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Preface 
Most things are uncertain. Stochastics is the language of uncertainty. I believe the gospel of 
stochastics is the book by Papoulis (1991). However, as Papoulis was an electrical engineer, his 
approach may need some additions or adaptations in order to be applied to geophysical processes. 
The peculiarities of the latter are that: 

(a) their modelling relies very much on observational data because geophysical systems are too 
complex to be studied by theoretical reasoning and deduction, and theories are often 
inadequate;  

(b) the distinction “signal vs. noise” is meaningless;  
(c) the samples are small;  
(d) they are often characterized by long term persistence, which makes classical statistics 

inappropriate. 

Having studied several hydroclimatic processes, I derived in handwritten notes some equations 
useful for such processes. Having repeated such derivations several times, because I forgot that I 
had produced them before, or lost the notes, I decided to produce this document. Some of the 
equations and remarks contained here can be found in other texts, particularly in Papoulis (but 
with many difference in notational and other conventions), but some other cannot. I believe they 
can be useful to other people, researchers and students. 

Stochastics is much more than calculations. Popular computer programs have made calculations 
easy and fast. But numerical results may mean nothing! It is better not to use programs (even 
better, not to make calculations) if we are unaware of the stochastic properties of the object (see 
some examples in Papalexiou et al. 2010). Even more so, if we have not assimilated the fundamental 
concepts of stochastics, including probability theory and statistics. These are difficult to assimilate. I 
believe those who did not have difficulties in understanding the concepts have inadequate 
knowledge of stochastics. 
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Introduction 
Most of the popular knowledge in stochastics originates from so-called time-series books. These 
have given focus on stylized families of models like AR(p), ARMA(p,q), ARIMA(p,d,q), ARFIMA(p,d,q) 
and so on. Most of these are too artificial and unnecessary. They are too artificial because they are 
over-parameterized and thus not parsimonious, and because, being complicated discrete-time 
models, they do not correspond to a continuous time process; but natural processes typically evolve 
in continuous time. They are unnecessary because there exist general methods to easily generate 
synthetic series from a process with any arbitrary autocorrelation structure (Koutsoyiannis, 2000).  

Other, more fashionable, texts have given emphasis to mathematical tools like fractals, which are 
often applied inattentively, treating random variables as if they were deterministic and cursorily 
using uncontrollable quantities (e.g. high order moments) whose estimates are characterized by 
extraordinarily high bias and uncertainty. 

Even the second order joint moment of a process, the autocorrelation function, is characterized by 
high bias and uncertainty (Koutsoyiannis and Montanari, 2007; Papalexiou et al., 2010) which are 
transferred to transformations thereof, e.g. the power spectrum. For this reason, I believe the best 
concept to use in stochastic modelling, particularly in parameter estimation, is the climacogram 
(Koutsoyiannis, 2010). This is defined to be the variance (or the standard deviation) of the time-
averaged process as a function of time scale of averaging. It involves bias too, but its bias can be 
determined analytically and included in the estimation (see below). The climacogram, the 
autocorrelation function and the power spectrum are transformations one another. The notes 
below give all details, from definition to theoretical derivation and estimation from data. For the 
latter the details given are for the climacogram only; once a particular model is fitted based on its 
climacogram, its autocovariance function and power spectrum can be derived analytically.  
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Fundamental remarks on random variables 
 A random variable is not a regular variable and need not necessarily describe something random; 

it just describes something uncertain, unpredictable, unknown. While a regular variable takes on 
one value at a time, a random variable is a more abstract mathematical object that takes on all its 
possible values at once, but not necessarily in a uniform manner; therefore a distribution function 
should always be associated with a random variable.  

 A random variable needs a special notation to distinguish it from a regular variable x; the best 
notation devised is the so-called Dutch convention (Hemelrijk, 1966), according to which random 
variables are underlined, i.e. x. The distribution function F(x) ≔ P{x ≤ x}, where P denotes 
probability, and the probability density function f(x) := dF(x)/dx are real-valued functions of the 
real (regular) variable x, not of the random variable x. Realizations of x are typically denoted by 
the non-underlined symbol x. 

 Functions of random variables, e.g. z = g(x) are random variables. Expected values of random 
variables are regular variables; for example E[x] and E[g(x)] are constants—neither functions of x 
nor of x. That justifies the notation E[x] instead of E(x) or E(x) which would imply functions of x 
or x.  

 Distinguishing random variables from regular ones is essential. For example, if we assume that x 
and   are independent random variables uniformly distributed in [0, 1], then it is easy to verify 

that P{   } = 0.5 (a constant) while P{   } = max(0, min(y, 1)) (a function of y). For x and   

not independent, the conditional expectations E[   ] and E[   ] are different; the former is a 

regular variable and a function of y, but the second is a random variable, a function of  , whose 

expected value is E[x] (i.e., E[E[   ]] = E[x] ≠ E[   ]). As another example, both conditional 

entropies Φ[x|y] and Φ[   ] are numbers (not random variables) but while the latter obeys 

Φ[   ] ≤ Φ[x], the former can be either greater or less than the unconditional Φ[x] (Papoulis, 

1991, pp. 172, 564); this has led to serious misconceptions in cases of inattentive notation.  
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Fundamental remarks on stochastic processes 
 A stochastic process is a family of infinitely many random variables indexed by a (regular) variable. The 

index typically represents time and is either a real number, t, in a continuous-time stochastic process 
x(t), or an integer, i, in a discrete-time stochastic process xi.  

 Realizations, xi, of a stochastic process, xi or x(t), at a finite set of discrete time instances i (or ti) are 
called time series. Some texts confuse time series and stochastic processes, as they also do with random 
and regular variables. To avoid such confusion, which may have dramatic effects, we must have always 
in mind that a stochastic process is a family of random variables, infinitely many for discrete time 
processes and uncountably infinitely many for continuous time processes. On the other hand, a time 
series is a finite sequence of numbers.  

 Central to the notion of a stochastic process are the concepts of stationarity and nonstationarity, two 
widely misunderstood and misused concepts (cf. the popular assertion “stationarity is dead”), whose 
definitions are only possible for (and applies only to) stochastic processes (thus, for example, a time 
series cannot be stationary, nor nonstationary). A process is called (strict-sense) stationary if its 
statistical properties are invariant to a shift of time origin, i.e. the processes x(t) and x(s) have the same 
statistics for any t and s (see further details, as well as definition of wide-sense stationarity, in Papoulis, 
1991; see also further explanations in Koutsoyiannis, 2006, 2011b). Conversely, a process is 
nonstationary if some of its statistics are changing through time and their change is described as a 
deterministic function of time. 

 A nonstationary process can be handled theoretically without insurmountable difficulties—for example 

the cumulative process X(t) defined below is nonstationary (X(t) ≔ ∫  ( )  
 

 
, where x(t) is a stationary 

process); it needs some attention though, as its statistical properties depend on time. However, 
handling (or even detecting) nonstationarity merely from data may be difficult, if not impossible. 
Ironically, in many of the cases where nonstationarity has been claimed based on data analyses, the 
stochastic tools used are meaningful only for stationary processes. 

 Another also misused concept is that of ergodicity (see again definition in Papoulis, 1991). If a process is 
non-ergodic, then its statistics cannot be estimated from time series. Ironically, several studies use time 
series data to estimate such statistics, as if the process were ergodic, while at the same time what they 
(cursorily) estimate may falsify the ergodicity hypothesis (see example on p. 18). 
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A schematic for definitions and notation 

 

X(t) ≔

(cumulative, nonstationary)
x(t) (instantaneous, 

continuous-time process)

t

t0 D 2D … (i – 1)D iD

:= x(iD) 

(instantaneous process 
sampled at spacing D)

(averaged process at 
time scale Δ)

t0 Δ 2Δ … (i – 1)Δ iΔ
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Definitions and notation 
Type Continuous time Discrete time by 

integrating at time scale 
Δ  

Discrete time by sampling at 
spacing D (and aggregating at 
scale Δ = kD, where k is integer) 

Stochastic 
processes 

x(t): instantaneous, 
stationary 

X(t) ≔ ∫  ( )  
 

 
: 

cumulative, 
nonstationary 

  
( )

 ≔ X(iΔ) – X((i – 1)Δ): 

aggregated, stationary 
intervals of X(t) 

  
( )

 ≔   
( )  / Δ: averaged 

  
  := x(iD): sampled instantaneous 

  
 ( )

≔ ∑   
   

   (   ) : aggregated 

  
 ( )

≔   
 ( )

 ⁄ : averaged 

Characteristic 
variances 

γ0 ≔ Var[x(t)] 

Γ(t) ≔ Var[X(t)] 
γ(t) ≔ Var[X(t)/t] = Γ(t)/t2 
      ( )      ( )     
(see (3)) 

Var[  
( )

] = Γ(Δ) 

Var[  
( )

] = γ(Δ) 

γ0 

  ( )≔ Var[  
 ( )

] 

   ( )≔ Var[  
 ( )

] =  ( )   ⁄  

Note:   ( )     ( )     

 
Autocovariance 
function 

c(τ) ≔ Cov[x(t), x(t + τ)] 
Note c(0) ≡ γ0 = γ(0)  

  
( )

≔ Cov[  
( )

     
( )

] 

Note:   
( )

≡  ( ) 

  
 ≔ Cov[  

      
 ] = c(jD)  

Note:   
 

 ≡ γ0 

Power 
spectrum  
(spectral 
density) 

s(w) := 

 ∫  ( )    (    )   
 

  
 

  
( )( ) ≔ 

 ∑   
( ) 

       (    ) 

 ( )( )     
( )(  )  

Note: w = ω/Δ 

  
 ( ) ≔  ∑   

  
       (    )  

  ( )     
 (  )  

Note: w = ω/D 
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Notes on notation 

1. The continuous time is denoted as t and the discrete time as i = 0, 1, …; D is the time step, in case 
of sampling; Δ is the time scale in case of aggregating or averaging; k is an integer that multiplies 
the spacing D to give an aggregation scale Δ = kD. 

2. Frequency (inverse time) is denoted as w while ω = wΔ (or ω = wD) is nondimensionalized 
frequency. Both w and ω are real numbers ranging in (–∞, ∞) for a continuous-time process, 
while for a discrete-time process w ranges in [–1/2Δ, 1/2Δ] and ω in [–½, ½]. As both the 
autocovariance function and the power spectrum are even functions, we make all calculations for 
a continuous-time process in (0, ∞), and for a discrete-time process in [0, 1/2Δ] for w and in 
[0, ½] for ω (see below).  

3. The standard deviations of the instantaneous and averaged processes are denoted, respectively, 

as σ0 ≔ √ 
 
, σ(Δ) ≔ √ ( ). 

4. The power spectrum of the continuous-time (instantaneous) process, denoted as s(w), is twice 
the cosine Fourier transform of the autocovariance function of the process, while those of the 

discrete-time processes, denoted as   
( )( ) and   

 ( ), are twice the inverse finite cosine Fourier 

transforms of the respective autocovariance functions. The convention of the multiplying factor 2 
in the Fourier transforms was adopted so that the integral of the spectrum on positive 
frequencies only equals the variance of the process. 

5. In the discrete-time cases, both the lag j and the frequency ω are dimensionless. To make the 
spectra equivalent and comparable to the continuous-time spectrum s(w) we have introduced the 
versions  ( )( ) and   ( ) (with w = ω/Δ and ω/D, respectively) for the averaged and the 
sampled process, respectively, which have the same dimensions as s(w).  
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Computation of variances and covariances 
The climacogram and the autocovariance function of a process either continuous- or discrete-time, 
are transformations one another. The climacogram of the continuous time process, as well as those 
of the averaged or aggregated process, can be calculated from the autocovariance function of the 
continuous time process as follows (cf. Papoulis, 1991, p. 299): 

 ( )   ∫(   ) ( )  

 

 

 (1) 

 ( )  
 ( )

  
 

 

  
∫(   ) ( )  

 

 

  ∫(   ) (  )  

 

 

 (2) 

The inverse formula, by which we can find the autocovariance if the climacogram is known, is easily 
derived by taking the second derivative in (1) also using Leibniz’s integral rule:  

 ( )  
 

 
 
   ( )

   
 

 

 
 
  (   ( ))

   
 (3) 

The climacogram of the sampled aggregated and the sampled averaged process cannot be found in 
this way, but needs to be calculated in a purely discrete-time framework (cf. Papoulis, 1991, p. 432; 
Koutsoyiannis, 2010), as shown in next page.  

Using l'Hôpital's rule on (2), the following useful asymptotic properties are derived: 

 ( )   ( )      ( )     ( ) (4) 
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Computation of variances and covariances (contd.) 
The following relationships give the climacogram from the autocovariance function for the discrete-
time sampled process. 

  ( )    
 
   ∑(   )  

 

   

   

 (5) 

  ( )  
  ( )

  
 

 

 
( 

 
   ∑ (  

 

 
)   

 

   

   

) (6) 

The following recursive relationship facilitates calculation of the climacogram: 

  ( )     (   )    (   )       
      ( )        ( )   

 
 (7) 

The following inverse relationships give the autocovariance functions from the climacograms for 
the discrete-time processes of interest. 

  
( )

 
 

 
 
  

  (  )

  
 

 

  
 (

 ((   ) )   ((   ) )

 
  (  )) (8) 

  
  

 

 
   

   ( )  
  (   )    (   )

 
   ( ) (9) 

Here   
  is the second order central difference operator for spacing Δ and   

   ⁄  is the second finite 
derivative. Note that the formulae are exact (not approximations). 
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Power spectrum 
The power spectrum of the continuous-time process is calculated from the autocovariance function 
as 

 ( )   ∫  ( )    (    )   

 

 

 (10) 

The inverse transformation is 

 ( )  ∫  ( )    (    )   

 

 

 (11) 

The power spectrum of a discrete-time process is calculated from the autocovariance function as 

  
( )( )    ( )   ∑   

( )
 

   

   (    ) (12) 

The inverse transformation is 

  
( )

 ∫   
( )( )    (    )   

  ⁄

 

 (13) 

Notice that, even in the discrete case, the inverse transformation is an integral, not a sum.  

In a similar manner we calculate the spectrum   
 ( ), while  ( )( ) and   ( ) are readily derived 

from their definitions.  
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Relationships between power spectra of discrete and 
continuous time 
The direct calculation of the discrete-time power spectra from that of the continuous time is 
feasible but involved.  

Specifically, the following relationship connects   
 ( ) with s(w) (cf. Papoulis, 1991, p. 336): 

  
 ( )  

  ( )

 
 

 

 
∑  (

   

 
)

 

    

 
 

 
∑  (  

 

 
)

 

    

       (14) 

To find the relationship of   
( )( ) with s(w), we utilize (14) after we have applied a moving average 

operation to the process. The power spectrum of the process  ( ) obtained as the moving average 

of  ( ) at time scale Δ, i.e.,  ( ) ≔
 

 
∫  ( )  

 

   
 is (cf. Papoulis, 1991, p. 325, also noticing the 

different notational and other conventions): 

  ( )   ( )
    (   )

(   ) 
 (15) 

By sampling it at intervals Δ, we find: 

  
( )( )  

 ( )( )

 
 

 

 
∑  (

   

 
)
    ( (   ))

( (   ))
 

 

    

 
 

 
∑  (  

 

 
)

 

    

    ( (    ))

( (    ))
    

       

(16) 
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Relationship between climacogram and power spectrum 
As both the climacogram and the power spectrum are transformations of the autocovariance 
function, the two are also related to each other by simple transformations. Thus, by virtue of (3), 
expressing c(τ) in terms of γ(τ) in (10) and using known properties of the Fourier transform, we 
find 

 ( )      
  

   
∫  ( )    (    )   

 

 

 (17) 

which after algebraic manipulations becomes  

 ( )     ∫(    )  ( )    (    )   

 

 

 (18) 

On the other hand, combining (2) and (11) we find 

 ( )   ∫(   )∫  ( )    (     )   

 

 

  

 

 

  ∫  ( )∫(   )    (     )

 

 

     

 

 

 (19) 

and after algebraic manipulations, we find the following equation giving directly the climacogram 
from the power spectrum (which could be also derived by combining (11) and (15) for τ = 0): 

 ( )  ∫  ( ) 
    (   )

(   ) 
   

 

 

 (20) 
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The autocorrelation function and the structure function 
The autocorrelation function is the autocovariance function standardized by variance, i.e., 

 ( ) ≔
 ( )

  
,     

( )
≔

  
( )

 ( )
,    

 ≔
  
 

  
 (21) 

for the continuous-time, the averaged and the sampled process, respectively. All these 
autocorrelation functions are bounded from below and above, ranging in [–1, 1]. In some processes 
(including the white noise and the Hurst-Kolmogorov process) the instantaneous variance γ0 = ∞, 
while c(τ) < ∞, so that ρ(τ) =   

 
 = 0 for any lag τ or j (except τ = j = 0, in which ρ(0) =   

 
 = 1). 

However, if the processes are ergodic (and normally they should be as explained in p. 4), the 

aggregated and averaged process the variance is finite, so that generally   
( )

 ≠ 0. 

The structure function, also known as semivariogram or variogram, is defined to be  

 (   ) ≔
 

 
   [ ( )   ( )]  

 

 
(   [ ( )]     [ ( )])     [ ( )  ( )]  (22) 

and in a stationary process, with τ ≔ s – t,  

 ( ) ≔
 

 
   [ ( )   (   )]     [ ( )]     [ ( )  (   )]  (23) 

which in the various processes examined here takes the form 

 ( ) ≔     ( ),   
 ≔  ( )    

( )
,    

 ≔      
  (24) 

By nondimensionalizing h(τ), i.e. by dividing by γ0, we get the nondimensionalized structure 
function, which is the complement of ρ, as given in (21), from 1, i.e.,  

1 – ρ(τ) ,       
( )

,       
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Autocorrelation function and structure function in 
processes with infinite variance 
In cases where γ0 = ∞, the structure function is h(τ) = ∞, while ρ(τ) = 0 and 1 – ρ(τ) = 1 for any lag 
τ ≠ 0. This is an improper behaviour.  

However, assuming that the process is ergodic, such problems do not appear in the averaged 
process, in which we will have: 

0< γ(Δ) < ∞,         
( )

   

The geostatistics literature includes the so-called intrinsic models in which γ0 = ∞ and c(τ) = ∞, 
while h(τ) = γ0 – c(τ) < ∞ (e.g. h(τ) = a τb), so that 1 – ρ(τ) = 0 for any τ ≠ ∞. In such models the 
infinities are transferred even in the averaged process: 

 ( )    
( )

  ,      
( )

     
    

In particular, the property γ(Δ) = ∞ means that the process is non-ergodic (in ergodic processes 
γ(Δ) should tend to zero as Δ tends to infinity; see p. 15). For these reasons, as explained in p. 4, 
such processes are not recommended in modelling. There are much better alternatives (see 
examples below). 
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Some important stochastic properties  
The climacogram γ(Δ) denotes variance and therefore should be nonnegative for any time scale Δ. It could 
be positive finite or even infinite for Δ = 0. For (mean) ergodic processes it should necessary tend to 0 for 
Δ → ∞ (Papoulis, 1991, p. 429). Thus, 

 ( )     ( )    (25) 

As the autocovariance c(τ) equals the variance for τ = 0, it follows that c(0) > 0. For τ ≠ 0, c(τ) can take on 
negative values as well. However, c(τ) must be a positive definite function (see e.g. Stewart, 1976), a 
property which among other things makes it bounded from below and above by ± c(0). Ergodicity also 
imposes a constraint about its asymptotic behaviour (Papoulis, 1991, p. 430); in conclusion:  

 ( )         ( )   ( ) 
 

 
∫  ( )

 

 

  
   
→    (26) 

In order for the function c(τ) to be positive definite, its Fourier transform, i.e. the power spectrum s(w) 
should be nonnegative. Thus, 

 ( )    (27) 

Additional properties of s(w) are discussed in next section.  

The autocovariance c(τ) is often a nonnegative and nonincreasing function. In this case γ(Δ) is 
nonincreasing too. To see this, we take the derivative with respect to Δ from (2) and we find 

  ( )  
 

  ∫ (      ) ( )  
 

 
  (28) 

The term (τ – Δ/2) within the integral is symmetric with respect to Δ/2 (negative for τ < Δ/2 and positive 
for τ > Δ/2). As c(τ) is nonincreasing, its values for τ < Δ/2 are greater than those for τ > Δ/2. Clearly then 
the negative product prevails over the positive product and thus γ΄(Δ) < 0. 



  D. Koutsoyiannis,  Encolpion of stochastics   16 

Asymptotic properties of the power spectrum 
The asymptotic slopes of the power spectrum s(w) plotted in logarithmic axis vs. the logarithm of 
the frequency w are important properties to characterize the process. Generally, this slope is  

  ( ) ≔
 (   ( ))

  (   ) 
 

     ( )

  ( )
 

 ( )

 ( )
  (29) 

where  ( ) ≔    ( ). We will find its asymptotic value for    , i.e.   ( ). Note that continuous 
time is assumed for the process as well as the spectrum. From (10), the derivative is  

   ( )    ∫      ( )    (    )   
 

 
  (30) 

We define: 

 ( ) ≔  ( )   ( )   ∫  ( ) (   (    )         (    ))   
 

 
  (31) 

and we observe that 

 ( )   ∫  ( )     ( )
 

 
  (32) 

In other words 

 ( )   ( )   ( ) (33) 

If    ( )    then (33) simplifies to 

 ( )    (34) 

and hence 

   ( )      ( )    (35) 
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Asymptotic properties of the power spectrum (contd.) 
If  ( )    then (34) is still valid, but the logarithmic slope   ( ) becomes an indeterminate 
quantity (0/0). This should necessarily be positive, so that   ( )>0 for w >0. Thus, 

  ( )      ( )    (36) 

If  ( )    (hence   ( )      ( )   , while s(w) is continuous), then (because  ( ) is 
nonnegative) (33) results in  

   
   

( ( )   ( ))    (37) 

and 

   
   

(
 ( )

 ( )
  )     (38) 

Consequently, 

 ( )      ( )     (39) 

In conclusion, the asymptotic slope in the logarithmic plot of the power spectrum for w → 0 can 
never be lower (steeper) than –1 and more specifically it ranges as follows: 

  ( )     ( )   

  ( )        ( )   

     ( )     ( )   

 (40) 

The asymptotic slope for w → ∞ should necessarily be non-positive, without other restrictions, i.e.: 

  ( )    (41) 
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A comment on the asymptotic slope of the power spectrum 
We often see publications reporting logarithmic slopes in empirical power spectra       (e.g. 
       , etc.). Does this mean that (39) is wrong or that the reality does not comply with this theoretical 
property?  

First we should point out that a slope   ( )     is mathematically and physically possible for large w. 
However it is infeasible for w → 0. Therefore, reported values       for small w are spurious and are 
due to inconsistent estimation algorithms (cf. Koutsoyiannis, 2013; Lombardo et al., 2013). Such results do 
not put into question the validity of (39) but are just invalid results. For additional support of this 
argument, let us assume the contrary, i.e., that for frequency range 0 ≤ w ≤ ε (with ε however small) the 
logarithmic slope is   ( )    , or else s(w) = α w–β where α and β are constants, with    . We notice 
in (20) that the fraction within the integral takes significant values only for w < 1/Δ (cf. Papoulis, 1991, p. 
433). Hence, assuming a scale Δ ≫ 1/ε, and with reference to (20) we may write: 

 ( )  ∫  ( )
    (   )

(   ) 
   

 

 

 ∫     
    (   )

(   ) 
   

 

 

 (42) 

On the other hand, it is easy to verify that, for 0 < w < 1/Δ, 

   (   )

   
        (43) 

and since ε ≫ 1/Δ, while the function in the integral (42) is nonnegative, 

 ( )  ∫     
    (   )

(   ) 
   

 

 

 ∫      
    (   )

(   ) 
   

    

 

 ∫     (    )    

    

 

 (44) 
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Comment on the asymptotic slope of the power spectrum (contd.) 
Substituing ξ = wΔ in (44), we find: 

  ( )       ∫    (   )    
  

 
 (45) 

To evaluate the integral in (45) we take the limit for q → 0 of the integral: 

 ( ) ≔ ∫    (   )    
  

 
  

      

   
  

      

   
 

      

   
  (46) 

Clearly, for β > 1 the first term of the latter integral diverges for q → 0, i.e., B(0) = ∞ and thus, by virtue of 
the inequality (45), γ(Δ)= ∞. Therefore, the process is non-ergodic (see p. 15).* This analysis generalizes a 
result by Papoulis (1991, p. 434) who shows that an impulse at w = 0 corresponds to a non-ergodic 
process.  

In a non-ergodic process there is no possibility to infer statistical properties from the samples, so the 
statistical analyses are in vain and hence the reported results not meaningful.  

Sometimes reported slopes       are interpreted as indications of nonstationarity. Such 
interpretations are equally invalid because even the definition of the power spectrum as a function of 
frequency only (as well as those of autocorrelation and climacogram as functions of lag and scale, 
respectively) assumes stationarity.  

                                           
* It is interesting to note that, if |β| < 1, the integral in  (42) can be evaluated to give: 

 ( )   ∫     
    (   )

(   ) 
   

 

 

 
   (   ⁄ )

(   ⁄ )
 
(  )   (   )

 (   )    
  

Clearly, for Δ → ∞, the last expression gives γ(Δ) → 0 and thus for |β| < 1 the process is mean ergodic. 
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The climacogram-based pseudospectrum (CBPS) 
While the power spectrum is a magnificent tool for stochastic processes, its estimation from data is 
problematic. An empirical spectrum (periodogram) constructed from empirical autocovariances is too 
rough and estimation of slopes from this is too uncertain. (For example asymptotic slopes < –1 have been 
reported many times in literature, which are mistaken). Techniques to smooth the power spectrum need 
too many data to be applied, and they may also involve uncontrolled biases. 

A substitute of the power spectrum which has similarities in its properties, is the climacogram-based 
pseudospectrum (CBPS) defined as  

 ( )  ≔
   (  ⁄ )

 
(  

 (  ⁄ )

 ( )
)  (47) 

In contrast to the empirical periodogram, the empirical ψ(w) is pretty smooth. Its value at w = 0 equals 
that of the power spectrum; indeed from (1), (2), (10) we obtain  ( )   ( )     ( )      
  ∫  ( )  

 

 
. Furthermore, the asymptotic slopes   ( ) of CBPS at frequencies (or resolutions) w→0 

and w→∞ follow those of the power spectrum   ( ) and in most processes these slopes are precisely 
equal to each other, as illustrated in the examples below (pp. 25-35). At frequencies where the power 
spectrum has peaks, signalling periodicities, the CBPS has troughs (negative peaks, see example in p. 33).  

In processes with infinite variance (γ(0) = c(0) = ∞) the CBPS simplifies to 

 ( )  
   (  ⁄ )

 
  (48) 

The logarithmic slope   ( ) of CPBS is connected with that of the climacogram   (   ) by:  

  ( )     (  
 

   (  ⁄ )  ( )⁄
)   (  ⁄ )  (49) 

so that, if  ( )      , then   ( )        (  ⁄ ). Also, f      ,   ( )        ( ). Since γ΄(∞) ≤ 0 
(cf. p. 15) and hence γ#(∞) ≤ 0, it follows that ψ#(0) ≥ –1 (same behaviour as in s#(0)). Note that, when 
   ( )   ,    ( )= 0, so that in   ( ) (right-hand side of (49)) an expression ∞·0 appears. 
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Statistical estimation—Averaged process 
The following analysis is based on Koutsoyiannis (2011a). We assume that we have n = 

⌊   ⁄ ⌋    ⁄  observations of the averaged process   
( )

, where To is the observation period, ⌊ ⌋ 

denotes the floor of a real number, and T ≔ ⌊   ⁄ ⌋  is the observation period rounded off to an 
integer multiple of Δ. The (unbiased) estimator of the common mean μ of the instantaneous process 

x(t) as well as of the discrete processes xi and   
( )

 is  

 ̅( )  ≔
 

 
∑  

( )
  

 ( )

  
 

 ( )

 
   

( )
 

 

   

  (50) 

The standard (but biased except for white noise) estimator  ̂( ) of the variance  ( ) of the 

averaged process   
( )

 is  

 ̂( ) ≔
 

   
 ∑(  

( )
   ̅( ))

 
 

   

 
 

  ⁄   
 ∑(  

( )
   ̅( ))

 
  ⁄

   

  (51) 

The following general equation can be used to estimate the bias of  ̂( ) 

  [ ̂( ) ]  
 

    ⁄
 (   [  

( )
]     [ ̅( )]) (52) 
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Statistical estimation—Averaged process (contd.) 
The general equation (52) in this case becomes 

  [ ̂( ) ]  
 

    ⁄
 ( ( )   ( ))  

 

    ⁄
 (

 ( )

  
 

 ( )

  
) (53) 

or  

  [ ̂( ) ]   (   ) ( ) (54) 

where the bias correction coefficient η is 

 (   )  
   ( )  ( )⁄

    ⁄
 

  (  ⁄ )  ( )  ( )⁄

    ⁄
  (55) 

Important note: It becomes clear from the above equations that direct estimation of the variance 
 ( ), let alone that of the instantaneous process γ0, is not possible merely from the data. We need to 
know the ratio  ( )   ( ) and thus we should assume a stochastic model which evidently 
influences the estimation of  ( ). Once the model is assumed and its parameters estimated based 
on the data, we can expand our calculations to estimate the variance for any time scale, including 
that of the instantaneous scale γ0. 
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Statistical estimation—Sampled process 
If the observed process is the sampled (  

 ) at time steps D, rather than the averaged one (  
( )

), 

then (50) becomes 

 ̅  ≔
 

 
∑  

   
 

 ( ) 

 

   

  (56) 

The standard (and again biased) estimator  ̂ of the variance γ(0) of the sampled process   , which 

equals that of continuous-time (instantaneous) process x(t), is 

 ̂ ≔
 

   
 ∑(    ̅)

 
 

   

 (57) 

In a similar manner it is shown that (54) and (55) become respectively 

  [  ̂  ]    (   ) ( ) (58) 

  (   )  
    ( )  ( )⁄

     
 

   ( )  ( )⁄

    ⁄
  (59) 

Important note: Even though in this case our target is to estimate the variance of the 
instantaneous process γ0, again this is not possible merely from the data. We need to know the ratio 
  ( )  ( )⁄  and thus we should again, as above, assume a stochastic model. Once the model is 
assumed and its parameters estimated, we can expand our calculations to estimate  ( ) for any 
time scale Δ.  
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Example 1: The Markov process 
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

    ( )   ( )     Not applicable   
      ( )     

Variance at scale Δ 
= kD 
(Climacogram) 

 ( )  
  

  ⁄
(  

      ⁄

  ⁄
)  As in continuous time   ( )  

 

  (   ) 
 (     

  (    )

 
) (   )  

where         
Autocovariance 
function for lag τ = 
jΔ (or jD)  

 ( )         
  

( )
 

 (      ⁄ )
 

(  ⁄ ) 
   (   )  ⁄

  

(   )  

  
               (   )  

Power spectrum  
for frequency 
w = ω/Δ (or ω/D) 

s(w)  
   

  (    ) 
  ( )( )     (  

 

  ⁄
 
(     (    ))     (  ⁄ )

    (  ⁄ )    (    )
)  

  ( )  
       (  ⁄ )

    (  ⁄ )    (    )
  

Asymptotic slopes   ( )    ( )     
  ( )    ( )      
  ( )     ( )      
  ( )    ( )     

  

Note: It is readily verifiable that the sampled discrete-time process is equivalent to the AR(1) process 
(notice that   

     ) while the averaged discrete-time process is not an AR(1) but an ARMA(1,1) process.  
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Example 1: The Markov process (contd.) 

 

Notes 

1. The parameters are λ = 1, α = 10 and the spacing is D = 1, resulting in ρ = 0.905. 
2. The plotted autocovariance function and climacogram are for the continuous-time process, 

whereas those of the discretized processes are visually indistinguishable. 
3. The power spectra of the discretized processes fail to capture the slopes for w > 1 / 10D, 

while for w = 1 / 2D they give a slope which is precisely zero (this is a consequence of the fact 
that the discrete-time spectrum is symmetric around w = 1 / 2D). 

4. The pseudospectrum performs better in identifying the asymptotic slopes (even in the worst 
case of the sampled process). 
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Example 2: The Hurst-Kolmogorov (HK) process 
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

    ( )   ( )     Not applicable   
      ( )    

Variance at scale Δ 
= kD 
(Climacogram) 

 ( )  
 (  ⁄ )    

 (    )
  As in continuous time   ( )     

Autocovariance 
function for lag τ = 
jΔ (or jD)  

 ( )   (  ⁄ )     
(       )  

  
( )

 
 (  ⁄ )    

 (    )
 

 (
               

 
      )  

  
   (   ⁄ )     (   )  

Power spectrum  
for frequency 
w = ω/Δ (or ω/D) 

s(w)  
     (    )    (  )

(    )      ( )( ): not a closed 
expression  

  ( )     

Slopes (constant 
for any w and Δ) 

  ( )    ( )        
  ( )     ( )        

  

Note: While the power spectra of the continuous-time and the averaged process converge except for w = 
0, that of the sampled discrete-time process diverges, because its variance is ∞ for any w. To see that it 
diverges, we apply the definition of the discrete-time power spectrum (like in eq. (12)) for 
nondimensionalized frequency ω = 1/4. The first term is ∞ and in order for   ( ) to converge the second 
term (the sum) must be –∞. This sum can be written as a quantity proportional to               – 
(             ), which equals    (       )  (    ), where ζ() is the zeta function. This 
however is a finite quantity and thus   ( )   .  
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Example 2: The Hurst-Kolmogorov (HK) process (contd.) 

 
Notes 

1. The parameters are λ = 1, α = 10, H = 0.8 and the spacing is D = 1. Notes 2-4 of Example 1 are also 
valid in this example.  

2. Notice that the model parameters are in essence two, i.e. H and (λ α2 – 2H). Despite that, we prefer the 
formulation shown with three nominal parameters for dimensional consistency: the units of α and λ 
are [τ] and [x]2, respectively, while H is dimensionless.  

3. The process has often been used with 0 < H < 0.5, being called in this case an antipersistent process, 
while for 0.5 ≤ H < 1 it is called a persistent process. However, while the expressions shown above 
seem valid (some of them even for H < 0), implying an averaged process with positive variance and 
all covariances negative, they do not have a consistent derivation (due to involvement of infinities) 
and to apply them we need to assume λ < 0, which does not make sense. A proper antipersistent 
process (with c(τ) > 0 for very small τ, including τ = 0) is discussed in the Example 4.  

4. In addition, the case H > 1 is invalid for reasons explained in pp. 16-18.  
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Example 3: Α modified finite-variance HK process 
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

    ( )   ( )     Not applicable   
      ( )     

Variance at scale Δ 
= kD 
(Climacogram) 

 ( )  
 (  ⁄ )

 (    )
  (

 

 
(  

 

 
)
  

 
 

 
   )  

As in continuous time   ( )  
  ( )

  , where   ( ) is 

calculated from (7) 

Autocovariance 
function for lag τ = 
jΔ (or jD)  

 ( )  
 

(    ⁄ )        
( )

: From (8)    
  

 

(     ⁄ )     (   )  

Power spectrum  
for frequency 
w = ω/Δ (or ω/D) 

s(w): closed expression too 
complex 

 ( )( )  not a closed 
expression  

  ( )  not a closed 
expression  

Asymptotic slopes   ( )    ( )        
  ( )    ( )      
  ( )     ( )        
  ( )    ( )     

  

Note: In this example the asymptotic slopes of the power spectrum are both nonzero and different in the 
cases w → 0 and w → ∞. The slopes of the pseudospectrum are identical with those of the spectrum. 
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Example 3: Α modified finite-variance HK process (contd.) 

 
Note: The parameters are λ = 1, α = 10, H = 0.8 and the spacing is D = 1. Notes 2-4 of Example 1 are 
also valid in this example. 

A practical conclusion: When slope estimations are based on data, it is safer to use frequencies or 
resolutions w < 1 / 10D, or five times smaller than the absolute maximum that the observation 
period allows (in theory, this is 1 / 2D = n / 2T, where T is the observation period and n is the 
number of observations). Likewise, when estimating the climacogram and the pseudospectrum, 
although in theory it is possible to calculate the variance for time scales up to Δ = Τ/2 = (n/2)D, it is 
safer to use time scales 5 times smaller, i.e. up to T/10 =(n/10)D.  
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Example 4: A simple antipersistent process  
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

    ( )   ( )     Not applicable   
      ( )     

Variance at scale Δ 
= kD 
(Climacogram) 

 ( )  
  

  ⁄
(
      ⁄

  ⁄
 

    ⁄ )  

 

As in continuous time   ( )  
  ( )

  , where   ( ) is 

calculated from (7) 

Autocovariance 
function for lag τ = 
jΔ (or jD)  

 ( )   (    ⁄ )        
( )

: From (8)    
    (     ⁄ )       

(   )  

Power spectrum  
for frequency 
w = ω/Δ (or ω/D) 

s(w)     (
    

  (    ) 
)
 

  ( )( ): closed expression 
too complex 

  ( ): closed expression 
too complex 

Asymptotic slopes   ( )       ( )     
  ( )    ( )      
  ( )     ( )      
  ( )    ( )     

  

Notes  
1. It is readily verifiable that 4∫  ( )    ( )   ( )   

 

 
 (while of course c(0) = γ(0) = λ > 0). This 

is the condition making the process antipersistent.  
2. In this process for τ > α the autocovariance is consistently negative—but for small τ it is positive. 
3. A similar antipersistent process but with autocovariance becoming again positive after a certain τ is 

the one with autocovariance  ( )   (  (  ⁄ )(  )⁄  (  ⁄ )(  )⁄  
)     . 



  D. Koutsoyiannis,  Encolpion of stochastics   31 

Example 4: A simple antipersistent process (contd.) 

 
Notes 

1. The parameters are λ = 1, α = 10, and the spacing is D = 1. Notes 2-4 of Example 1 are also 
valid in this example. 

2. As shown in the figures, antipersistence is manifested in the positive slopes in the power 
spectrum and the pseudospectrum. Clearly, these slopes are positive only for low frequencies 
w. For high w they should necessarily be negative. (Processes with increasing slopes for all 
frequencies, or negative autocorrelations for all lags, are physically unrealistic, even though 
for discrete time they can be mathematically feasible, e.g. the HK process for H < 0.5).  

3. Due to the shape of the autocorrelation function, this process has been termed in the 
geostatistics literature “the hole-effect model”. 
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Example 5: A periodic process with white noise  
Type Continuous time Discrete time, averaged D.t., sampled 
Variance of instan-
taneous process 

    ( )   ( )     Not applicable   
      ( )  

   
Variance at scale Δ = 
kD (Climacogram) 

 ( )  
  

  ⁄
        (

 

 
)  

 

As in continuous time   ( )     

Autocovariance 
function for lag τ = 
jΔ (or jD)  

 ( )  
   (  ⁄ )       (    ⁄ )  

  
( )

 
  

(    ⁄ ) 
  (    (

    

 
)  

   (
   (   )

 
)      (

   (   )

 
))  

  
  

      (     ⁄ ) 
(   )  

Power spectrum  
for frequency 
w = ω/Δ (or ω/D) 

 ( )    
          (    )  

 ( )( )           (    ) 
(as in continuous time) 

  ( )     

Asymptotic slopes 
for λ1 > 0 [and for 
λ1 = 0; but not valid 
for s#( )]  

  ( )    ( )          
  ( )    ( )          
  ( )     ( )           
  ( )    ( )          

  

Notes  
1. δ(x) is the Dirac delta function while sinc(x) ≔ sin(πx)/πx. 
2. Strictly speaking, the periodic component is a deterministic rather than a stochastic process. In this 

respect, the process should be better modelled as a cyclostationary one. 
3. However, the fact that the autocorrelation is a function of the lag τ only, allows the process to be 

treated as a typical stationary stochastic process. 
4. The infinite variance of the instantaneous process is a result of the white noise component, which in 

continuous time has infinite variance. 



  D. Koutsoyiannis,  Encolpion of stochastics   33 

Example 5: A periodic process with white noise (contd.) 

  

Notes 

1. The parameters are λ1 = 0.05, λ2 = 1 (so that the random noise is 5% of the variability implied 
by periodicity), α = 100, and the spacing is D = 1.  

2. While asymptotically (for w → 0 and ∞) the spectrum and the pseudospectrum behave 
similarly, they have marked differences for other w. In particular, the power spectrum has a 
peak (an infinite impulse) at τ = 1/α; the pseudospectrum has a trough (negative peak) at this 
value as well as at τ = 1/kα for integer k (as the variance is diminished at these resolutions). 

3. Thus, the power spectrum is more robust in identifying periodicities, yet the pseudospectrum 
provides a hint about their existence.  
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Example 6: A process with Cauchy-type climacogram 
An interesting process (derived by modifying one proposed by Gneiting and Schlather, 2004) is defined by 

a Cauchy-type climacogram, i.e.,  ( )  
 

(  (  ⁄ ) )
    

 

 . The expressions of its characteristics are too 

complex, but it has simple asymptotic properties, i.e.   ( )    ( )      ,   ( )    ( )      , 
  ( )     ( )       ,   ( )    ( )   . 

  

Notes 

1. The parameters are λ = 1, α = 10, H = 0.8, κ = 1.8 (only the continuous-time properties are depicted).  
2. The important feature of this process is that it allows explicit control of both asymptotic slopes. An 

intermediate steep slope that appears in the power spectrum is artificial and does not indicate a 
scaling behaviour.  
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Example 7: A composite long-range and short-range 
dependence 
The process whose characteristics are shown in the figures below is composed of a modified HK 

process (p. 28) and a Markov process (p. 24) and has autocovariance  ( )  
  

(    ⁄ )        
      

  

Notes 

1. The parameters are λ1 = 1, λ2 = 20, α = 10, H = 0.85 (only the continuous time properties are depicted). 
2. As in the previous example, again an intermediate slope (in this case a mild one) appears in the power 

spectrum. Again this is artificial, here imposed by the Markov process, and does not indicate a scaling 
behaviour.  
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