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Abstract During recent decades, intensive research has focused on techniques capable of generating rainfall 

time series at a fine time scale which are (fully or partially) consistent with a given series at a coarser time 

scale. Here we theoretically investigate the consequences on the ensemble statistical behaviour caused by the 

structure of a simple and widely-used approach of stochastic downscaling for rainfall time series, the discrete 

Multiplicative Random Cascade. We show that synthetic rainfall time series generated by these cascade 

models correspond to a stochastic process which is non-stationary, because its temporal autocorrelation 

structure depends on the position in time in an undesirable manner. Then, we propose and theoretically 

analyse an alternative downscaling approach based on the Hurst-Kolmogorov process, which is equally 

simple but is stationary. Finally, we provide Monte Carlo experiments that validate our theoretical results. 
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Résumé Au cours des dernières décennies, une recherche intensive a mis l'accent sur des techniques capables 

de produire des séries chronologiques de précipitations à une échelle temporelle fine, qui sont (complètement 

ou partiellement) cohérentes avec une série donnée à une échelle temporelle plus grossière. Dans le présent 

article, nous étudions théoriquement les conséquences sur les tendances des statistiques d’ensemble causées 

par la structure d’une approche simple et largement utilisée de descente d'échelle stochastique pour séries 

temporelles de précipitations: La Cascade Aléatoire Multiplicative discrète. Nous démontrons que les séries 

temporelles synthétiques de précipitations, produites par le modèle de Cascade Aléatoire Multiplicative, 

correspondent à un processus stochastique qui n’est pas stationnaire, étant donné que son autocorrélation 

temporelle varie dans le temps de façon indésirable. Ensuite, nous présentons et analysons théoriquement une 

approche alternative de descente d'échelle fondée sur le processus de Hurst-Kolmogorov, qui est également 

simple, mais est stationnaire. Enfin, nous prouvons le bien-fondé de nos résultats théoriques avec la méthode 

de simulation de Monte-Carlo. 

 
Mots clefs Descente d'échelle de précipitations; processus de Hurst-Kolmogorov; multifractales; cascades 

aléatoires discrètes; tendances des statistiques d’ensemble; stationnarité 

 

1 INTRODUCTION 

In stochastic hydrology we often need to study natural processes at different time scales. The 

problems associated with the transfer of information across scales have been called scale 

issues (Blöschl and Sivapalan 1995). To adequately address scale issues, we require models 

capable of preserving consistency across scales, i.e. both in a coarser, or higher-level, time 
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scale and in a finer, or lower-level, time scale. These issues may arise, for instance, when 

coupling stochastic models of different time scales to reproduce simultaneously different 

important statistical properties of a hydrological process (Koutsoyiannis 2001), e.g. the long-

term and the short-term stochastic structure of precipitation (Langousis and Koutsoyiannis 

2006).  

In other cases, scale issues are encountered in predictions using hydrological models, 

where the modelling scale may be much smaller than the observation scale; hence, we need to 

bridge that gap to calibrate, validate and operationally use our models. For example, when the 

higher-level process is the output of weather prediction models, which is given at a coarse 

scale, the scale discrepancy between model output and the resolution required for 

hydrological modelling must be resolved (e.g. Fowler et al. 2007, Groppelli et al. 2011). 

Furthermore, the higher-level process may be known from measurements. Specifically, when 

dealing with rainfall, long historical records usually come from daily rain gauges, but we need 

hourly or sub-hourly precipitation data in many hydrological applications. Also, the satellite 

rainfall data are available at a spatial scale greater than about 30 km at the Equator, and a 

temporal scale of 3 h, while again hydrological applications (e.g. related to flash floods) 

require higher resolutions (Berne et al. 2004, Koutsoyiannis and Langousis 2011). 

Scale issues can potentially be tackled by both disaggregation and downscaling 

techniques, which aim at modelling linkages across different temporal and/or spatial scales of 

a given process. In stochastic hydrology, a natural process R(t), e.g. rainfall, is usually defined 

at continuous time t, but we observe or study it at discrete time as Rj
(δ)

, which is the average of 

R(t) over a fixed time scale δ at discrete time steps j (=1, 2, …), i.e.: 

( ) ( )
( )∫ −

=
δj

δj

δ
j ttR
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1
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:          (1) 

Let fδ be a time scale larger than δ where f is a positive integer; for convenience δ will 

be omitted. Then, we can define the aggregated stochastic processes on that time scale, Zj
(f)

 

(and relate it to the mean aggregated Rj
(f)

) as: 
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e.g. Z1
(f)

 = R1 + … + Rf  and Z2
(f)

 = Rf+1 + … + R2f. 

Both disaggregation and downscaling refer to transferring information from a given 

scale (higher-level) to a smaller scale (lower-level), e.g. they generate consistent rainfall time 

series at a specific scale given a known precipitation measured or simulated at a certain 

coarser scale. The two approaches are very similar in nature but not identical to each other. 

Downscaling aims at producing the finer-scale rain field with the required statistics, being 

statistically consistent with the given field at the coarser scale, while disaggregation has the 

additional requirement to produce a finer scale rain field that adds up to the given coarse-scale 

total; thus, in this case we introduce an equality constraint to the problem in the form of 

equation (2). The reader is referred to Koutsoyiannis and Langousis (2011) and the references 

therein for a detailed review on disaggregation and downscaling models in the literature. 

This paper focuses on the analysis of discrete random cascades for rainfall 

downscaling, which are characterized by a very simple structure, easy to implement and, 

consequently, widely applied in the literature. Hence, we compare the ensemble behaviour of 

two simple rainfall downscaling models based on two similar approaches: the multifractal and 

the Hurst-Kolmogorov. Both approaches are based on a general class of stochastic processes 

characterized by some invariant properties of their multivariate probability distribution under 

scale change, which illustrate the empirically-observed scaling properties of rainfall time 

series. 

The multifractal approach is based on the empirical detection of multifractal scale 

invariance of rainfall at a finite, but practically important, ranges of scales (Veneziano et al. 
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2006). In particular, in Section 2 we focus on multiplicative random cascade (MRC) models 

to construct discrete multifractal fields, which are extensively used in the literature (e.g., 

Gupta and Waymire 1993, Over and Gupta 1996, Menabde and Sivapalan 2000, Molnar and 

Burlando 2005, Gaume et al. 2007, Rupp et al. 2009, Serinaldi 2010, Licznar et al. 2011). 

The reason why MRC models have been so popular in the literature is that this method can 

parsimoniously generate complex intermittent and spiky patterns typical of rainfall time 

series, irrespective of whether the patterns are multifractal or not (Rupp et al. 2009). 

The Hurst-Kolmogorov approach is based on the observation that: “Although in 

random events groups of high or low values do occur, their tendency to occur in natural 

events is greater” (Hurst 1951). This can be explained by multiple scales of changes within a 

stationary setting (Koutsoyiannis 2002). Moreover, this formalism distinguishes the different 

types of scaling behaviours: the scaling in state, which is related to the marginal distributional 

properties of the process (Koutsoyiannis 2005a), and the scaling in time, which is a property 

of the joint distribution function characterizing the time dependence structure of the process 

(Koutsoyiannis 2005b). Some multifractal analyses confuse the two. The proposed 

downscaling model following this approach (described in Section 3) is a simple method to 

generate time series based on logarithmic transformation of stepwise linear relationship from 

a Gaussian random process (Koutsoyiannis 2002). 

 

2 MULTIPLICATIVE RANDOM CASCADE MODEL 

 

2.1 Theoretical framework 

Let R1
(f)

 be the average rainfall intensity over time scale f (equation (2)) at the time origin 

(j=1); R1
(f)

 is assumed to be a random variable with mean µ0 and variance σ0
2
 of a stochastic 

process, which we wish to be stationary. R1
(f)

 (for convenience R1,0) is then distributed over b 

sub-scale steps of equal size ∆s=f/b (i.e., Rj
(∆s)

,  j=1, 2, ..., b). This is accomplished by 

multiplying R1,0 by b different weights (one for each sub-scale step) W which are independent 

and identically distributed (iid) random variables. Moreover, their distribution is assumed to 

be the same for all cascade levels with mean µW and variance σW
2
 (Mandelbrot 1974). 

After repeating this procedure k times (k cascade levels; k=0, 1, 2, …), the resulting 

discrete random process at the ∆sk=b
–k

f scale of aggregation can be expressed as:  

( )
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where j=1, 2, …, b
k
 is the index of position in the series at level k; i is the index of the level of 

the cascade; g(i, j) denotes a function which defines the position in the series at the level i, i.e. 

( ) 




= −ikb

j
jig , , which is a ceiling function (Gaume et al. 2007). For k=0 we have W1,0=1. 

For a canonical cascade (another common term to describe a downscaling model) the 

expected value of the mean process at the k-level is equal to the expected value of the process 

at the initial 0-level 

0
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where < > denotes the expected value (i.e. average over the independent realizations of the 

stochastic process). The expected value of Rj,k (equation (3)) is given by: 
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As a consequence of equations (4) and (5): 
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Thus, the weights W satisfy the condition µW=1. 

For a micro-canonical cascade (i.e. a disaggregation model), the mean process at the 

k-level is equal to the process at the 0-level; this means that the following relationship (a 

consequence of (2)) holds for every pair of successive aggregation levels (k–1 and k) of the 

cascade: 
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where j=1,…, b
k–1

 with k>0. For example, if we choose b=2, then: 

kjkjkjkjkjkj
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ki WWRRRRR ,2,121,,2,121,
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∑     (8) 

Thus, the weights Wj,k satisfy µW=1 and W<b (e.g. in the case of equation (8), W<2). 

An important attribute of the micro-canonical model is that the distribution of W can be 

extracted from the data (Cârsteanu and Foufoula-Georgiou 1996), allowing a direct 

examination of the associations that the weights may have with other properties of rainfall. 

 

2.2 Downscaling model (canonical cascade) 

The summary statistics of the random process Rj,k for a canonical cascade are given below. 

Specifically, we derive the variance, σj,k
2
, the qth moment, q

kjR , , and the autocorrelation 

function for lag t, ρj,k(t), of the random process at the k-level of the canonical cascade. The 

expected value, kR , has been already given in equation (5). The variance can be expressed 

as follows: 
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where the second moment is given by: 
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Likewise, the qth moment is: 
k

qqq

k

q

kj WRRR 0,1, ==         (11) 

Finally, the correlation coefficient for lag t is given by: 
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where the term ktjkj RR ,, +  can also be expressed as follows: 

( )th

ktjkj
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,22
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In equations (12) and (13), the exponent hj,k(t) (at the position j=1, …, b
k
–t in the cascade at 

level k) is bounded in  [ ]tk 2log1,0 −−  if 0<t≤b
k
–1, where    denotes the floor function, 

while hj,k(t=0)=k, for any j and k. 

Assuming the cascade as a binary tree (b=2), the exponent hj,k(t) denotes the number 

of vertices of the tree (excluding the start vertex R1,0) belonging to both simple paths leading 

to the vertices Rj,k and Rj+t,k. The exponent hj,k(t) is computed as follows (see the explanatory 

sketch in Fig. 1): 
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where Θ[n] is the discrete form of the Heaviside step function, defined for a discrete variable 

(integer) n as: 
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Thus, three important observations can be made. First, the exponent hj,k(t) is a function 

which satisfies a particular symmetry relation with respect to the position j=2
k–1

 in the dyadic 

cascade at level k. Second, the autocorrelation function of a canonical MRC corresponds to a 

non-stationary process, because it depends on the position j in the cascade (i.e. the time 

position) for any level k. Third, we started assuming a stationary setting of the entire process 

at the largest scale, then we concluded with a downscaled process that we demonstrated to be 

non-stationary. Consequently, it can be argued that autocorrelograms produced by canonical 

MRC have a physically unrealistic attitude with respect to the rainfall process. 

Although the derivation of the theoretical autocorrelation function presented in 

equations (12) and (14) is new, the problem of non-stationarity in processes generated by 

discrete random cascade models has been already discussed by Mandelbrot (1974, p. 356), 

who considered a canonical cascade with log-normal weights and a prescribed grid of eddies: 

“Because the eddies were prescribed, the random function [generated through the 

multiplicative scheme] is non-stationary and discontinuous: it varies between an eddy and its 

neighbors, by jumps that may be very large”. 

Moreover, this problem has been subsequently discussed by Over (1995), who 

highlighted the properties of non-stationarity (non-homogeneity) and anisotropy of the cross-

moments of a discrete random cascade in a d-dimensional space, and by Veneziano and 

Langousis (2010, p. 137, Section 4.4.3.2). Hence, an important challenge is that of finding an 

alternative simple method to generate time series with spiky patterns typical of rainfall series 

and consistent with the observation at coarser scales, which is stationary. Indeed, as stated by 

Over (1995): “In applications, we may find that we want a random process model that is 

anisotropic and non-homogeneous, but in a way that is controllable using model parameters, 

not simply inherent to the model, and we would most likely want to use a homogeneous and 

isotropic model as a null hypothesis unless physical considerations determined otherwise” (p. 

62, Section 3.4.1.1). 

Thus, in Section 3 we propose a stationary downscaling model, based on the HKp, 

which is characterized by a cascade structure similar to that of MRC models. 

 

2.2.1 Example: numerical simulation 

In this section, numerical simulations of a canonical MRC are carried out. For simplicity and 

without loss of generality, we assume µ0=1 and σ0
2
=0. Thus, the summary statistics given in 

the previous section (equations (5) and (9)-(12)) now become: 
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This example refers to weights W log-normally distributed, defined as follows (see e.g. Over 

and Gupta 1996) 
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where Y is a normal N(0,1) random variable; as a consequence, the variance of the weights is 

given by: 

( )( ) 1lnexp
222 −= bσσ NW          (18) 

whereas σN
2
 is a parameter defining the normal N(–σN

2
lnb

2
/2, σN

2
lnb

2
) random variable 

X=lnW. 

Monte Carlo simulations (M=50 000) have been applied to explore the ensemble 

behaviour of the random process, assuming e.g. k=7 and σN=0.522, which gives 5.12 =kσ  

(from equation (16)). 

Figures 2 and 3 show respectively the ensemble mean kR  and standard deviation σk 

of the random processes as a function of the position j along the cascade level k, j=1, 2, …, 2
k
 

(we have N=2
k
=128). Figure 4 shows how the ensemble autocorrelation function ρj,k(t) 

strongly depends on the position j in the cascade at the level k. 

In Fig. 5 (left), the autocorrelogram with starting point j=N/2 (midpoint of the 

cascade) is zoomed in the lag range [–5, 5] so as to illustrate that the lag 1 autocorrelation of 

the canonical MRC can be about 0.8 with the adjacent cell to the left and zero with the 

adjacent cell to the right. Moreover, if we move our simulation window just by two cells to 

the right, i.e. j=N/2+2 (see Fig. 5 right), then the lag 1 autocorrelation becomes about 0.8 and 

0.6 with the adjacent cells to the left and to the right, respectively. These simple observations 

suffice to indicate how unrealistic and undesirable the stochastic structure of this model is. 

 

2.3 Disaggregation model (micro-canonical cascade) 

In the case of a micro-canonical cascade, the summary statistics of the random process Rj,k 

can be expressed accounting for the equality constraint given in equation (7). The expected 

value kR , the variance σk
2
 and the q-moments q

kR  remain the same as in the canonical 

case (equations (5) and (9)-(11)), while the autocorrelation function at lag t, ρj,k(t), now 

becomes, for t≠0: 
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where the term ktjkj RR ,, +  can be also expressed as follows, if b=2 (equation (8)): 

( )( )222

0,, 2
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WWRRR
th
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Note that, when t=0, we have hj,k(0)=k, for any j and k, and the term (1–σW
2
) in the 

numerator of equation (20) vanishes; consequently, we have ρj,k(0)=1. As in equations (12)-

(13), the exponent hj,k(t) here also denotes the number of vertices of a binary tree (excluding 

the start vertex R1,0) belonging to both simple paths leading to the vertices Rj,k and Rj+t,k. The 

exponent hj,k(t) can still be computed by equation (14). Thus, the autocorrelation function of a 

micro-canonical MRC again corresponds to a non-stationary process, as in the canonical case. 

 

2.4 Bounded random cascades 

A special form of multiplicative random cascades is the bounded random cascade (Marshak et 

al. 1994). Bounded cascades allow the multiplicative weights W to depend on the cascade 

level k and converge to unity as the cascade proceeds; this implies that the simulated random 

process becomes smoother on smaller scales. In the literature, bounded random cascades have 

been frequently applied to the stochastic fine graining of rainfall observations into high 
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resolution data both in the canonical and microcanonical form (e.g. Menabde et al. 1997, 

Menabde and Sivapalan 2000, Rupp et al. 2009, Licznar et al. 2011). 

Bounded canonical cascades are constructed in the same way as the unbounded case, 

except that the weights W are iid only within a given cascade level, not among different levels 

as in the unbounded case (Menabde et al. 1997). Under these hypotheses and using the same 

notation as equation (13) above, the following holds: 
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2
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where, if hj,k(t)=0 (no tree vertices in common) we have W1,0=1 (see Section 2.1). Hence, the 

autocorrelation function of the time series generated by bounded canonical cascades still 

depends on the position j in the cascade level k. 

 

3 HURST-KOLMOGOROV DOWNSCALING MODEL 

In this section, we analyse a simple downscaling method to generate rainfall time series based 

on fractional Gaussian noise (e.g. Koutsoyiannis 2002 and references therein), also known as 

a Hurst-Kolmogorov process (HKp). The model disaggregates a fractional Gaussian noise by 

a dyadic additive cascade, which is then exponentially transformed to derive the actual 

rainfall time series that are consequently supposed to be log-normally distributed (e.g. Over 

1995). 

The HKp is a very simple and parsimonious stochastic process that represents the 

long-term persistence observed in many geophysical time series, such as rainfall time series. 

Furthermore, it has been demonstrated that such a stochastic representation is not solely data-

driven, the Hurst-Kolmogorov behaviour emerges from extremal entropy production, which 

may provide a theoretical background for the HKp (Koutsoyiannis 2011). 

The HK process can be defined as a stochastic stationary process which, for any 

integers i and j and any time scales f and l, has the property: 

( )( ) ( )( )µµ ~~~~
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H
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j R
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f
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where 
d

=  denotes equality in probability distributions, 0<H<1 is the Hurst coefficient. 

Typically, jR
~

 is Gaussian and R
~~ =µ  is its mean value. For the relevant process ( )f

jZ
~

 the 

following holds (see equation (2)): 
( )[ ] ( )[ ] 222 ~~
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where ]
~

var[~2 Rσ = . The autocorrelation function of either of ( )f

jR
~

 and ( )f

jZ
~

, for any 

aggregated time scale f, is a only function of the lag t and of the Hurst coefficient H 

(Koutsoyiannis 2002): 

( )( ) ( ) H
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tt

tt
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22
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3.1 Theoretical framework 

Let Z1
(f)

 be the cumulative rainfall depth at the time origin (j=1) aggregated on the largest time 

scale f that is to be downscaled to a certain scale of interest. Z1
(f)

 is assumed to be a random 

variable with mean µ0 and variance σ0
2
 of a stochastic process, which we wish to be 

stationary. We suppose the actual rainfall to be log-normally distributed. 
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Let us now introduce an auxiliary Gaussian random variable ( ) ( )ff ZZ 11 ln:
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convenience 0,1
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Z ) of the aggregated HKp on the time scale f with mean 0

~µ  and variance 2
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It is well known that 
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0,1

~
Z  is to be disaggregated by a dyadic (b=2) additive cascade. Then, 0,1

~
Z  is partitioned into 

two (b=2) Gaussian random variables on the time scale ∆s=f/2; e.g. at the first cascade level 

(k=1) we have 

0,11,21,1

~~~
ZZZ =+           (27) 

Likewise, at the k-level, corresponding to the ∆sk=2
–k

f scale of aggregation, we have  

1,,2,12

~~~
−− =+ kjkjkj ZZZ          (28) 

Thus, it suffices to generate kjZ ,12

~
−  and then obtain kjZ ,2

~
 from equation (28) above. 

This generic procedure resembles the well-known interpolation procedure, which is a 

point estimation. Thus, we can consider the following linear generation scheme (see the 

graphical example in Fig. 6): 

VZ T

kj +=− Yθ,12

~
          (29) 

where [ ]T1,11,,22,32

~
,

~
,

~
,

~
−+−−−= kjkjkjkj ZZZZY , θ is a vector of parameters, and V is a Gaussian 

white noise that represents an innovation term. Equation (29) allows the generated lower-level 

variable kjZ ,12

~
−  to preserve autocorrelations with two earlier lower-level variables (level k) 

and one later higher-level variable (level k–1) (Koutsoyiannis 2002). 

Koutsoyiannis (2001) demonstrated that the vector θ which minimizes var[V] is of the 

form: 

[ ]{ } [ ]kjZ ,12

1 ~
,cov,cov −

−= YYYθ         (30) 

Consequently, it can be shown that the least mean square prediction error of kjZ ,12

~
−  from Y is 

the following: 

[ ] [ ] [ ]θY,
~

cov
~

varvar ,12,12 kjkj ZZV −− −=        (31) 

Hence, in each disaggregation step the two lower-level variables are generated by 

(equations (28)-(29)): 

kjkjkj

kjkjkjkjkj

ZZZ

VZbZbZaZaZ

,121,,2

1,111,0,221,322,12

~~~

~~~~~

−−

−+−−−−

−=

++++=
     (32) 

Parameters a2, a1, b0 and b1, and the variance of the innovation term V are estimated in terms 

of the correlation coefficients ( )tρ~ , equation (24), which are independent of j and k, and of 

the variance of the HKp at the level k (Koutsoyiannis 2002), as given by equations (33) and 

(34): 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]

( )
( )
( )

( ) ( )

















+

+


















+++++

+++++

++

++

=


















−

3~2~
1~1

1~
2~

1~123~2~21~4~3~5~4~
3~2~21~1~122~1~3~2~

4~3~2~1~11~
5~4~3~2~1~1

1

1

0

1

2

ρρ
ρ

ρ
ρ

ρρρρρρρρ
ρρρρρρρρ

ρρρρρ
ρρρρρ

b

b

a

a

            (33) 

and 

[ ] ( ) ( ) ( ) ( ) ( )[ ][ ]( )T

k bbaaV 1012

2 ,,,3~2~,1~1,1~,2~1~var ρρρρρσ ++−=     (34) 

Given equations (22) and (23), the mean and the variance of the HKp at the k-level of the 

cascade are: 

k

k
kjk

f

s
Z

2

~
~~~ 0

0.

µ
µµ =

∆
==         (35) 

[ ]
Hk

H

k
kjk

f

s
Z

2

2

02

0

2

.

2

2

~
~~

var~ σ
σσ =







 ∆
==        (36) 

where ∆sk=2
–k

f . 

The above stepwise disaggregation approach was first introduced by Koutsoyiannis 

(2002), who demonstrated that it effectively generates fractional Gaussian noise, but the 

rainfall process (especially at the resolution needed for hydrological applications) is not 

Gaussian. Indeed, we apply the following specific exponentiation to the HKp to make it log-

normal but preserve its scaling properties (equations (35)-(36)) 

( ) ( )( )kZkZ kjkj βα += ,,

~
exp         (37) 

In other words, we assume a unique HK process in the untransformed domain, and we 

change the characteristics of the transformed (exponentiated) domain using different 

characteristics for different disaggregation steps by means of the scale-dependent functions 

α(k) and β(k): 

( ) ( ) ( )( )( )

( ) ( ) ( )








−−







 −−−=

+−= −

1
22

~
1

2

~2ln

11~exp2ln~
2

2

22

0
0

2

0

12

0

Hkk

Hk
Hk

kk
kk

k

ασα
µβ

σ
σ

α

     (38) 

The mathematical derivation of these expressions of α(k) and β(k) is given in the Appendix A. 

The mean and variance of the log-normal variables kjZ ,  (actual downscaled rainfall) 

are 

kkjk Z
2

0
.

µ
µ ==           (39) 

[ ]
Hkkjk Z

2

2

0
.

2

2
var

σ
σ ==          (40) 

while the autocorrelation function is given by 

( ) ( )( )
( ) 1~exp

1~~exp
2

2

−

−
=

k

k t
tk σ

ρσ
ρ          (41) 

where 2~
kσ  and ( )tρ~  are given by equation (36) and (24) respectively. 

The log-normality hypothesis and our specific exponential transformation (equations 

(37) and (38)) enable the analytical formulation of the main statistics of the actual rainfall 

process, given in equations (39)-(41), which are a key element for our theoretical analysis. 
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However, more elaborate normalizing transformations can be investigated (see, e.g. 

Papalexiou et al. 2011), but this is out of the scope of our paper. 

The presented model is a disaggregation model only if the random variables are 

Gaussian; indeed, the equality constraint in equation (28) holds. However, under the 

hypothesis of log-normal rainfall, we have a downscaling model, where the lower-level 

rainfall time series generated are only statistically consistent with the given process Z at the 

coarser scale. The Hurst coefficient H is the only parameter of HK downscaling model. 

 

3.2 Example: Numerical simulation 

To further investigate the goodness of HK downscaling model, we explore its numerical 

simulations as we did for the MRC downscaling model in Section 2.2.1. To make the two 

model simulations comparable, we assume the same values of summary statistics as in the 

MRC case, i.e. k=7, 1=kµ  and 5.12 =kσ . Furthermore, we assume H=0.7. 

Figures 7 and 8 show, respectively, the behaviours of the ensemble mean kR  and 

standard deviation kσ
 

of the random processes as a function of the position j along the level k, 

j=1, 2, …, N (where 1282 == kN ). Figure 9 shows how, unlike the MRC case, the ensemble 

autocorrelation function ( )tkj ,ρ
 

is fully independent of the position in time j in the cascade at 

the level k. Thus, we verified that the process corresponding to the time series generated by 

the HK downscaling model is stationary. 

 

3.3 Application to an historical observed event 

In this section the HK downscaling model is fitted to an historical observed event, i.e. one of 

the Iowa events at the 10-second timescale (event 3); for further details on the observational 

data, the reader is referred to Georgakakos et al. (1994). The historical hyetograph is shown in 

Fig. 10 (upper panel). It can be seen that the dataset comprises a single storm without 

intermittence. Thus, intermittence, despite being an important characteristic of the rainfall 

process, can be left out of this analysis. We aim at providing further information on the 

applicability of the downscaling approach based on the HKp to reproduce the pattern of 

rainfall time series at the 10-second resolution.  

We estimated the HK model parameter from the real data, which is H=0.92 (see also 

Koutsoyiannis et al. 2007). Figure 11 (upper panel), depicts the climacogram (i.e. a double 

logarithmic plot of the standard deviation of the aggregated process σ(s) versus scale s) for 

both the real and the log-transformed datasets as a tool aiming at a multi-scale stochastic 

representation (see, e.g., equation (23)). It can be noticed that the two climacograms are 

approximately two parallel straight lines with high slopes ( 92.0≅H ), which illustrates that 

the long-term persistence of the process is virtually invariant under a logarithmic 

transformation. 

We performed 10 000 Monte Carlo experiments to downscale the aggregated rainfall 

event at the cascade level k=13. Figure 11 (lower panel) shows the 1st and 99th percentiles of 

climacograms for the HK downscaling model to highlight the scaling behaviour of the 

simulated time series, which is practically consistent with the scaling properties of the 

observed rainfall event. Figure 12 depicts a comparison between the observed 

autocorrelogram with that simulated by our model; in particular, we plot the 1st and 99th 

percentiles of autocorrelation function. It can be noticed that the observed behaviour is fitted 

quite satisfactorily by the model on average. 

Finally, the historical hyetograph is compared (see Fig. 10) to two typical synthetic 

hyetographs, of equal length, generated by the MRC and the HK downscaling models (the 

MRC model parameters were estimated from the real data imposing both the mean and the 

variance of the lower-level variables). We can see that both models produce realistic traces 
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without apparent visual differences in the general shapes from each other and from the real 

world hyetograph (note that the models provide copies with statistical resemblance but not 

precise reproductions of the historical event). Despite being visually similar, the study of the 

details of the statistical behaviour of the two models has revealed that there are important 

differences. 

 

4 CONCLUSIONS AND DISCUSSION 

The discrete MRC has been a widely-used approach of stochastic downscaling for 

rainfall time series. The usefulness of the discrete MRC relies on its simplicity and ability to 

generate time series characterized by both multifractal properties and complex intermittent 

and spiky patterns typical of rainfall time series.  

By means of theoretical reasoning and Monte Carlo experiments, here we showed that 

the random process underlying the MRC model is not stationary, because its autocorrelation 

function is not a function of lag only, as it would be in stationary processes. Indeed, we 

provide a new theoretical formulation for the autocorrelation function of an unbounded 

canonical dyadic cascade, which is dependent on the lag, the position in time and the cascade 

level. As demonstrated, this undesirable violation of stationarity also extends to the micro-

canonical and the bounded cascades. Consequently, MRC models cannot preserve joint 

statistical properties observed in real rainfall. 

Mandelbrot (1974) made it clear that the structure of a discrete multiplicative cascade 

has problems. However, very many researchers miss this fact and treat these cascade models 

as if they were stationary (e.g. Menabde et al. 1997, Hingray and Ben Haha 2005, Gaume et 

al. 2007, Serinaldi 2010, Groppelli et al. 2011). Although fundamentally non-stationary, 

multiplicative random cascades were efficiently used to study the marginal and extreme 

distribution properties of stationary multifractal measures (see e.g. Veneziano et al. 2009 and 

references therein). Moreover, there exist other types of models intended to simulate 

multiscaling properties empirically observed in rainfall processes, which have been 

demonstrated to generate stationary processes, such as scale-continuous multifractal cascades 

(e.g., Lovejoy and Schertzer 2010a, b). However, this paper focuses on the analysis of 

discrete cascades, which are characterized by a very simple structure, easy to implement and, 

consequently, widely applied in the literature. 

In this work, we propose and theoretically analyse an alternative downscaling 

approach based on the Hurst-Kolmogorov process (HKp), which is characterized by a simple 

cascade structure similar to that of MRC models, but it proves to be stationary. In its original 

formulation, this stepwise disaggregation approach effectively generates fractional Gaussian 

noise. However, the rainfall process (especially at the resolution needed for hydrological 

applications) is not Gaussian. Here we modified this approach to make it non-Gaussian by 

applying a logarithmic transformation to the time series generated, so as to make it a more 

realistic representation of the actual rainfall process and more comparable to the MRC 

models. However, the logarithmic normalizing transformation, which we chose for theoretical 

simplicity, is not the best choice to normalize the dataset (Papalexiou et al. 2011). 

The HK downscaling model presented can be further developed in order to enable 

transformations different from the logarithmic, to account for intermittency, similar to MRC 

models (e.g., Over and Gupta 1996) and to simulate time series characterized by high values 

of the Hurst coefficient H. Specifically, for high H, the accuracy of the method in its current 

version could not be precise, but this could be remedied by expanding the number of lower- 

and higher-level variables that are considered in the generation procedure (equation (29)). 

Nonetheless, the current scheme is already good for any practical purpose. 
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APPENDIX A 

We apply a scale-dependent logarithmic transformation at the generic k-level of the cascade: 

( ) ( )( )kβZkαZ kjkj += ,,

~
exp         (A1) 

where α(k) and β(k) are scale dependent functions, which should be derived to preserve the 

scaling properties of the process kjZ ,  at different scales of aggregation. 

The mean and the variance of the exponentiated process at the generic k-level of the 

cascade given in equation (A1) are: 

( ) ( ) ( ) 







++=

2

~
~exp

2
2 k

kk

σ
kαµkαkβµ       (A2) 

( ) ( ) ( )( ) ( )( )( )1~exp~~22exp 22222 −++= kkkk σkασkαµkαkβσ     (A3) 

where kµ~  and 2~
kσ  are respectively the mean and the variance of the HKp at the cascade level 

k, given by equations (35) and (36). Substituting equations (35) and (36) in (A2) and (A3), 

respectively, we obtain 
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where 0
~µ  and 2

0
~σ  are respectively the mean and the variance of the auxiliary normal variables 

( )
0,11

~~
ZZ f = . 

To derive the two functions α(k) and β(k) we impose for the kjZ ,  process the same 

scaling laws of the relevant HKp ( kjZ ,

~
) 

k

k
kjk

µ
µ

f

s∆
Zµ

2

0
0. ===         (A6) 
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==        (A7) 

where µ0 and σ0 are respectively the mean and the standard deviation of the log-normal 

variables ( )fZ1 . Since we assume ( ) ( )( )ff ZZ 11

~
exp= , we have α(0)=1 and β(0)=0 and, thus, 

equations (25) and (26) hold. Substituting equations (25) and (26) in (A6) and (A7) 

respectively, we obtain 
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Equating the right-hand sides of equations (A4) and (A5) to (A8) and (A9), 

respectively, we obtain 
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Solving equations (A10) and (A11) we obtain equation (38). 
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Fig. 1: Example of computation of the exponent hj,k(t) for a canonical MRC. In the computation we use 

equation (13) and the arrows indicate the links to those variables considered. 
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Fig. 2: Ensemble mean of the example MRC process as a function of the position j along the cascade level k = 

7. 
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Fig. 3: Ensemble standard deviation of the example MRC process as a function of the position j along the 

cascade level k = 7. 
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Fig. 4: Ensemble autocorrelation function of the example MRC process at the cascade level k = 7 with starting 

point j (for j = 1, N/4 and N/2, respectively, from left to right) in the considered cascade level with N = 

2
7
 = 128 elements. 
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Fig. 5: Ensemble autocorrelation function of the example MRC process at the cascade level k = 7 with starting 

point j = N/2 (left) and j = N/2 + 2 (right) zoomed at the lag range [–5, 5]. 
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Fig. 6: Example of the dyadic additive cascade for four disaggregation levels (k = 0, 1, 2, 3), where arrows 

indicate the links to those variables considered in the current generation step (adapted from 

Koutsoyiannis 2002). 



18 

 

20 40 60 80 100 120
0

0.5

1

1.51.5

j

<
R

k
>

 

 

empirical

theoretical

 

Fig. 7: Ensemble mean of the example HK process as a function of the position j along the cascade level k = 7. 
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Fig. 8: Ensemble standard deviation of the example HK process as a function of the position j along the 

cascade level k = 7. 
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Fig. 9: Ensemble autocorrelation function of the example HK process at the cascade level k = 7 with starting 

point j (for j = 1, N/4 and N/2, respectively, from left to right) in the considered cascade level with N = 

2
7
 = 128 elements. 
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Fig. 10: Hyetograph of the historical rainfall event (no. 3) measured in Iowa on the November 30th 1990 (upper 

panel; Georgakakos et al., 1994) along with two synthetic time series of equal length generated by the 

MRC and HK models (middle and lower panels, respectively). 
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Fig. 11: Double logarithmic plot of the standard deviation of the aggregated process σ(s) vs. scale s 

(climacogram) for both the real and the log-transformed data of the Iowa rainfall event (upper panel); 

climacograms of the 1st and the 99th percentiles for the HK downscaling model (10 000 Monte Carlo 

experiments) and for the observed rainfall event (lower panel). 
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Fig. 12: Empirical autocorrelation function (ACF) of the Iowa rainfall event examined and 1st and 99th 

percentiles of ACF for the HK downscaling model. 

 


