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1. INTRODUCTION
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Definitions

• The probability P(A) of an event Ai can be interpreted as a measure of our 

uncertainty about the occurrence or nonoccurrence of A in a single 

performance of the underlying experiment S (certain event).

• We are interested in assigning a measure of uncertainty to the occurrence or 

nonoccurrence not of a single event of S, but of any event Ai of a partition A

of S, where a partition is a collection of mutually exclusive events whose 

union equals S.

• The measure of uncertainty about A will be 

denoted by H(A) and will be called the entropy of 

the partitioning A.
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Definitions

• In his landmark paper, Shannon (1948) derived the functional H(A) from a 

number of postulates based on our heuristic understanding of uncertainty. 

The following is a typical set of such postulates:

� H(A) is a continuous function of pi = P(Ai).

� If p1 = 6 = pN = 1/N, then H(A) is an increasing function of N.

� If a new partition B is formed by subdividing one of the sets of A, then 

H(B) ≥ H(A).

• It can be shown that the following sum satisfies these postulates and it is 

unique within a constant factor:

• The above assertion can be proven, but here we propose to follow the 

Papoulis (1991) approach by introducing the above formula as the definition 

of entropy and developing axiomatically alI its properties within the 

framework of probability.

Shannon, C.E., A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27, pp. 379–423, 623-656, July, October, 1948.

Papoulis, A., Probability, Random Variables and Stochastic Processes, 3rd edition, McGraw Hill, 1991.
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The choice of a logarithmic base corresponds to the choice of a unit for 

measuring information. 

If the base 2 is used the resulting units may be called binary digits, or more 

briefly bits, a word suggested by J. W. Tukey. 

A device with two stable positions, such as a relay or a flip-flop circuit, can 

store one bit of information. 

N such devices can store N bits, since the total number of possible states is 

2N and log22
N = N. If the base 10 is used the units may be called decimal 

digits.
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Applications

• The applications of entropy can be divided into two categories:

1. Problems involving the determination of unknown distributions:

� the available information is in the form of known expected values or 

other statistical functionals, and the solution is based on the principle of 

maximum entropy;

� determine the unknown distributions so as to maximize the entropy 

H(A) of some partition A subject to the given constraints.

2. Coding theory: 

� in this second category, we are given H(A) (source entropy) and we 

wish to construct various random variables (code lengths) so as to 

minimize their expected values;

� the solution involves the construction of optimum mappings (codes) of 

the random variables under consideration, into the given probability 

space.
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Uncertainty and Information

• In the heuristic interpretation of entropy the number H(A) is a measure of our 

uncertainty about the events Ai of the partition A prior to the performance of 

the underlying experiment.

• If the experiment is performed and the results concerning Ai become known, 

then the uncertainty is removed.

• We can thus say that the experiment provides information about the events 

Ai equal to the entropy of their partition.

• Thus uncertainty equals information and both are measured by entropy.
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Examples

1. Determine the entropy of the partition A = [even, odd] in the fair-die 

experiment. Clearly, P{even} = P{odd} = 1/2. Hence

2. In the same experiment, G is the partition consisting of the elementary 

events {fi}. In this case, P{fi} = 1/6; hence

( ) 2log21log2121log21H =−−=A
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3. We consider now the coin experiment where 

P{heads} = p. In this case, the entropy of G

equals
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If the die is rolled and we are told which face showed, then we gain 

information about the partition G equal to its entropy log 6. 

If we are told merely that "even" or "odd" showed, then we gain information 

about the partition A equal to its entropy log 2. 

In this case, the information gained about the partition G equals again log 2. 

As we shall see, the difference log 6 - log 2 = log 3 is the uncertainty about G

assuming A (conditional entropy).
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Maximum Entropy

• An important application of entropy is the determination of the probabilities pi

of the events of a partition A subject to various constraints, with the 

maximum entropy (ME) method.

• ME principle states that the unknown pi’s must be so chosen as to maximize 

the entropy of A subject to the given constraints (Jaynes, 1957).

• The ME principle is equivalent to the principle of insufficient reason

(Bernoulli, 1713): “In the absence of any prior knowledge, we must assume 

that the events Ai have equal probabilities”. This conclusion is based on the 

subjective interpretation of probability as a measure of our state of 

knowledge about the events Ai. 

• Operationally, the ME method simplifies the analysis drastically when, as is 

the case in most applications, the constraints are phrased in terms of 

probabilities in the space Sn of repeated trials (i.e., the resulting product 

space from the experiment S repeated n times).

Jaynes, E. T., Information Theory and Statistical Mechanics, Physical Review, 106(4), 620–630, 1957. 

Bernoulli, J., Ars Conjectandi, 1713. 8

Classical Definition

The classical definition of probability was introduced as a consequence of the 

principle of insufficient reason.

According to the classical definition, the probability P(A) of an event A is 

determined a priori without actual experimentation. It is given by the ratio 

P(A) = NA/N

where N is the number of possible outcomes and NA is the number of 

outcomes that are favorable to the event A, provided that all outcomes are 

equally likely.
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Examples

1. Determine the probabilities pi of the six faces of a die, having access to no 

prior information. The ME principle states that the pi’s must be such as to 

maximize the sum

Since p1 + 6 + p6 = 1, this yields p1 = 6 = p6 = 1/6, in agreement with the 

classical definition.

2. A player places a bet of one euro on "odd" and he wins, on the average, 20 

cents per game. We wish again to determine the pi’s using the ME method; 

however, now we must satisfy the constraints

This is a consequence of the available information because an average gain 

of 20 cents means that P{odd} - P{even} = 0.2. Maximizing H(G) subject to 

the above constraints, we obtain 

( ) 6611 loglogH pppp −−−= KG

4.06.0 642531 =++=++ pppppp

133.02.0 642531 ====== pppppp
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The result of the second experiment agrees again with the classical definition 

if we apply the principle of insufficient reason to the outcomes of the events 

{odd} and {even} separately.
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Considerations

• The ME method is thus a valuable tool in the solution of applied problems. It 

can be used, in fact, even in deterministic problems involving the estimation 

of unknown parameters from insufficient data.

• We should emphasize, however, that as in the case of the classical definition 

of probability, the conclusions drawn from the ME method must be accepted 

with skepticism particularly when they involve elaborate constraints.

• Concerning the previous examples, we conclude that all pi’s must be equal in 

the absence of prior constraints, which is not in conflict with our experience 

concerning dice. The second conclusion, however, is not as convincing, we 

would think, even though we have no basis for any other conclusion.

• One might argue that this apparent conflict between the ME method and our 

experience is due to the fact that we did not make total use of our prior 

knowledge. This might be true; however, it is not always clear how such 

constraints can be phrased analytically and, even if they can, how complex 

the required computations might be.

10
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Interpretation of Probability

1. Axiomatic: P(A) is a number assigned to the event A. This number satisfies 

the following three postulates but is otherwise arbitrary

� The probability of an event A is a positive number, P(A) ≥ 0

� The probability of the certain event S equals 1, P(S) = 1

� If the events A and B are mutually exclusive, P(A + B) = P(A) + P(B)

2. Empirical: For large n, P(A) ≈ k/n, where k is the number of times A occurs 

in n repetitions of the underlying experiment S.

3. Subjective: P(A) is a measure of our uncertainty about the occurrence of A

in a single performance of S.

4. Principle of insufficient reason: If Ai are N events of a partition A of S and 

nothing is known about their probabilities, then P(Ai) = 1/N.

11
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Interpretation of Entropy

1. Axiomatic: H(A) is a number assigned to each partition A = [A1, 6, AN] of 

S. This number equals the sum ‒∑pi ln pi, where pi = P(Ai) and i = 1, 6, N

2. Empirical: This interpretation involves the repeated performance not of the 

experiment S, but of the experiment Sn of repeated trials. In this experiment, 

each specific typical sequence tj = {Ai occurs ni ≈ npi times in a specific 

order j} is an event with probability

Applying the relative frequency interpretation of probability to this event, we 

conclude that if the experiment Sn is repeated m times and the event tj
occurs mj times, then for sufficiently large m,

This relates the theoretical quantity H(A) to the experimental numbers mj

and m.
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Interpretation of Entropy

3. Subjective: H(A) is a measure of our uncertainty about the occurrence of 

the events Ai of the partition A in a single performance of S.

4. Principle of maximum enrtropy: The probabilities pi = P(Ai) must be such 

as to maximize H(A) subject to the given constraints. Since it can be 

demonstrated that the number of typical sequences is nt = enH(A), the ME 

principle is equivalent to the principle of maximizing nt. If there are no 

constraints, that is, if nothing is known about the probabilities pi, then the 

ME principle leads to the estimates pi = 1/N, H(A) = lnN, and nt = Nn.

13
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2. BASIC CONCEPTS
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Conditional Entropy

• The entropy H(A) of a partition A = [Ai] gives us a measure of uncertainty 

about the occurrence of the events Ai at a given trial.

• lf in the definition of entropy we replace the probabilities P(Ai) by the 

conditional probabilities P(Ai|M), we obtain the conditional entropy H(A|M) of 

A assuming M

• From this it follows that if at a given trial we know that M occurs, then our 

uncertainty about A equals H(A|M).

• If we know that the complement MC of M occurs, then our uncertainty equals 

H(A|MC).

• Assuming that the binary partition M = [M, MC] is observed, the uncertainty 

per trial about A is given by the weighted sum 

( ) ( ) ( )∑−=
i

ii MAMAM PlogPH A

( ) ( ) ( ) ( ) ( )CC MMMM AAMA HPHPH +=
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The expression a partition B is observed will mean that we know which of the 

events of B has occurred.

16



• If at each trial we observe the partition B = [Bj], then we show that the 

uncertainty per trial about A equals H(A|B)

• Indeed, in a sequence of n trials, the number of times the event Bj occurs 

equals nj ≈ nP(Bj); in this subsequence, the uncertainty about A equals 

H(A|Bj) per trial. Hence, the total uncertainty about A equals

and the uncertainty per trial equals H(A|B)

• Thus the observation of B reduces the uncertainty about A from H(A) to 

H(A|B). The mutual information

is the reduction of the uncertainty about A resulting from the observation of 

B. I(A, B) can be interpreted as the information about A contained in B.

Mutual Information
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Definitions

1. A partition whose elements are the elementary events {ζi} of the space S will 

be denoted by G and will be called the element partition.

2. A refinement of a partition A is a partition B such that each element Bj of B

is a subset of some element Ai of A. We shall use the following notation:

ij ABij ⊆∃∀⇔ :AB p

3. The product of two 

partitions A and B is 

a partition whose 

elements are all 

intersections Ai∩Bj of 

the elements of A

and B. This new 

partition is denoted 

by A • B.

17

Refinement = rifinitura
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1. If B is a refinement of A, it can be shown that H(A) ≤ H(B). 

Then, for any A we have H(A) ≤ H(G), where G is the element partition.

2. If B is a refinement of A and B is observed, then we know which of the 

events of A occurred. Hence H(A|B) = 0.

3. Thus, for any A we have H(A|G) = 0.

4. For any A and B, we have that H(A • B) ≥ H(A) and H(A • B) ≥ H(B), 

because A • B is a refinement of both A and B. 

5. If the partitions A and B are independent (i.e., their events are all 

independent of each other) and B is observed, then no information about A

is gained. Hence H(A|B) = H(A).

Considerations

18
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6. If we observe B, our uncertainty about A cannot increase. 

Hence H(A|B) ≤ H(A).

7. To observe A • B, we must observe A and B. If only B is observed, the 

information gained equals H(B). Therefore, the uncertainty about A

assuming B, equals the remaining uncertainty, H(A|B) = H(A • B) – H(B).

8. Combining 6 and 7, we conclude that H(A • B) ≤ H(A) + H(B).

9. If B is observed, then the information that is gained about A equals I(A, B).

� If B is a refinement of C and B is observed, then C is known. 

� But knowledge of C yields information about A equal to I(A, C).

� Hence, if B is a refinement of C, then I(A, B) ≥ I(A, C).

� Equivalently, we have also that H(A|B) ≤ H(A|C).

Considerations

19
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3. RANDOM VARIABLES AND 

STOCHASTIC PROCESSES
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• We are given an experiment specified by the space S, the field of subsets of 

S called events, and the probability assigned to these events.

• To every outcome ζ of this experiment, we assign a number x(ζ). We have 

thus created a function x with domain the set S and range a set of numbers. 

This function is called random variable (RV) if it satisfies the following 

conditions but is otherwise arbitrary:

� The set of experimental outcomes {x ≤ x} is an event for every x.

� The probabilities of the events {x = ∞} and {x = – ∞} equal 0. 

• The elements of the set S that are contained in the event {x ≤ x} change as 

the number x takes various values. The probability P{x ≤ x} is, therefore, a 

number that depends on x.

• This number is denoted by F(x) and is called the cumulative distribution 

function (CDF) of the RV x: F(x) = P{x ≤ x} 

Random Variables

21

The set of experimental outcomes {x ≤ x} can be interpreted as follows.

Given an arbitrary number x, we find all numbers x(ζi) that do not exceed x. 

Then, the corresponding experimental outcomes ζi form the set {x ≤ x}.     
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• The RV x is of continuous type if its CDF F(x) is continuous. In this case, we 

have: P{x = x} = 0.

• The RV x is of discrete type if its CDF F(x) is a staircase function. Denoting 

by xi the discontinuity points of F(x), we have: P{x = xi} = pi.

• The derivative f(x) of F(x) is called the probability density function (PDF) of 

the RV x

• If the RV x is of discrete type taking the values xi with probabilities pi, then

where δ(x) is the impulse function. The term pi δ(x – xi) can be shown as a 

vertical arrow at x = xi with length equal to pi.

Random Variables
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• Entropy is a number assigned to a partition. To define the entropy of an RV 

we must, therefore, form a suitable partition.

• This is simple if the RV is of discrete type. However, for continuous-type 

RVs we can do so only indirectly.

• Suppose that the RV x is of discrete type taking the values xi with 

probabilities P{x = xi} = pi.

� The events {x = xi} are mutually exclusive and their union is the certain 

event; hence they form a partition.

� This partition will be denoted by Ax and will be called the partition of x.

• Definition: The entropy H(x) of a discrete-type RV x is the entropy H(Ax) of 

its partition Ax:

Entropy of RVs
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i
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• The entropy of a continuous-type RV cannot be so defined because the 

events {x = xi} do not form a partition (they are not countable).

• To define H(x), we form, first, the discrete-type RV xδ obtained by rounding 

off x, so as to make it a staircase function: xδ = nδ if nδ – δ < x ≤ nδ, hence

where           is a number between the maximum and the minimum of f(x) in 

the interval (nδ – δ, nδ).

• Applying the definition of the entropy of a discrete-type RV to xδ we obtain

where:

Continuous type
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• After algebraic manipulations, we conclude that

• As δ → 0, the RV xδ → x, but its entropy H(xδ) → ∞ because: – lnδ → ∞.

• For this reason, we define the entropy H(x) of x not as the limit of H(xδ) but 

as the limit of the sum: H(xδ) + lnδ, as δ → 0. This yields

• Definition: The entropy of a continuous-type RV x is by definition the integral

• Example: If x is uniform in the interval (0, a), where f(x) = 1/a, then

Continuous type
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• The entropy H(xδ) of xδ is a measure of our uncertainty about the RV x

rounded off to the nearest nδ. If δ is small, the resulting uncertainty is large 

and it tends to ∞ as δ → 0.

• This conclusion is based on the assumption that x can be observed 

perfectly; that is, its various values can be recognized as distinct no matter 

how close they are.

• In a physical experiment, however, this assumption is not realistic. Values of 

x that differ slightly cannot always be treated as distinct (noise 

considerations or round-off errors, for example).

• Accounting for the term Inδ in the definition of entropy of a continuous-type 

RV x is, in a sense, a recognition of this ambiguity.

Considerations
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• As in the case of arbitrary partitions, the entropy of a discrete-type RV x is 

positive and it is used as a measure of uncertainty about x.

• This is not so, however, for continuous-type RVs. Their entropy can take 

any value from – ∞ to ∞ and it is used to measure only changes in 

uncertainty.

• The various properties of partitions also apply to continuous-type RVs if, as 

is generally the case, they involve only differences of entropies.

Considerations
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• The entropy of a continuous-type RV x can be expressed as the expected 

value of the RV y = – ln f(x):

• Similarly, the entropy of a discrete-type RV x can be written as the expected 

value of the RV – ln p(x):

where now p(x) is a function defined only for x = xi and such that p(xi) = pi.

• If the RV x is exponentially distributed, then f(x) = λe–λx U(x), where U(x) is 

the Heaviside step function. Hence:

• If the RV x is normally distributed, then

Entropy as Expected Value
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Functions of one RV

Suppose that x is an RV and g(x) is a function of the real variable x. 

The expression y = g(x) is a new RV defined as follows: For a given ζ, x(ζ) is 

a number and g[x(ζ)] is another number specified in terms of x(ζ) and g(x).

This number is the value y(ζ) = g[x(ζ)] with the domain set S of experimental 

outcomes.

The distribution function F(y) of the RV so formed is the probability of the 

event {y ≤ y} consisting of all outcomes ζ such that y(ζ) = g[x(ζ)] ≤ y. Thus

F(y) = P{y ≤ y} = P{g(x) ≤ y}

For a specific y, the values of x such that g(x) ≤ y form a set on the x axis 

denoted by Ry. Clearly, g(x) ≤ y if x(ζ) is a number in the set Ry. 

The above leads to the conclusion that for g(x) to be an RV, the function g(x) 

must have the following properties:

1.Its domain must include the range of the RV x.

2.It must be a Baire function, that is, for every y, the set Ry such that g(x) ≤ y

must consist of the union and intersection of a countable number of intervals. 

Only then {y ≤ y} is an event.

3.The events {g(x) = ± ∞} must have zero probability.
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• Suppose that x and y are two discrete-type RVs taking the values xi and yj

respectively with P{x = xi, y = yj} = pij.

• Their joint entropy, denoted by H(x, y), is by definition the entropy of the 

product of their respective partitions. Clearly, the elements of Ax • Ay are the 

events {x = xi, y = yj}. Hence

• The above can be written as an expected value:

where p(x, y) is a function defined only for x = xi and y = yj and it is such that 

p(xi, yj) = pij.

• The joint entropy H(x, y) of two continuous-type RVs x and y is defined as 

the limit of the sum: H(xδ, yδ) + 2 lnδ, as δ → 0, where xδ and yδ are their 

staircase approximation. Thus we have:

Joint Entropy
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• Consider two discrete-type RVs x and y taking the values xi and yj

respectively with

• The conditional entropy H(x|yj) of x assuming y = yj is by definition the 

conditional entropy of the partition Ax of x assuming {y = yj}.  From the 

above it follows that:

• The conditional entropy H(x|y) of x assuming y is the conditional entropy of 

Ax assuming Ay. Thus

• For continuous-type RVs the corresponding concepts are defined similarly

Conditional Entropy
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The last equation can be easily demonstrated by accounting for the following:

f(x, y) = f(x|y)f(y)
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• We shall define the mutual information of the RVs x and y as follows

• I(x, y) can be written as an expected value

• Since f(x, y) = f(x|y)f(y) it follows from the above that

• The properties of entropy, developed before for arbitrary partitions, are 

obviously true for the entropy of discrete-type RVs and can be established 

as appropriate limits for continuous-type RVs.

Mutual Information
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• We shall compare the entropy of the RVs x and y = g(x).

• If the RV x is of discrete type, then

with equality if and only if the transformation y = g(x) has a unique inverse   

x = g(-1)(y).

• If the transformation y = g(x) has not a unique inverse (it is not one-to-one), 

then y = yi for more than one value of x. This results in a reduction of H(x).

• If the RV x is of continuous type, then

where g’(x) is the derivative of g(x). The equality holds if and only if the 

transformation y = g(x) has a unique inverse.

• Similarly, if yi = gi(x1, 6, xn), i = 1, 6, n, are n functions of the RVs xi, then

Transformations of RVs
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In the last equation J(x1, 6, xn) is the jacobian of the transformation yi = gi(x1, 

6, xn).

Linear transformations

Suppose that yi = ai1x1 + 6 + ainxn; denoting by ∆ the determinant of the 

coefficients, we conclude that if ∆ ≠ 0 then

H(y1, 6, yn) = H(x1, 6, xn) + ln|∆|

because the transformation has a unique inverse and ∆ does not depend on 

xi
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• The statistics of most stochastic processes are determined in terms of the 

joint density f(x1, 6, xm) of the RVs x(t1), 6, x(tm). 

• The joint entropy of these RVs is the mth-order entropy of the process x(t)

• This function equals the uncertainty about the above RVs and it equals the 

information gained when they are observed.

• In general, the uncertainty about the values of x(t) on the entire t axis or 

even on a finite interval, no matter how small, is infinite.

• However, we assume x(t) expressed in terms of its values on a countable 

set of points, then a rate of uncertainty can be introduced. It suffices, 

therefore, to consider only discrete-time processes xn. 

Entropy of Stochastic Processes
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Stochastic Processes

As we recall, an RV x is a rule for assigning to every outcome ζ of an 

experiment S a number x(ζ).

A stochastic process x(t) is a rule for assigning to every ζ a function x(t, ζ).

Thus a stochastic process is a family of time functions depending on the 

parameter ζ or, equivalently, a function of t  and ζ.

The domain of ζ is the set of all experimental outcomes and the domain of t  

is a set R of real numbers.

If R is the real axis, then x(t) is a continuous-time process. If R is the set of 

integers, then x(t) is a discrete-time process.

A discrete-time process is, thus, a sequence of random variables. Such a 

sequence will be denoted by xn.

We shall say that x(t) is a discrete-state process if its values are countable. 

Otherwise, it is a continuous-state process.

We shall use the notation x(t) to represent a stochastic process omitting, as in 

the case of random variables, its dependence on ζ.

Thus x(t) has the following interpretations:

1.It is a family (or an ensemble) of functions x(t, ζ). In this interpretation, t

and ζ are variables.

2.It is a single time function (or a sample of the given process). In this case, t

is a variable and ζ is fixed.

3.If t is fixed and ζ is variable, then x(t) is a random variable equal to the 

state of the given process at time t.

4.If t and ζ are fixed, then x(t) is a number. 34



• The mth-order entropy of a discrete-time process xn is the joint entropy 

H(x1, 6, xm) of the m RVs: xn, xn -1, 6, xn-m+1

• We shall assume throughout that the process xn is strict-sense stationary 

(SSS). In this case, H(x1, 6, xm) is the uncertainty about any m consecutive 

values of the process xn.

• The first-order entropy will be denoted by H(x) and equals the uncertainty 

about xn for a specific n. 

• Recalling the properties of entropy, we have:

• Example: If the process xn is strictly white, that is, if the RVs xn, xn -1, 6 are 

independent, then

Entropy of Stochastic Processes

( ) ( ) ( ) ( )xxxxx HHH,,H 11 mmm =++≤ KK

( ) ( )xxx H,,H 1 mm =K

34

Stationary Stochastic Processes

A stochastic process x(t) is called strict-sense stationary (abbreviated SSS) if 

its statistical properties are invariant to a shift of the origin. 

This means that the processes x(t) and x(t + c) have the same statistics for 

any c.

A stochastic process x(t) is called wide-sense stationary (abbreviated WSS) 

if:

• Its mean is constant: E{x(t)} = η

• Its autocorrelation depends only on τ = t1 – t2: E{x(t + τ) x(t)} = R(τ)
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• The conditional entropy of order m, H(xn|xn-1, 6, xn-m), of a process xn is the 

uncertainty about its present under the assumption that its m most recent 

values have been observed.

• Recalling that H(x|y) ≤ H(x), we can readily show that:

• Thus the above conditional entropy is a decreasing function of m. If, 

therefore, it is bounded from below, it tends to a limit. This is certainly the 

case if the RVs xn are of discrete type because then all entropies are 

positive. 

• The limit will be denoted by Hc(x) and will be called the conditional entropy 

of the process xn :

• The function Hc(x) is a measure of our uncertainty about the present of xn

under the assumption that its entire past is observed.

Entropy of Stochastic Processes
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Example

If xn is strictly white, then: Hc(x) = H(x)

Entropy Rate

The ratio H(x1, 6, xm)/m is the average uncertainty per sample in a block of 

m consecutive samples.

The limit of this average as m → ∞ will be denoted by H(x) and will be called 

the entropy rate of the process xn.

It can be shown that the entropy rate of a process xn equals its conditional 

entropy:

H(x) = Hc(x)
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4. MAXIMUM ENTROPY METHOD
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• The ME method is used to determine various parameters of a probability 

space subject to given constraints.

• The resulting problem can be solved, in general, only numerically and it 

involves the evaluation of the maximum of a function of several variables.

• In a number of important cases, however, the solution can be found 

analytically or it can be reduced to a system of algebraic equations. 

• We consider herein certain special cases, concentrating on constraints in 

the form of expected values.

• For most problems under consideration, the following inequality is used. If 

f(x) and φ(x) are two arbitrary densities, then it can be proven that:

Maximum Entropy Method
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• In the coin experiment, the probability of heads is often viewed as an RV p

(bayesian estimation). 

• We shall show that if no prior information about p is available, then, 

according to the ME principle, its density f(p) is uniform in the interval (0,1).

• In this problem we must maximize H(p) subject to the constraint (dictated by 

the meaning of p) that f(p) = 0 outside the interval (0, 1). 

• The corresponding entropy is, therefore, given by 

and our problem is to find f(p) such as to maximize the above integral.

• We maintain that H(p) is maximum if f(p) = 1, hence H(p) = 0.

• Indeed, if φ(p) is any other density such that φ(p) = 0 outside (0, 1), then

Example

( ) ( ) ( ) ( ) ( )pH0flnln
1

0

1

0
==−≤− ∫∫ dpppdppp ϕϕϕ

( ) ( ) ( )∫−=
1

0
flnfH dpppp

38

Bayesian Estimation

We investigate the problem of estimating the parameter θ of a distribution 

F(x,θ).

In the classical approach, we view θ as an unknown constant and the 

estimate was based solely on the observed values xi of the RV x.

In certain applications, θ is not totally unknown.

If, for example, θ is the probability of six in the die experiment, we expect that

its possible values are close to 1/6 because most dice are reasonably fair.

In bayesian statistics, the available prior information about θ is used in the 

estimation problem.

In this approach, the unknown parameter θ is viewed as the value of an RV θ

and the distribution of x is interpreted as the conditional distribution Fx(x|θ) 

of x assuming θ = θ.

The prior information is used to assign somehow a density fθ(θ) to the RV θ, 

and the problem is to estimate the value θ of θ in terms of the observed 

values xi of x and the density of θ. 

The problem of estimating the unknown parameter θ is thus changed to the 

problem of estimating the value θ of the RV θ.

Thus, in bayesian statistics, estimation is changed to prediction.
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• We shall consider now a class of problems involving constraints in the form 

of expected values. Such problems are common in hydrology.

• We wish to determine the density f(x) of an RV x subject to the condition 

that the expected values ηi of n known functions gi(x) of x are given 

• We shall show that the ME method leads to the conclusion that f(x) must be 

an exponential

• Where λi are n constants determined from the above equations E{gi(x)} and 

A is such as to satisfy the density condition

Constraints as Expected Values
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• Suppose that 

In this case:

• Hence: 

• Now it suffices, therefore, to show that, if φ(x) is any other density satisfying 

the constraints E{gi(x)}, then its entropy cannot exceed the right side of the 

above equation

Proof
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Example 1:

We shall determine f(x) assuming that x is a positive RV with known mean η.

With g(x) = x, it follows from the ME density that:

f(x) = Ae-λx, if x > 0, 

f(x) = 0, if x ≤ 0.

We have thus shown that if an RV is positive with specified mean, then its 

density obtained with the MEM, is an exponential.

Example 2:

We shall find such f(x) that E{x2} = m2. With g1(x) = x2, it follows from the ME 

density that:

f(x) = Ae-λx^2

Thus, if the second moment m2 of an RV x is specified, then x is N(0, m2).

We can show similarly that if the variance σ2 of x is specified, then x is N(η, 

σ2), where η is an arbitrary constant.
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• The ME method can be used to determine the statistics of a stochastic 

process subject to given constraints.

• Suppose that xn is a wide-sense stationary (WSS) process with 

autocorrelation R[m] = E{xn+m xn}.

• We wish to find its various densities assuming that R[m] is specified either 

for some or for all values of m.

• The ME principle leads to the conclusion that, in both cases, xn must be a 

normal process with zero mean. This completes the statistical description of 

xn if R[m] is known for all m.

• If, however, we know R[m] only partially, then we must find its unspecified 

values. For finite-order densities, this involves the maximization of the 

corresponding entropy with respect to the unknown values of R[m] and it is 

equivalent to the maximization of the correlation determinant ∆.

Stochastic Processes
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5. CONCLUSIONS
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• Entropy is a valuable tool to provide a quantitative measure of uncertainty of 

stochastic modelling of natural processes.

• An important application of entropy is the determination of the statistics of a 

stochastic process subject to various constraints, with the maximum entropy 

(ME) method.

• We should emphasize, however, that as in the case of the classical 

definition of probability, the conclusions drawn from the ME method must be 

accepted with skepticism particularly when they involve elaborate 

constraints.

• Extremal entropy considerations may provide an important connection with 

statistical mechanics. Thus, the ME principle may provide a physical 

background in the stochastic representation of natural processes.

Conclusions
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“Von Neumann told me, ‘You should call it entropy, for two 

reasons. In the first place your uncertainty function has 

been used in statistical mechanics under that name. In the 

second place, and more important, no one knows what 

entropy really is, so in a debate you will always have the 

advantage.”

Claude Elwood Shannon

Thank you for your attention
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