7 with dimensions lx � ly � d, it is necessary

to simulate event generation in a much larger spatial-temporal region. We shall consider all events

generated in the outer parallelepiped of �gure 5.7, which has dimensions Lx � Ly �D. We take

Lx = lx + 2�lx (5.9)

Ly = ly + 2�ly (5.10)

D = d+�d ; (5.11)

and

�lx = 2:5
p
�s + �A (5.12)

�ly = �lx�y=�x (5.13)

�d = 5�L (5.14)

where �x and �y are the standard deviations of the displacements of storm from event centres. They

are determined in terms of the model parameters in section 5.1.2. These choices were determined

using statistical reasoning and simulation experiments. Note that in the present case study lx and

ly are of the order of 10 km whereas �lx and �ly are of the order of 100 km, so that the volume

ratio of the outer to the inner parallelepiped is of the order of 100-1000. This large ratio indicates

that the computer time for simulation can be signi�cant even when the area of interest is small.
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The simulation program, after generating the series of events in the outer parallelepiped of �gure

5.7, generates the storms belonging to those events; note that storm centres may be located outside

the outer parallelepiped. The program then determines the rainfall time series at 5 points of the

inner parallelepiped over the duration d (namely, the four corners and the centre of the rectangle,

at the hourly time scale) and evaluates certain statistics of these time series (namely, the dry

proportions, means, standard deviations, coeÆcients of skewness, temporal correlation coeÆcients

for lags one and two, and cross-correlation coeÆcients for zero time lag).

5.2.2 Statistical checking criteria

The model is checked at di�erent points, using both the hourly and daily time scales. Three

categories of statistical properties are used for checking:

1. Primary properties used in the �tting procedure:

� Marginal statistics: Means and variances

� Temporal structure: Lag one covariances

� Spatial structure: Lag zero covariances at a characteristic distance

2. Secondary properties used in the �tting procedure:

� Temporal structure: Lag two covariances

� Spatial structure: Lag zero covariances at a distance greater than the characteristic one

3. Properties not used in the �tting procedure:

� Wet/dry properties: Proportion of dry hours and days

� Marginal statistics: CoeÆcients of skewness

� Statistics of extremes: Rainfall depths for characteristic return periods

5.2.3 Results

Twenty years of synthetic point rainfall, at �ve locations, were generated using the monthly pa-

rameter sets presented in �gure 5.6. The results are presented in a sequence of �gures. Figure 5.8

shows a comparison of simulated, modelled (i.e. theoretically expected) and historical statistics for

each month, for the primary �tting properties. We observe a very good agreement of simulated

statistics with the modelled ones. These in turn are almost identical to the historical ones, the

slight di�erences re
ecting the model's inability to �t perfectly to historical values.

Figures 5.9 and 5.10 show similar comparisons, respectively for secondary �tting properties

and for properties not used in the �tting. In �gure 5.9 we observe a very good agreement of

the simulated statistics with the modelled ones, which, however, depart somewhat (especially in

the case of cross-correlations for a distance of 10 km) from the historical ones. In �gure 5.10 we

�nd a very good agreement of simulated and historical proportions of dry hours and days and an

acceptable approximation of skewness at both hourly and daily scales, although these properties

were not used in the model �tting procedure.
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Figure 5.8: Comparison of simulated, modelled and historical statistics for each month: mean

intensity, coeÆcient of variation, lag one autocorrelation and lag zero cross correlation. These

are the primary statistics used in model �tting. Lag zero cross-correlation refers to an inter-site

distance of 5 km.
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Figure 5.9: Comparison of simulated, modelled and historical statistics for each month: lag two

autocorrelation and lag zero cross correlation. These are the secondary statistics were used in the

model �tting. Lag zero cross-correlation refers to an inter-site distance of 10 km.
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5.2.4 Extreme-value performance

Validation data To evaluate of the ability of the proposed model to reproduce the extreme-value

behaviour of rainfall in the given area, adequate validation data are required. The Brue raingauge

data set is limited to under four full years of data. However, the fact that a large number of

gauges are available can partially compensate for this very limited size. Although the methodology

presented below requires independence of the annual maxima, this condition can be approximately

realised by pooling data from di�erent gauges since many such maxima are the result of very local

rainfall peaks.

A more satisfactory validation data set would have a longer record. Although this is not available

over the Brue catchment, the gauge of Boscombe Down is located some 50 km away to the East

and has a record of more than 18 years (1980-1998) of hourly rainfalls.

If longer term data are required, the regionalised information of the Flood Studies Report

(NERC 1975) can be utilised. In this report, maps give the 2 day rainfall with a 5 year return

period, i.e. R(2 day, 5 year), as well as the ratio R(1 hour, 5 year) / R(2 day, 5 year). Using tables,

one can then deduce R(D;T ) for any duration D and return period T . For the sake of comparison,

we have therefore examined the extreme values obtained over the Brue and for Boscombe Down on

the basis of the Flood Studies Report.

Methodology By simulating 5 sets of 18 years of data, we shall have 5 di�erent scenarios of

rainfall to compare with Boscombe Down's historical data set and with sets of 18 years of data put

together on the basis of combining data from several Brue raingauges (as before, spatial dependence

has not been accounted for). For each of these data sets, an extreme-value analysis is performed on

the annual maxima at hourly and daily timescales, using the methods already described in section

3.3.3.

Results for hourly data: Figure 5.11 shows that the January extremes are very well reproduced

by the model; the �ve lines representing the estimated rainfalls for any return period are very

close to the extreme-value line extrapolated from the Boscombe Down observed maxima

(denoted \Fitted EV-I"). This is a remarkable agreement, given that the modelling is based

on only 5 years of data. Such good agreement is not however the case for all months, and over

the whole year we �nd that the model underestimates the extremes (seen �gure 5.12). This

applies to the extremes estimated from both the Flood Studies Report and the Boscombe

Down data set.

When using the pooled Brue raingauge maxima to �t the EV-I distribution however, we �nd

a very good �t of the model to the data (�gure 5.13). This indicates that the model is indeed

able to reproduce the hourly extreme value distribution of the data used in the �tting. That

the latter is signi�cantly di�erent from that of a longer term raingauge indicates that the

maxima for the period 1993 { 1998 are not representative of those of the 1970-1998 period

at Boscombe Down. This is however not a surprising result, given recent climate variability

(Mayes 1995, DETR 1999).

Results for daily data: Here, the 5 simulations provide an excellent reproduction of the histor-

ical extremes extrapolated from the Boscombe Down data set (�gure 5.14). The performance

is also good with respect to the pooled data from the Brue (�gure 5.15).
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Figure 5.11: January hourly extreme values for simulated and Boscombe Down data.

These �gures also indicate the discrepancy between the long term Flood Studies Report

extremes and those based upon these shorter data sets. Thus, although the Boscombe Down

series is suÆcient to form a good estimate of the longer term hourly maxima, this is not the

case for the daily time-scale. At that time-scale, there is insuÆcient data in the observed 18

years to allow extrapolation to maxima of larger return periods.

5.2.5 Conclusions

Typical densities of raingauges are evidently insuÆcient, without additional information, to identify

the parameters of the full spatial-temporal model considered in chapter 2. Analysis of a network

of raingauges has shown that the spatial structure of cells cannot be resolved, and that even with

data at �ne temporal resolution, no consistent velocity can be identi�ed.

Within the available time, only limited testing of the reduced model has been possible. However,

results were generally impressive. The spatial and temporal properties of observed rainfall were well

reproduced and, given only a very limited period of record (5 years), extreme value performance

was excellent at both hourly and daily timescale. The good extreme value performance held in

comparison both with the data used in �tting and, at least for daily values, with an 18-year

raingauge record from nearby.
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Figure 5.12: Hourly annual extreme values for simulated and Boscombe Down data

Figure 5.13: Hourly annual extreme values for simulated and pooled Brue data
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Figure 5.14: Daily extreme values for simulated and Boscombe Down data

Figure 5.15: Daily extreme values for simulated and pooled Brue data
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5.3 Spatial-temporal rainfall disaggregation

Very frequently, there appear situations even poorer than those examined in the previous sections

in terms of availability of rainfall data. For example, radar data may not exist and raingauge data

may be available only at a daily time scale at most locations of interest. However, there often exist

raingauge data at a �ner time scale (e.g. hourly) at a neighbouring site. The question then arises

whether we could utilise the available single-site �ne scale rainfall information, in conjunction with

the daily data, to generate spatially consistent rainfall series.

This can be considered as a particular case of a general multivariate spatial-temporal rain-

fall disaggregation problem. In another (commonly occurring) guise, this problem involves the

use of observed �ne-scale data from a single site to disaggregate historical multivariate daily se-

ries. Although there is substantial experience in multi-site disaggregation of rainfall from annual to

monthly time scale, and in single-site disaggregation of rainfall to �ner time scales, this multivariate

�ne-time-scale rainfall disaggregation problem has not been studied so far in the rainfall modelling

literature. It presents signi�cant di�erences from that of single-site disaggregation. Multiple sites

certainly imply mathematical complexity. The spatial correlation (cross-correlation between dif-

ferent sites) must be maintained in the multivariate problem, whereas it does not appear at all in

univariate problems. However, the spatial correlation can be turned to advantage since, in combi-

nation with the available single-site rainfall information, it enables realistic �ne-scale rainfall series

to be generated. Timings of rainfall events and maximum intensities at all sites can be guided by

an observed or simulated �ne-scale hyetograph.

5.3.1 Problem formulation

We standardise the problem that we examine throughout this section in the following manner, with

reference to �gure 5.16. We assume that we are given:

1. an hourly point rainfall series at point 1, as a result of either:

� measurement by an autographic device or digital sensor;

� simulation with a �ne time scale point rainfall model such as a point process model;

� simulation with a temporal point rainfall disaggregation model applied to a series of

daily rainfalls.

2. several daily point rainfall series at neighbouring points (e.g. 2, 3, 4 and 5 in �gure 5.16), as

a result of either:

� measurement by conventional rain gauges (daily observations), or

� simulation with a multivariate daily rainfall model (such as the GLM).

We wish to produce series of hourly rainfall at points 2, 3, 4, and 5, so that:

1. their daily totals equal the given daily values;

2. their stochastic structure resembles that implied by the available historical data (see section

5.3.2).
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Figure 5.16: Schematic diagram illustrating the multivariate disaggregation problem. Squares

indicate points with daily rainfall data and the circle represents a point with hourly rainfall data.

For the sake of simplicity we have assumed here that hourly information is available at one site

only. In real world problems it could be the case that hourly rainfall is available at more than one

location. This case can also be tackled with the modelling strategy described below, without any

further diÆculty apart from some generalisations of the computational algorithm. In fact, having

more than one point with known hourly information would be advantageous for two reasons. First,

it would allow a more accurate estimation of the spatial correlation of hourly rainfall depths (see

section 5.3.2) or transformations of them (see sections 5.3.5 and 5.3.7). Second, it might reduce

the residual variance of the rainfall process at each site, thus allowing for generated hyetographs

closer to the real ones.

5.3.2 Estimation of the stochastic structure at the hourly level

The essential statistics that we wish to preserve in the generated hourly series are:

1. the means, variances and coeÆcients of skewness;

2. the temporal correlation structure (autocorrelations);

3. the spatial correlation structure (lag zero cross-correlations);

4. the proportions of dry intervals.

All these statistics, apart from the cross-correlation coeÆcients, can be estimated at the hourly

time scale using the single hourly data set (gauge 1 in �gure 5.16). To transfer these parameters to

other locations, spatial stationarity of the process can be assumed. This may seem an oversimpli�-

cation at �rst glance; however, it is not a problem in practice since possible spatial nonstationarities

will manifest themselves in the available daily series. Therefore, despite the stationarity assumption

made at this initial (parameter estimation) stage, the �nal hourly series, which is forced to respect

the observed daily totals, will re
ect these non-stationarities.
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The most diÆcult statistics to estimate are the cross-correlations at the hourly level. Note that

if more than one rainfall series were available at hourly level, then at least one cross-correlation

coeÆcient could be estimated directly from these series. Then, by making reasonable assump-

tions about the spatial dependence, an expression of the cross-correlation as a function of distance

could be established. This would then be used to estimate cross-correlations between all pairs of

raingauges.

However, this method cannot be used when only one hourly rainfall series is available. In this

case, a spatial temporal model can be used to infer indirectly the spatial correlation structure of

the rainfall �eld. Here we have used the GDSTM (as in the previous sections) in the following

manner:

1. The marginal statistics and temporal and spatial correlations at the daily level are estimated

using the daily data sets.

2. The parameters of the spatial-temporal rainfall model are estimated (using the general method

described in section 5.1) using the single-site statistics at the hourly level and the multi-site

statistics at the daily level.

3. The spatial correlations at the hourly level are inferred from the spatial-temporal rainfall

model.

It should be noted that the spatial-temporal rainfall model is used in this parameter estimation

step only. To estimate cross-correlations in the manner described above, it suÆces to calibrate

the model and there is no need to run it. However, a model run may be necessary if statistics

of transformations of rainfall depths are needed for subsequent modelling steps (see sections 5.3.5

and 5.3.7). Such statistics can be estimated from synthetic hourly series generated by the spatial-

temporal rainfall model.

5.3.3 Modelling approach

The proposed approach to the multivariate �ne-scale rainfall disaggregation problem involves the

application of two separate models at the generation phase.

The �rst is a rather simpli�ed multivariate model of hourly rainfall that can preserve the es-

sential statistics of the multivariate rainfall process and, simultaneously, incorporate the available

hourly information without any reference to the known daily totals at the other sites. The essen-

tial statistics considered here are the means, variances and coeÆcients of skewness, the lag one

autocorrelation coeÆcients and the lag zero cross-correlation coeÆcients.

The second model is a transformation model that modi�es the series generated by the �rst

model, so that the daily totals are equal to the given ones. This uses a (multivariate) transformation,

which does not a�ect the stochastic properties of the series. Both models are discussed further

below.

Some questions may arise as to the adoption of a simpli�ed multivariate model rather than

a more sophisticated one which could preserve additional statistics of the rainfall process. While

in the proposed modelling framework a simpli�ed model is suggested, the adoption of a more
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sophisticated approach is not excluded. For example, it may be possible to design the multivariate

model so as to maintain a large number of autocovariance coeÆcients (for any lags). However, such

complexity will generally be unnecessary since, for typical catchment sizes, spatial dependence

between sites will be strong so that the primary control over the disaggregated output will come

from the observed �ne-scale series.

Speci�cally, assuming that sites 2 { 5 (�gure 5.16) are all close to site 1 and highly spatially

correlated, the given hourly series at site 1 can be used, with the simpli�ed multivariate model, to:

� guide the generation of the hourly series at the sites with daily data, and act indirectly to

preserve properties not modelled explicitly;

� properly locate the rainfall events in time;

� produce initial hourly rainfall series at the daily sites, whose departures from the actual hourly

depths at those sites are not large (even though the known daily totals are not considered at

all at this stage).

At a later stage, i.e. when the transformation model is applied, another source of information

is additionally incorporated, that is the multi-site daily information. This results in preservation of

additional properties, which are not captured by the statistics used. For example, as noted above,

nonstationarities of the rainfall �eld (both in space and time) are reproduceable, even though the

models used are both stationary.

The proportion of dry intervals, although considered as one of important properties to be

preserved (page 142), is diÆcult to incorporate explicitly in either of the above described models,

as it cannot be expressed in terms of statistical moments. However, it can be treated by an iterative

procedure which will be discussed later (section 5.3.7).

5.3.4 Models involved

Several separate models are involved in the proposed disaggregation framework. These fall into

three categories, as follows:

Category 1: The �rst category includes the models that are the core of this framework in the

sense that they provide the required output (the hourly series). These are, as outlined in

section 5.3.3 above,

� the simpli�ed multivariate model for hourly rainfall, and

� the transformation model.

Category 2: This category contains models to provide the required input, if no observed series

are available. These may include

� the GLM for providing daily rainfall depths;

� a single-site disaggregation model to disaggregate daily depths of one location into hourly

depths (see section 5.4 below for a review of such procedures);
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� a single-site Bartlett-Lewis model (Rodriguez-Iturbe et al. 1987) for providing hourly

depths at one location.

The �nal example here may be appropriate if, under a stationary climate scenario, a single-

site Bartlett-Lewis model has been simulated into the future, and a GLM has been simulated

at neighbouring sites, conditional upon the daily totals from this model, so as to introduce

spatial nonstationarity into the generated multivariate daily time series.

Category 3: The third category includes models that are able to provide some of the required

parameters of the spatial-temporal rainfall process given the statistical properties that can

be estimated from the available data. For example, in this case study, we used the GDSTM

to provide the cross-correlation structure at the hourly level. Runs of this model may not be

necessary unless it is required to estimate statistical properties of transformations of hourly

rainfall depths.

We now describe the simpli�ed multivariate model and the transformation model which have

been used in this work.

5.3.5 The simpli�ed multivariate rainfall model

Let the n-vectorXs = (X1
s ;X

2
s ; :::;X

n
s )

T represent the hourly rainfall at time (hour) s at n locations.

We assume that the simpli�ed multivariate rainfall model is an AR(1) (autoregressive-moving

process of order 1) model, expressed by

Xs = aXs�1 + bVs (5.15)

where a and b are (n � n) matrices of parameters and (Vs) (s = 0; 1; 2; : : :) is an independent,

identically distributed (i.i.d.) sequence of innovations (these are n-vectors of i.i.d. random variables,

so that the innovations are both spatially and temporally independent). The time index s can take

any integer value. The (Xs) are not necessarily standardised to have zero mean and unit standard

deviation, nor are they normally distributed. On the contrary, their distributions are quite skewed.

Consequently, the distributions of (Vs) are skewed too; a three-parameter gamma distribution is

generally appropriate for the latter.

Alternatively, the model can be expressed in terms of some nonlinear transformation X�

s of the

hourly depths Xs, in which case (5.15) is replaced by

X�

s = aX�

s�1 + bVs (5.16)

It is natural to consider the power family of transformations here.

Equations to estimate the model parameters a and b and the moments of Vs are given by

Koutsoyiannis (1999) for the most general case. As there is no need to preserve lagged cross-

covariances in the problem examined, the parameter matrix a can be diagonal. The parameter

matrix b should be de�ned here as lower triangular. This is necessary in order to incorporate the

known hourly rainfall at site 1. Thus, if b is lower triangular then its �rst row will have only one

nonzero item (b1 say), so that from (5.15) we have

X1
s = a1X1

s�1 + b1V 1
s (5.17)
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This can be utilised to determine (rather than to generate) V 1
s given the series of X1

s . This can be

directly expanded to the case where several gauges with hourly information are available provided

that b is lower triangular.

5.3.6 The transformation model

Transformations that can modify a series generated by any stochastic process so as to satisfy some

additive property (i.e. that the sum of the values of a number of consecutive variables be equal to

a given amount), without a�ecting the �rst and second order properties of the process, have been

studied by Koutsoyiannis (1994) and Koutsoyiannis & Manetas (1996). These transformations,

more commonly known as adjusting procedures, are appropriate for univariate problems, although

they can be applied to multivariate problems as well, but in an iterative framework. More recently,

Koutsoyiannis (2000) has studied a true multivariate transformation of this type, which avoids any

iteration, and also proposed a generalised framework for coupling stochastic models of di�erent

time scales.

This framework, specialised for the problem examined here, is depicted in �gure 5.17. Here Xs

and Zp represent the actual hourly- and daily-level processes, related by

pkX
s=(p�1)k+1

Xs = Zp ; (5.18)

whereas ~Xs and ~Zp denote auxiliary processes, represented by the simpli�ed rainfall model in our

case, which also satisfy (5.18). k in this equation is the number of �ne-scale timesteps within each

coarse-scale step (24 for the current application).

The problem is, given a time series (zp) of the actual process (Zp), to generate a series (xs) of

the actual process (Xs). To this aim, we �rst generate another (auxiliary) time series (~xs) using

the simpli�ed rainfall process
�
~Xs

�
. The latter time series is generated independently of (zp) and,

therefore, the ~xss do not add up to the corresponding zps, as required by the additive property

(5.18), but to some other quantities, denoted as (~zp). Thus, in the next step, we modify the series

(~xs) to produce a series (xs) which is consistent with (zp) (in the sense that the xss and zps obey

(5.18)) without a�ecting the stochastic structure of the ~xss. For this modi�cation we use a linear

transformation f( ~Xs; ~Zp;Zp) whose outcome is a process distributed identically to (Xs) (so that

we can write Xs = f( ~Xs; ~Zp;Zp)), and which is also consistent with (Zp) (it satis�es (5.18)).

Let X(p) be the vector of hourly rainfall values for day p (for 5 locations, X(p) contains 24 � 5

= 120 variables). Let also Yp be a vector containing:

a. the daily values Zp;

b. the daily values Zp+1 of the next day and

c. the hourly values of the last hour of the previous day p� 1 for all locations. This means that

for 5 locations Yp contains 3 � 5 = 15 variables in total.

Items (b) and (c) of the vector Yp were included to ensure that the transformation preserves not

only the covariance properties among the hourly values of each day, but the covariances with the
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Figure 5.17: Schematic representation of actual and auxiliary processes, their links, and the steps

followed to construct the actual hourly-level process from the actual daily-level process.

previous and next days as well. Note that at day p the hourly values of day p � 1 are known

(therefore, in Yp we enter hourly values of the previous day) but the hourly values of day p + 1

are not known This is why, in Yp, we enter daily values of the next day, which are known. In an

identical manner, we construct the variables ~X(p) and ~Yp from vectors ~Xs and ~Zp.

Koutsoyiannis (2000) showed that there exists a matrix of coeÆcients h such that if X is

generated using

X(p) = ~X(p) + h(Yp � ~Yp) (5.19)

then:

1. X(p) has mean and variance-covariance matrix identical to those of ~X(p), and joint covariance

matrix with Yp identical to that of ~X(p) and ~Yp;

2. any linear relationship which holds for ~X(p) and ~Yp and which can be written in the form

gTX
~X(p) = gTY

~Yp (5.20)
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where gX and gY are matrices of coeÆcients, also holds for X(p) and Yp, that is

gTXX(p) = gTYYp (5.21)

Note that the additive property (5.18) can be written in the matrix form (5.21) (for appropriately

selected gTX and gTY ) and, therefore, its preservation by the transformation is ensured.

Details of how to determine h in terms of covariance properties of X(p) and Yp are given by

Koutsoyiannis (2000).

5.3.7 Speci�c diÆculties

A number of peculiarities of the rainfall process at a �ne time scale cause speci�c diÆculties that

are examined in this section.

Negative values:Linear stochastic models such as those used here may generally generate nega-

tive values, which, of course, do not have any physical meaning. In practice, the probability

of generating negative values depends upon the coeÆcient of variation of the variables. This

probability is negligible when models operate at large time scales such as annual or monthly,

because the coeÆcient of variation is small (usually smaller than 0.5{1.0). However, in the

case of hourly rainfall this coeÆcient becomes as large as 3{4 and the probability of generating

negative values becomes signi�cant. This problem can be resolved by truncating the negative

values generated, i.e., setting them to zero. This may have a bene�cial e�ect in preserving

the proportion of dry intervals (as shown in next paragraph) but it is also a potential source

of bias to all statistical properties that are to be preserved. Speci�cally, it is anticipated to

result in overprediction of cross-correlations as it is very probable that negative values are

contemporary.

Dry intervals: The proportion of dry intervals is an important characteristic of the rainfall

process that must be preserved. This proportion cannot be preserved by the linear stochastic

models of section 5.3.3 in an explicit and theoretically consistent manner. However, after

rounding the generated values (e.g. to one decimal digit) a signi�cant number of zero values

emerge because of the high coeÆcient of skewness (of the order of 5{10 in the case study

examined) of the rainfall process. Additional zero values result from the truncation of negative

values. It cannot be expected however, that the proportion of such dry intervals produced in

this way will match the proportion in the historical data. Usually, we expect the former to be

lower than the latter. A simple practical technique may be to control the proportion of dry

intervals. Speci�cally, a proportion �0 of the very small positive values, chosen at random

among the generated values that are smaller than a threshold l0 (e.g. 0.1{0.3mm), are set to

zero. The numbers �0 and l0 can be found by performing repetitions starting with di�erent

trial values until the proportion of dry intervals in the synthetic series matches that in the

historical record.

Preservation of skewness: Although the coupling transformation preserves the �rst and second

order statistics of the processes, it does not ensure the preservation of third order statistics.

Thus, it is anticipated that it will result in underprediction of skewness. Iterative algorithms

to remedy this problem have been studied by Koutsoyiannis (2000).
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Homoscedasticity of innovations: By de�nition, the innovations Vs in the simpli�ed mul-

tivariate rainfall model are homoscedastic, in the sense that their variances are constant,

independent of the values of rainfall depths Xs. Therefore, if for instance we estimate (or

generate) the value at location 2, given that at location 1, we assume that the conditional

variance is constant and independent of the value at location 1. This, however, does not

comply with reality: by examining simultaneous hyetographs at two locations we can observe

that the variance is larger during the periods of high rainfall (peaks) and smaller for periods

of low rainfall (heteroscedasticity). As a result of this inconsistency, synthesised hyetographs

tend to have unrealistically similar peaks. To mitigate this problem we can apply a nonlinear

transformation to rainfall depths.

The �rst candidate nonlinear transformation is the logarithmic one:

X�

s = ln(Xs + cs) (5.22)

with constants cis > 0 for all i (with a slight abuse of notation here | (5.22) should be

read as an element-by-element transformation). This has the advantage that it may result

in zero skewness in which case the transformed variables can be assumed to be normally

distributed. Then, preservation of �rst and second order properties of the untransformed

variables is equivalent to preservation of �rst and second order statistics of the transformed

variables (Koutsoyiannis 2000). However, evidence from the examined data sets shows that

the skewness of the transformed variables increases with increasing constants cs and it still

remains positive even if very small values of these constants are chosen. This means that the

lognormal assumption is not appropriate for hourly rainfall.

A second candidate is the power transformation

X�

s = X(m)
s (5.23)

i.e. each component of Xs is raised to the power m (item to item) where m < 1. The

stationarity assumption implies that m is the same for all items. Note that the preservation

of the statistics of the untransformed variables does not necessarily lead to the preservation

of the corresponding statistics of the transformed variables. However, the discrepancies are

expected to be low if m is close to unity.

5.3.8 Application to the Brue catchment

The methodology described above was applied to the Brue catchment using hourly data from one

raingauge only and daily data from another four raingauges, shown in �gure 5.18. Five years of

data for the month of January were used for this case study.

The statistics estimated from the single-site hourly rainfall data (gauge 1) are shown in table

5.2. For comparison and veri�cation, we have included the corresponding statistics for the other

four raingauges (gauges 2{5) estimated from the hourly data of the same period, although the latter

were not used at any phase of this case study. Using the statistics of gauge 1 at the hourly level,

as well as the corresponding statistics at daily level together with the cross-correlations at daily

level, we �tted the GDSTM in the manner already described in section 5.1. The cross-correlation

coeÆcients resulting from this model at hourly level are given in table 5.3. For comparison, the

historical cross-correlation coeÆcients among the �ve gauges are also shown, although these were
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Figure 5.18: Schematic of the case study area and raingauges used for the multivariate disaggre-

gation exercise. Each raingauge is labelled with its site number as used in this case study, and its

altitude. Hourly data were used for gauge 1 (circle) whereas only daily values were used for other

gauges (squares).

not used at all in any phase of the modelling. The di�erences between the two groups of values

are less than 10%. Notably, the di�erences of the cross-correlation coeÆcients, predicted by the

spatial-temporal rainfall model in this case study, from the values predicted again by the same

model but using the full parameter set already found in section 5.1 (using both hourly and daily

data at eight gauges) are less than 5.6%.

The simpli�ed multivariate model was used in its form (5.16) along with the power transfor-

mation (5.23). The exponent m was chosen equal to 0.5, a value that was found (after trials)

to prevent discrepancies between observed and simulated values of the statistics to be preserved

(see section 5.3.7). The statistics of the transformed variables are shown in table 5.4 in a format

similar to that of table 5.2. These statistics were used in the simpli�ed rainfall model but the

cross-correlations were unchanged as given in table 5.3. For the control of the proportion of dry

intervals, the technique described in section 5.3.7 was used with l0 = 0:20mm and �0 = 0:40. No

special treatment was applied for the preservation of skewness.

Applying the disaggregation modelling framework, synthetic hourly rainfall series were produced

for the �ve gauges, that of gauge 1 being identical to the historical series. The statistics of the

synthetic series are compared to the historical and model statistics in tables 5.2 through 5.4. It

can be observed that the statistics of the synthetic series are in good agreement with the historical

and model statistics.
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Gauge

Property 1 2 3 4 5

0.84 0.85 0.84 0.85 0.84

Proportion dry 0.84 0.84 0.84 0.84 0.84

0.84 0.82 0.80 0.82 0.80

0.10 0.10 0.12 0.11 0.12

Mean 0.10 0.10 0.10 0.10 0.10

0.10 0.10 0.12 0.11 0.12

8.00 7.60 5.80 4.80 4.80

Maximum value 8.00 8.00 8.00 8.00 8.00

8.00 6.70 7.10 6.90 7.20

0.39 0.40 0.44 0.40 0.41

Standard deviation 0.39 0.39 0.39 0.39 0.39

0.39 0.37 0.41 0.39 0.42

7.60 7.23 5.81 6.03 5.25

Skewness 7.60 7.60 7.60 7.60 7.60

7.60 6.90 6.89 7.91 7.22

0.46 0.48 0.50 0.53 0.55

Lag 1 autocorrelation 0.46 0.46 0.46 0.46 0.46

0.46 0.44 0.44 0.47 0.43

Table 5.2: Statistics of hourly rainfall depths at each gauge, obtained using multivariate disaggre-

gation scheme. The top �gure in each cell is the historical value, not used in the disaggregation

model. The middle �gure is the value used in the disaggregation model, which is the historical

value from gauge 1. The bottom �gure is the synthetic value.

A further comparison is given in �gure 5.19 in terms of the autocorrelation function for higher

lags, up to lag 10. Clearly, both models used, i.e. the GDSTM and the multivariate AR(1) model

depart signi�cantly from the historical autocorrelation functions (particularly the latter model).

However, the synthetic autocorrelations which are dominated by the structure of the observed

hourly series agree well with the historical ones.

As an additional means of comparison, some hyetographs are given in �gure 5.20 (for relatively

heavy rainfall) and �gure 5.21 (for moderate and low rainfall). It can be seen that the disaggregation

model predicted well the actual hyetographs, the only signi�cant discrepancy being the long low

intensity tails of the rainfall event of 17/01/95 (�gure 5.20) generated during the period where the

intensity was actually zero.

5.3.9 Conclusions

A promising new methodology for spatial-temporal disaggregation, with wide potential hydrological

applicability, has been proposed. In the context of continuous simulation modelling, this provides a

way to take GLM simulations of multivariate daily rainfall (incorporating spatial and temporal non-

stationarity) and generate multivariate �elds at �ne temporal resolution. A minimum requirement

for the methodology is a single temporally-disaggregated time series. As indicated in section 5.3.4
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Gauge 1 2 3 4 5

1.00 0.84 0.80 0.72 0.83

1 1.00 0.89 0.89 0.87 0.88

1.00 0.93 0.92 0.84 0.86

0.84 1.00 0.82 0.80 0.83

2 0.89 1.00 0.87 0.82 0.77

0.93 1.00 0.90 0.84 0.83

0.80 0.82 1.00 0.79 0.86

3 0.89 0.87 1.00 0.77 0.82

0.92 0.90 1.00 0.81 0.83

0.72 0.80 0.79 1.00 0.87

4 0.87 0.82 0.77 1.00 0.84

0.84 0.84 0.81 1.00 0.79

0.83 0.83 0.86 0.87 1.00

5 0.88 0.77 0.82 0.84 1.00

0.86 0.83 0.83 0.79 1.00

Table 5.3: Cross-correlation coeÆcients for the �ve gauges at hourly level. The top �gure in each

cell is the historical value, not used in the disaggregation model. The middle �gure is the value

predicted by the spatial temporal model (used in the disaggregation model) The bottom �gure is

the synthetic value.

Gauge

Property 1 2 3 4 5

0.84 0.85 0.84 0.85 0.84

Proportion dry 0.84 0.84 0.84 0.84 0.84

0.84 0.82 0.80 0.82 0.80

0.11 0.11 0.13 0.11 0.13

Mean 0.11 0.11 0.11 0.11 0.11

0.11 0.12 0.14 0.13 0.14

2.83 2.76 2.41 2.19 2.19

Maximum value 2.83 2.83 2.83 2.83 2.83

2.83 2.59 2.66 2.63 2.68

0.30 0.30 0.33 0.31 0.32

Standard deviation 0.30 0.30 0.30 0.30 0.30

0.30 0.30 0.32 0.30 0.32

3.13 3.18 3.00 3.13 2.90

Skewness 3.13 3.13 3.13 3.13 3.13

3.13 2.90 2.73 2.88 2.85

0.60 0.60 0.60 0.60 0.63

Lag 1 autocorrelation 0.60 0.60 0.60 0.60 0.60

0.60 0.62 0.64 0.66 0.64

Table 5.4: Statistics for the power transformation of hourly rainfall depths at each gauge. The top

�gure in each cell is the historical value, not used in the disaggregation model. The middle �gure is

the value used in the disaggregation model, which is the historical value from gauge 1. The bottom

�gure is the synthetic value.
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Figure 5.19: Comparison of autocorrelation functions as determined from historical (H1-H5 for

gauges 1-5, respectively), or simulated (S2-S5 for gauges 2-5, respectively) series, or predicted from

the AR(1) (Markov) and GDSTM models.

above, this may be obtained from a single-site point process model or from an existing single-site

disaggregation scheme. Methods for obtaining such a series are reviewed in the following section.

Within the available time and resources, the spatial-tmporal disaggregation methodology has

necessarily been based on a number of assumptions, and only limited testing has been possible. The

sensitivity to these assumptions should be addressed in further work. However, these preliminary

results are extremely encouraging. There is considerable 
exibility in the proposed scheme, and

hence potential for further re�nement.

5.4 Temporal disaggregation

As outlined in chapter 1 of this report, an original intention of this study was to simulate the

evolution of a spatial rainfall �eld in continuous time by using the continuous spatial-temporal

model (GDSTM) to disaggregate the predictions of daily rainfall totals given by the Generalised

Linear Model (GLM). More speci�cally, we would simulate rainfall from the spatial-temporal model

in such a manner that the daily rainfall totals accumulated at a network of sites were consistent

with the predictive distribution given by the GLM. In this way, the simulation would bene�t from

the �ne spatial-temporal resolution of the stochastic GDSTM while having the capability of the

GLM to incorporate spatial nonstationarities and long-term climate changes. We emphasise that,
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Figure 5.20: Comparison of historical (H1-H5 for gauges 1-5, respectively) and simulated (S2-S5 for

gauges 2-5, respectively) hyetographs for two days with high rainfall (average daily rainfall depths

14.3 mm at 17/01/95 and 4.8 mm at 06/01/98)



CHAPTER 5. APPLICATIONS WITH LIMITED DATA 155

  .

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

31/01/95
00:00

31/01/95
06:00

31/01/95
12:00

31/01/95
18:00

01/02/95
00:00

H
ou

rly
 ra

in
fa

ll 
de

pt
h 

(m
m

)

H1
H2 S2
H3 S3
H4 S4
H5 S5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

01/01/96
00:00

01/01/96
06:00

01/01/96
12:00

01/01/96
18:00

02/01/96
00:00

H
ou

rly
 ra

in
fa

ll 
de

pt
h 

(m
m

)

H1
H2 S2
H3 S3
H4 S4
H5 S5

Figure 5.21: Comparison of historical (H1-H5 for gauges 1-5, respectively) and simulated (S2-S5

for gauges 2-5, respectively) hyetographs at two days with moderate and low rainfall (average daily

rainfall depths 2.2 mm at 31/1/95 and 0.6 mm at 01/01/96).
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in contrast with the alternative schemes for spatial-temporal disaggregation described in section

5.3 above, the idea is not to disaggregate �xed (or simulated) sequences of daily values at a set of

sites (raingauges). Instead, we aim directly to provide �ne time-scale sequences whose daily totals

have the joint distribution predicted by the GLM. The proposed technique is based on the rejection

sampling method of stochastic simulation (von Neumann 1951, Devroye 1986).

As a prelude to tackling the full spatial-temporal problem, we have investigated the simpler task

of purely temporal disaggregation. Here the aim is to provide a �ne resolution sequence at a single

site, whose daily totals are consistent with the probability distributions forecast by a GLM. While

this exercise is of interest in itself, its primary purpose here is to investigate the general feasibility

of the approach and to indicate whether extension to a network of raingauges is practicable.

5.4.1 Disaggregation of �xed daily totals

The single-site disaggregation problem is a common one in hydrology since, for many applications,

hourly rainfall totals are required when only daily totals are available. Various methods of disaggre-

gating daily rainfall totals into realistic hourly sequences have been proposed, many of them based

on models such as the Bartlett-Lewis Rectangular Pulses Model (BLRPM) of Rodriguez-Iturbe

et al. (1987). An ideal solution to the problem would provide hourly totals from the (multivariate)

distribution of hourly totals conditional upon the daily total. However, it is not possible to derive

this distribution for models such as the BLRPM and approximate methods are necessary. For

example, Glasbey, Cooper & McGechan (1995) use a long sequence of simulated rainfall data from

a variant of the BLRPM to disaggregate an historical record of daily rainfall totals. For each se-

quence of wet days in the historical record they �nd the sequence of wet days in the simulated data

archive that provides the best match to the observations. An alternative approach is to develop

a procedure for simulating from the chosen rainfall model such that certain important sub-daily

statistical properties are at least approximately preserved and the hourly totals sum to the daily

total in the historical record | see, for example, Koutsoyiannis & Manetas (1996). Either of these

methods could be used to simulate hourly data from a GLM for daily rainfall. We would simply

simulate a sequence of daily rainfall totals from the GLM and treat them as if they were histori-

cal daily totals. Such methods may be used to obtain a single disaggregated rainfall sequence for

application with the multivariate disaggregation methodology described above in section 5.3.

5.4.2 Direct generation of �ne-resolution data

In contrast to the methods described above, the approach investigated here has been to condition

upon the distribution of the daily rainfall total predicted by the GLM, rather than upon a particular

realised value from this distribution. Subject to the simplifying approximation given in section

D.5.2 of Appendix D, the hourly totals generated by this procedure are from the (multivariate)

conditional distribution of hourly totals, given the distribution of the daily total speci�ed by the

GLM.

The methodology developed for temporal disaggregation in this study is described in Appendix

D. In addition, the methodology has been applied to data from the Elmdon raingauge near Birm-

ingham, in a student project at UCL (Keheyian 1999). For the continuous time model of rainfall,

we use the BLRPM, (Rodriguez-Iturbe et al. 1987, Onof & Wheater 1993). We can, in principle,
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extend the approach detailed in this report to a network of sites rather than a single site. However,

two particular diÆculties were encountered in the single site case: the derivation of an approximate

density for the conditional distribution of positive daily rainfall totals under the BLRPM, and

the fact that this density is not compatible (in terms of its intended use as a proposal density in

the standard rejection sampling detailed in section D.4) with the corresponding density under the

GLM in all cases. Both diÆculties have been overcome for the case of temporal disaggregation,

but present serious analogous problems in the spatial temporal case. There, we must derive an

approximation to the conditional (multivariate) distribution of daily rainfall totals at a network of

sites given the state of the rainfall process at the start of the day, or possibly a univariate summary

of this distribution. This is anticipated to be extremely diÆcult. An additional consideration is

that simulation from the spatial-temporal model is more computationally expensive than from the

BLRPM. Thus, given the success of the alternative disaggregation scheme described in section 5.3,

this method will not be pursued further for the moment.

5.5 Summary of work on limited data applications

5.5.1 Spatial-temporal modelling using raingauge data

Given the fact that radar data are at present limited with respect to availability, record lengths and

quality, it is important to investigate the potential use of raingauge data to identify the spatial-

temporal model. In the present study, data from 8 raingauges from the Brue network were used to

evaluate the potential of the model for UK rainfall. The data were analysed at hourly and daily

resolution.

The data were insuÆcient to allow the identi�cation of variation of event properties between

events within any month. The analysis showed that the rainfall �elds, after allowing for monthly

seasonality, can be regarded as isotropic and having no preferred velocity. The raingauge data are

also highly correlated spatially, with some seasonal variability (higher in Winter, lower in Summer,

as expected). Given that non-zero storm velocity could not be detected from the raingauges at the

space and time scales considered, a reduced form of the model was required. Two levels of event

structure (of storms within events) were generated, with no lower level of cell structure.

Having �tted the model to the available short length of record (4 years), simulation results were

examined. In general, the simulation performance was excellent. Hourly and daily means, standard

deviations, lag 1 and 2 autocorrelations and lag zero cross-correlation were very well reproduced,

as were the proportion of dry hours and days. Only a limited investigation of extreme value

properties was possible, given the available record lengths. For hourly and daily extreme values,

excellent agreement with the Brue raingauge data was obtained, demonstrating that the model was

able to reproduce the extreme value characteristics of the calibration data. The simulations lay

below extreme values determined from longer records for the higher return period events, but this

is primarily due to the limited record lengths used in model �tting.

5.5.2 Spatial-temporal rainfall disaggregation

The Generalized Linear Model has the capability to represent spatial non-stationarity and long term

temporal climate non-stationarity, but at a daily time step. Preliminary work has been undertaken
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to develop a new spatial-temporal disaggregation procedure. Here, we consider a GLM simulated

�eld of daily rainfall and require a consistent set of sub-daily time series at selected locations which

preserve the spatial structure of the simulated �eld. A single-site sub-daily time series is required,

and can be produced by one of a number of single site disaggregation methods. We then apply

a simpli�ed multivariate model of hourly rainfall that preserves the basic statistical properties of

the daily multivariate process and incorporates the available hourly time-series at the single site.

Finally a transformation is applied which modi�es the multivariate time-series to match the daily

values generated by the GLM.

Results have been presented for a trial situation, based on Brue data, of 4 daily raingauges

and a single sub-daily rainfall recorder. Hourly rainfall sequences are produced for each of the

locations, and these preliminary results are most encouraging. Individual gauge statistics are well

reproduced, including mean, standard deviation , skewness, proportion dry and the autocorrelation

function, while the daily values are maintained as observed. The method needs more evaluation,

but these preliminary studies suggest that the method has considerable promise.



Chapter 6

Summary and Recommendations

6.1 Summary of methods and results

6.1.1 Spatial-temporal modelling using radar data

The Poisson-based spatial-temporal model has the 
exibility to allow application to event-based

or continuous simulation modelling at any required space and time-step, including �ne resolution

in both space and time. Thus it can represent local structure in rainfall �elds which may be

important for particular hydrological applications, for example the response to convective rainfall

systems Samuel (1999).

One limitation is the assumption of spatial stationarity. At this stage of model development

this precludes the modelling of orographic e�ects (although such features could be incorporated

in subsequent work). Temporal stationarity is also assumed; the model can incorporate monthly

seasonal e�ects, but within-month temporal variability of the stochastic parameters (for example to

di�erentiate between rainfall types) and longer term climatic variability have not been represented.

This does not, of course, rule out between-event variability, which is intrinsic to the model.

From the test data sets investigated, it has been concluded that in general, availability of radar

data is required to identify the full model structure for UK conditions. However, radar data quality

has been a source of diÆculty in model calibration and performance assessment. In particular, due

to the general occurrence of artefacts within the data set, it was not possible clearly to identify dry

periods, which has limited the comparisons between observed and simulated sequences. Limited

available record lengths have also restricted our ability to �t the models; with a data set of less

than four years, there is a shortage of information on event sequences from which to identify storm

arrivals and, in particular extreme values. In addition, it should be noted that no additional radar

calibration has been carried out; comparisons are therefore primarily between model simulated and

radar-derived properties, which may not be wholly consistent with raingauge data.

Despite the data restrictions, overall the model has performed extremely well in reproducing

basic statistical properties over di�erent space and time-scales, including temporal and spatial

autocorrelations. The proportions of wet pixels (averaged over space and time) are also very well

reproduced across the range of space and time-scales examined. Only limited evaluation of extreme

value properties has been possible, but the results, in terms of intercomparison of the model and
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the radar data set, are most encouraging. The model reproduces well the observed (radar) hourly

extreme values at 2 � 2 km2 and 16 � 16 km2. Daily values show an increasing underestimation

at high return periods, but lie well within 95% con�dence limits. They agree rather better with

observed raingauge data. It must be emphasised that within the timescale of the project there

has been no opportunity to re�ne the model parameters or distributions used to de�ne rainfall

event properties, or the sampling strategy by which event arrivals are associated with particular

parameter combinations. We note that the assumption of spatial stationarity does not appear to

have been a signi�cant limitation for the location and areal scale investigated.

For this project, we have �tted the full spatial-temporal model to a single data set, dominated

by frontal rainfall systems. However, we consider that the model has widespread applicability to

di�erent rainfall regimes. As noted above, it has also been found to reproduce extremely localised

convective rainfall (Arizona), and the u nderlying temporal structure, as implemented in single site

models, has now been widely tested for di�erent locations around the world (including S.Africa,

Colorado, Arizona, and several UK and other European locations).

The future for the model is highly promising, but further testing on other data sets is required.

The comparisons here have been a�ected by radar data quality, and there is more work to be done

on combining radar and raingauge data to clean up radar images and provide longer time-series for

the identi�cation of temporal properties and the spatial structure of extreme events. A possible

extension to the basic spatial-temporal model could include spatial non-stationarity using a scaling

approach. The model could also be readily adapted to represent climate change.

6.1.2 Spatial-temporal modelling using raingauge data

Given the fact that radar data are at present limited with respect to availability, record lengths and

quality, it is important to investigate the potential use of raingauge data to identify the spatial-

temporal model. Samuel (1999) considered the highly localised thunderstorm rainfall at Walnut

Gulch, Arizona, observed using an exceptional density of raingauges (> 1 per 2 km2), and found that

a reduced form of the model, with circular cells, no movement and a reduced level of aggregation

(cells and storms, with no higher level event structure) could be identi�ed. In the present study, data

from the Brue raingauge network were used to evaluate the potential of the model for UK rainfall.

Although more than 50 raingauges are available, a subset of 8 was used as more representative of

UK raingauge densities. The data were analysed at hourly and daily resolution.

A major issue is the reduced level of information available to identify spatial structure. For

the raingauge data used, information was insuÆcient to allow the identi�cation of variation of

event properties between events within any month. The resulting analysis therefore showed that

the rainfall �elds, after allowing for monthly seasonality, can be regarded as isotropic and having

no preferred velocity. This contrasts with the analysis of the larger-scale Wardon Hill radar �eld,

which detected preferential velocities (and directions). The raingauge data are also highly correlated

spatially, with some seasonal variability (higher in Winter, lower in Summer, as expected). Given

that non-zero storm velocity could not be detected from the raingauge data at the space and time

scales considered, a reduced form of the model was required. As in Samuel's study, only two levels

of event structure (of storms within events) were generated, but here with no lower level of cell

structure.

Having �tted the model to the available short length of record (4 years), simulation results
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were examined. Due to time constraints, 5 points from the simulated �eld were taken as the

basis of comparison. In general, the simulation performance was excellent. Hourly and daily

means, standard deviations, lag 1 and 2 autocorrelations and lag zero cross-correlation were very

well reproduced, as were the proportion of dry hours and days. Only a limited investigation of

extreme value properties was possible, given the available record lengths. For hourly and daily

extreme values, excellent agreement with the Brue raingauge data was obtained, demonstrating

that the model was able to reproduce the extreme value characteristics of the calibration data. The

simulations lay below extreme values determined from longer records for the higher return period

events, but this is primarily due to the limited record length used in model �tting.

6.1.3 Generalized Linear Models (GLMs)

Generalized Linear Models (GLMs) have been shown to provide a powerful and 
exible tool to

identify spatial and temporal structure in daily rainfall �elds for the analysis of raingauge data.

Spatial non-stationarity can be detected, as illustrated by the results presented in chapter 4, in-

cluding complex topographic and location e�ects. Given current concerns for the impact of climate

change on rainfall, it is also important to note that long-term change can be identi�ed, and readily

included in simulations of future rainfall sequences. The methodology is quick and simple to use,

and the software is freely available (see Appendix B.2).

The relative simplicity of the �tted models means that they can readily be used to generate large

numbers of realisations of long simulated sequences, thus allowing de�nition of extreme rainfall

frequencies, including the dependence of frequency on climate variability. Although the results

presented above are based on analysis of raingauge data (i.e. from a limited number of raingauge

sites), the model can simulate rainfall at any location of interest within the observation �eld.

The results from three contrasting areas have been presented. An extensive study of Irish rainfall

data demonstrates that although the daily rainfall data are extremely noisy, subtle spatial and

temporal e�ects can be detected and quanti�ed. The capacity to simulate long sequences of daily

rainfall under a changing climate regime is demonstrated. The model performance in simulating

daily and 3-monthly rainfall is good. Forecasting the probability of rainfall occurrence at a site is

excellent, and the basic statistical properties of point rainfall time-series, including autocorrelation

and the proportion of wet days, are well reproduced. Considering simulation performance at pairs

of sites, there is a slight under-representation of the proportion of days when both sites are wet,

but the inter-site correlation for wet days is excellent.

A second example (the Brue) is considered where a subset of the available data is used as a

test case for the situation in which data from the catchment of interest are limited. It has been

demonstrated that additional gauges from sites outside the catchment can be used within the GLM

scheme to improve simulation performance, and validation tests show good predictive performance;

discrepancies fall within reasonable con�dence limits. Independent tests of the occurrence model

show excellent results; the rainfall amounts are slightly over-predicted, but this is probably due to

the in
uence of the distant raingauges. Within the scope of the present study it has not been possi-

ble to explore this aspect further, but options to improve performance are suggested, in particular

the use of indicator variables to increase the weighting given to data from the catchment itself.

The third example, the Blackwater, has an extensive data-set (44 gauges, over an area of

400km2), and a limited modelling exercise was carried out at the Institute of Hydrology. It is
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demonstrated that good results can rapidly be obtained, and, as for the Irish example, that complex

spatial e�ects are apparent in the data.

6.1.4 Hybrid approaches

The main limitation of the GLM methodology is that sub-daily rainfall cannot be easily modelled,

hence the original concept for the project was to combine the strengths of the GLM and spatial-

temporal model in a hybrid approach. Spatial non-stationarity and long term temporal climate

non-stationarity could be represented using the GLM, with the sub-daily spatial-temporal struc-

ture produced by the spatial-temporal model, the two being combined using a rejection sampling

approach. However, as explained in chapter 5, although the possibility was demonstrated for a

single site model, practical implementation for the full spatial-temporal model presents substantial

theoretical and computational problems which remain to be addressed.

As an alternative approach, preliminary work has been undertaken to develop a new spatial-

temporal disaggregation procedure. The methodology is 
exible, powerful, and has widespread

potential utility. It could, for example, be applied to the common situation in which a number of

daily raingauges are available, supplemented by one or two gauges with sub-daily data. Here, we

consider a GLM simulated �eld of daily rainfall; we require a consistent set of sub-daily time series

at selected locations which preserve an appropriate spatial structure of the simulated �eld. The

method is, in principle, the same as that originally suggested. However, in the new approach, a

simpli�ed spatial-temporal model is used, with a subsequent stage of transformation.

The �rst requirement is a single-site sub-daily time series. This can be produced by the single site

disaggregation method described in Appendix D, or using a recent development by Koutsoyiannis

& Onof (2000), building on previous work by Koutsoyiannis & Manetas (1996) and Koutsoyiannis

(1994). Using the structure of a single site Poisson cluster model, a resampling procedure is used

to generate a subdaily realisation consistent with the daily value at the single site.

We then apply a simpli�ed multivariate model of hourly rainfall that preserves the basic statis-

tical properties of the daily multivariate process and incorporates the available hourly time-series

at the single site. Finally a transformation is applied which modi�es the multivariate time-series

to match the daily values generated by the GLM.

Results are presented for a trial situation, based on Brue data, of 4 daily raingauges and a single

sub-daily rainfall recorder. Hourly rainfall sequences are produced for each of the locations, and

these preliminary results are most encouraging. Individual gauge statistics are well reproduced,

including mean, standard deviation , skewness, proportion dry and the autocorrelation function,

while the daily values are maintained as observed. The method needs more evaluation, but these

preliminary studies suggest that the method has considerable promise.

6.2 Recommendations

The problem addressed in this project, namely the simulation of long temporal sequences of spatial

rainfall, is extremely challenging, and the work described above is a �rst substantive attempt to

develop an appropriate set of methodologies and subject them to a set of rigorous tests using a

variety of UK rainfall data.
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The full spatial-temporal model is the most powerful of these methods, providing simulated

sequences in continuous space and time, and is thus suitable for representing both �ne-scale local

structure and large scale structure, albeit with the current limitation of spatial stationarity. Tests

using Wardon Hill radar data have shown that the model, even without any opportunity for re-

�nement of parameters or distributions, performs extremely well in preserving rainfall spatial and

temporal properties, and in matching the extreme value distributions of the radar and local rain-

gauge data. Further re�nement of the model, based on this data set, can be expected to improve

performance further. It would be bene�cial to combine this with a radar recalibration exercise, to

improve con�dence in the identi�cation of dry periods, as well as rainfall intensities. The next step

for this model is to extend the analysis of performance to a di�erent (and contrasting) radar data

set, such as that currently available for the North-West of England.

The main restriction in general applicability of the full spatial-temporal model at present lies

in the radar data. These are limited in record length and data quality. For widespread application,

ideally, long records of error free radar data are required. These will become progressively available

in the UK as archiving is extended and post-processing quality control is improved. For example, in

the USA, extensive spatial data sets (e.g. 850000 km2 of 4�4km2 hourly post-processed NEXRAD

data) are routinely available. In the absence of such data, further work is required to improve the

quality (through improved calibration) of available radar data for model testing, and to combine

the information available from long raingauge records.

If raingauge data only are available, certain features of the full spatial-temporal model cannot

be readily identi�ed. In both UK and US applications, a reduced level of model has been required.

Given this simpli�cation, results were generally excellent for the case examined (the Brue catch-

ment). However, further test applications a re required across a range of catchment scales before

general UK use could be con�dently recommended.

The GLM modelling approach has now been tested on 3 di�erent data sets, and its ability

to discriminate subtle spatial and temporal variability from extremely noisy daily data has been

clearly demonstrated. It is demonstrably a powerful tool for data analysis. More work could be

done to improve some underestimation of simultaneous rainfall at multiple sites, but the main

limitation of this method for the current application (continuous simulation modelling for 
ood

design) is the daily time step. An additional stage of modelling is required to produce sub-daily

resolution spatial �elds.

The development of a new spatial-temporal disaggregation procedure (chapter 5) appears ex-

tremely promising as a solution to the problem of extended use of the GLM procedure (incorporating

spatial and temporal non-stationarity). However, further evaluation is required to gain con�dence

in the proposed methodology.

6.3 Strategic Priorities

The research reported above represents, in our view, a signi�cant step forward in the development

of new methods for the representation of spatial rainfall for hydrological modelling. A family of

alternative, but inter-related, simulation tools has been developed and tested. Contrasting strengths

and weaknesses have been identi�ed, and for each approach considered, extremely encouraging

performance has been reported. However, this work should be regarded as a feasibility study. The
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GLM methodology can be applied immediately; we do not feel con�dent that the other methods

developed can be taken directly into practice without further work.

6.3.1 Medium term applications

As remotely-sensed rainfall �elds become more accurate and archives more extensive (say over the

next 5 years in the UK), there will be extensive high quality data available to calibrate the full

spatial-temporal model. This model has the major advantage that rainfall �elds are simulated in

continuous space and time, thus giving complete 
exibility in spatial applications. The main issues

are the de�nition of the event occurrence model, and characterisation of the regional variability

of rainfall types. However, testing on a contrasting radar data set will provide short-term guid-

ance concerning the transferability of parameters identi�ed for South West England. A UK wide

methodology could be in place in 5 years time.

Recommendation: Continuation of strategic research through model and data re-

�nement using Wardon Hill and North West radar/raingauge data (2 years), followed

by a full regionalisation study for national implementation.

6.3.2 Short term applications

Two approaches have been developed. It has been shown that a reduced order of spatial-temporal

model can be �tted to raingauge data, with good results. Alternatively, the Generalized Linear

Modelling approach can be combined with a new spatial-temporal disaggregation methodology.

These methods can be implemented with currently available data. The latter o�ers greater 
exibil-

ity for use with limited data (although accurcay of results is restricted by the data available), and

can accommodate temporal and spatial heterogeneity, however was a development that emerged

in the �nal stages of the current research programme. More rigorous testing and validation of

assumptions is required for both of these simpli�ed approaches, as well as testing over a range

of scales. Although the GLM has been evaluated on contrasting scales and climates, the cou-

pled GLM/disaggregation method has been tested on the Brue only. Intercomparison with the

full spatial-temporal modelling approach would be bene�cial to identify the loss of information in

generated rainfall �elds associated with the simpli�ed methodologies.

Thus far, assessment of all methods has been based on a range of statistical properties of the

modelled rainfall �elds. There is an important underlying question of the relative importance of

particular features of the modelled �elds for 
ood estimation. Each of the methods has 
exibility

in parameter identi�cation to enhance particular features of the simulated �elds, usually at the

expense of others. It is therefore recommended that a pilot study be undertaken, using distributed

rainfall-runo� simulation models, to study runo� sensitivity to spatial rainfall properties.

Recommendation: a 12 month extension would be suÆcient to undertake the re-

quired further testing of the simpli�ed approaches. At that point, �rm recommen-

dations could be made for a national strategy for implementation. If combined with

analysis of rainfall-runo� simulation performance, an 18 month study would be re-

quired to address all of these elements.
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