

EXPLORING THE LINK BETWEEN URBAN DEVELOPMENT AND WATER DEMAND: THE IMPACT OF WATER-AWARE TECHNOLOGIES AND OPTIONS

E. Rozos, S. Baki, D. Bouziotas and C. Makropoulos

Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Zografou, Athens, (Greece)

Urban growth

The Chicago metro area (from wikipedia)

Urban growth

East Athens 1988

Urban growth

East Athens 2007

Typical urban growth pattern

Growth of a hypothetical town (Liu, 2009)

Cellular Automata

Automaton, an entity that has a mechanism for processing information based on its own characteristics.

A cellular automat is characterized by:

- the cell, the basic spatial unit (raster representation).
- the state, which identifies the properties of the cell.
- the neighbourhood of the cell in question.
- the transition rule, which defines how the state changes.
- the time.

CA and FIS

- Suitability concerning transportation: "close to primary network **and** close to secondary network **and** close to motorway junction"
- Suitability concerning terrain: "slope is low"

Pressures – increased abstractions

Pressures – increased runoff peaks

Discharge per unit drainage area (USGS, 1999)

Pressures – reduced base flow

Flow duration curves (USGS, 1999)

New technologies

Greywater recycling: decreases of potable water demand (Hansgrohe int.)

New technologies

Rainwater harvesting: decreases both runoff peak and demand of potable water (RainXchange)

Urban water cycle modelling

Does successful implementation of new technologies requires modelling?

Dynamic system

- Rainfall is stochastic
- Demand fluctuates
- System response depends on its present conditions
- Components interaction

Optimization

- Parameters, the properties of the system (e.g. capacities, installed appliances)
- State variables, the variables describing the system conditions (e.g. water level of tanks)
- Performance indicators, the aggregation of the system outputs (e.g. potable water demand, costs, energy)

LOWER LEVEL

UWOT

Households of studied area

Category I

Category III Category IV

Study area

Dominant categories at studied area

Corine 2000 of studied area

Combination of UWOT with CA

		Cat. 1	Cat. 2	Cat. 3	Cat. 4				
Potable Demand (L/d)	Innovative	26253	8639	27759	5459				
	Conventional	34807	10977	35177	7743				
WW Out	Innovative	29360	10234	30714	7249				
(L/d)	Conventional	33260	10234	33564	7249				
Max Runoff Volume (m ³)	Innovative	650	537	441	681				
	Conventional	1037	675	1076	681				

Doculto of LIMOT cimulation

X

(CA results) ∩ (Municipality boundaries) ∩ (Categories Mask)

	ATHENS	PEANIA	KOROPI	KALYBIA	PENTELI	SPATA	ARTEMIS
Cat. 1	1154	0	0	0	0	0	0
Cat. 2	0	0	0	0	1	1	757
Cat. 3	17	154	260	105	0	135	0
Cat. 4	0	0	0	0	44	0	0

Results/conclusions

Demand forecast for potable water and stormwater drainage for town of Koropi.

Results/conclusions

Runoff peak and the potable water demand can be reduced considerably by a combined scheme that includes rainwater harvesting and local water treatment.

Rainwater harvesting scheme provides considerable reduction of the potable water demand but marginal reduction of the runoff peak

References

- Hansgrohe International, <u>http://pro.hansgrohe-int.com/4262.htm</u>, 2001.
- Liu, Y., Modelling Urban Development with Geographical Information Systems and Cellular Automata, New York: CRS Press Taylor & Francis Group, 2009
- Rainwater Harvesting Systems, <u>http://www.rainxchange.com/</u>, 2011.
- Urban sprawl, <u>http://en.wikipedia.org/wiki/Urban_sprawl</u>, 2011.
- US Geological Survery; Effects of Urban Sprawl on the Water Resources of Northern Virginia; Karen C. Rice; 1999.
- Xenos, D., I. Passios, S. Georgiades, E. Parlis, and D. Koutsoyiannis, Water demand management and the Athens water supply, *Proceedings of the 7th BNAWQ Scientific and Practical Conference "Water Quality Technologies and Management in Bulgaria"*, Sofia, 44– 50, Bulgarian National Association on Water Quality, 2002.