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Preface 
Most things are uncertain. Stochastics is the language of uncertainty. I believe the gospel of 
stochastics is the book by Papoulis (1991). However, as Papoulis was an electrical engineer, his 
approach may need some additions or adaptations in order to be applied to geophysical processes. 
The peculiarities of the latter are that: 

(a) their modelling relies very much on observational data because geophysical systems are too 
complex to be studied by theoretical reasoning and deduction, and theories are often 
inadequate;  

(b) the distinction “signal vs. noise” is meaningless;  
(c) the samples are small;  
(d) they are often characterized by long term persistence, which makes classical statistics 

inappropriate. 

Having studied several hydroclimatic processes, I derived in handwritten notes some equations 
useful for such processes. Having repeated such derivations several times, because I forgot that I 
had produced them before, or lost the notes, I decided to produce this document. Some of the 
equations and remarks contained here can be found in other texts, particularly in Papoulis (but 
with many differences in notational and other conventions), but some other cannot. I believe they 
can be useful to other people, researchers and students. 

Stochastics is much more than calculations. Popular computer programs have made calculations 
easy and fast. But numerical results may mean nothing! It is better not to use programs (even 
better, not to make calculations) if we are unaware of the stochastic properties of the object (see 
some examples in Papalexiou et al. 2010). Even more so, if we have not assimilated the fundamental 
concepts of stochastics, including probability theory and statistics. These are difficult to assimilate. 
I believe those who did not have difficulties in understanding the concepts have inadequate 
knowledge of stochastics. 
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Introduction 
Most of the popular knowledge in stochastics originates from so-called time-series books. These 
have given focus on stylized families of models like AR(p), ARMA(p,q), ARIMA(p,d,q), ARFIMA(p,d,q) 
etc. Most of these are too artificial and unnecessary. They are too artificial because they are over-
parameterized and thus not parsimonious, and because, being complicated discrete-time models, 
they do not correspond to a continuous time process; but natural processes typically evolve in 
continuous time. They are unnecessary because there exist general methods to generate synthetic 
series from a process with any arbitrary autocorrelation structure (Koutsoyiannis, 2000, 2015).  

Other, more fashionable, texts have given emphasis to mathematical tools like fractals, which are 
often applied inattentively, treating random variables as if they were deterministic and cursorily 
using uncontrollable quantities (e.g. high order moments) whose estimates are characterized by 
extraordinarily high bias and uncertainty (Lombardo et al., 2014). 

Even the second order joint moment of a process, the autocorrelation function, is characterized by 
high bias and uncertainty (Koutsoyiannis and Montanari, 2007; Papalexiou et al., 2010; Lombardo 
et al., 2014) which are transferred to transformations thereof, e.g. the power spectrum. For this 
reason, I believe the best concept to use in stochastic modelling, particularly in parameter 
estimation, is the climacogram (Koutsoyiannis, 2010, 2015; Dimitriadis and Koutsoyiannis, 2015; 
see also p. 28 below). This is defined to be the variance (or the standard deviation) of the time-
averaged process as a function of time scale of averaging. It involves bias too, but its bias can be 
determined analytically and included in the estimation (see below, p. 29). The climacogram, the 
autocorrelation function and the power spectrum are transformations one another. The notes 
below give all details, from definition to theoretical derivation and estimation from data. For the 
latter the details given are for the climacogram only; once a particular model is fitted based on its 
climacogram, its autocovariance function and power spectrum can be derived analytically.  
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Fundamental remarks on random variables 
 A random variable is not a regular variable and need not necessarily describe something random; 

it just describes something uncertain, unpredictable, unknown. While a regular variable takes on 
one value at a time, a random variable is a more abstract mathematical object that takes on all its 
possible values at once, but not necessarily in a uniform manner; therefore a distribution function 
should always be associated with a random variable.  

 A random variable needs a special notation to distinguish it from a regular variable x; the best 
notation devised is the so-called Dutch convention (Hemelrijk, 1966), according to which random 
variables are underlined, i.e. x. The distribution function F(x) ≔ P{x ≤ x}, where P denotes 
probability, and the probability density function f(x) := dF(x)/dx are real-valued functions of the 
real (regular) variable x, not of the random variable x. Realizations of x are typically denoted by 
the non-underlined symbol x. 

 Functions of random variables, e.g. z = g(x) are random variables. Expected values of random 
variables are regular variables; for example E[x] and E[g(x)] are constants—neither functions of x 
nor of x. That justifies the notation E[x] instead of E(x) or E(x) which would imply functions of x 
or x.  

 Distinguishing random variables from regular ones is essential. For example, if we assume that x 
and 𝑦 are independent random variables uniformly distributed in [0, 1], then it is easy to verify 

that P{𝑥 ≤ 𝑦} = 0.5 (a constant) while P{𝑥 ≤ 𝑦} = max(0, min(y, 1)) (a function of y). For x and 𝑦 

not independent, the conditional expectations E[𝑥|𝑦] and E[𝑥|𝑦] are different; the former is a 

regular variable and a function of y, but the second is a random variable, a function of 𝑦, whose 

expected value is E[x] (i.e., E[E[𝑥|𝑦]] = E[x] ≠ E[𝑥|𝑦]). As another example, both conditional 

entropies Φ[x|y] and Φ[𝑥|𝑦] are numbers (not random variables) but while the latter obeys 

Φ[𝑥|𝑦] ≤ Φ[x], the former can be either greater or less than the unconditional Φ[x] (Papoulis, 

1991, pp. 172, 564); this has led to serious misconceptions in cases of inattentive notation.  
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Fundamental remarks on stochastic processes 
 A stochastic process is a family of infinitely many random variables indexed by a (regular) variable. The 

index typically represents time and is either a real number, t, in a continuous-time stochastic process 
x(t), or an integer, i, in a discrete-time stochastic process xi.  

 Realizations, xi, of a stochastic process, xi or x(t), at a finite set of discrete time instances i (or ti) are 
called time series. Some texts confuse time series and stochastic processes, as they also do with random 
and regular variables. To avoid such confusion, which may have dramatic effects, we must have always 
in mind that a stochastic process is a family of random variables, infinitely many for discrete time 
processes and uncountably infinitely many for continuous time processes. On the other hand, a time 
series is a finite sequence of numbers.  

 Central to the notion of a stochastic process are the concepts of stationarity and nonstationarity, two 
widely misunderstood and misused concepts (cf. the popular assertion “stationarity is dead”; see 
Koutsoyiannis and Montanari, 2014; Montanari and Koutsoyiannis, 2014), whose definitions are only 
possible for (and applies only to) stochastic processes (thus, for example, a time series cannot be 
stationary, nor nonstationary). A process is called (strict-sense) stationary if its statistical properties are 
invariant to a shift of time origin, i.e. the processes x(t) and x(s) have the same statistics for any t and s 
(see further details, as well as definition of wide-sense stationarity, in Papoulis, 1991; see also further 
explanations in Koutsoyiannis, 2006, 2011b and Koutsoyiannis and Montanari, 2014). Conversely, a 
process is nonstationary if some of its statistics are changing through time and their change is described 
as a deterministic function of time. 

 A nonstationary process can be handled theoretically without insurmountable difficulties—for example 

the cumulative process X(t) defined below is nonstationary (X(t) ≔ ∫ 𝑥(𝜉)d𝜉
𝑡

0
, where x(t) is a stationary 

process); it needs some attention though, as its statistical properties depend on time. However, 
handling (or even detecting) nonstationarity merely from data may be difficult, if not impossible. 
Ironically, in many of the cases where nonstationarity has been claimed based on data analyses, the 
stochastic tools used are meaningful only for stationary processes. 
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Fundamental remarks on stochastic processes (contd.) 
 Stationarity is also related to ergodicity, which in turn is a prerequisite to make inference from data, that 

is, induction. Without ergodicity inference from data would not be possible. Ironically, several studies 
use time series data to estimate statistical properties, as if the process were ergodic, while at the same 
time what they (cursorily) estimate may falsify the ergodicity hypothesis (see example on p. 22). 

 While ergodicity is originally defined in dynamical systems (e.g. Mackey, 1992, p. 48), the ergodic 
theorem (e.g. Mackey, 1992 p. 54) allows redefining ergodicity within the stochastic processes domain 
(Papoulis 1991 p. 427; Koutsoyiannis 2010) in the following manner: A stochastic process xt is ergodic if 
the time average of any (integrable) function g(xt), as time tends to infinity, equals the true (ensemble) 
expectation E[g(xt)]. 

 If the system that is modelled in a stochastic framework has deterministic dynamics (meaning that a 
system input will give a single system response, as happens for example in most hydrological models) 
then a theorem applies (Mackey 1992, p. 52), according to which a dynamical system has a stationary 
probability density if and only if it is ergodic. Therefore, a stationary system is also ergodic and vice 
versa, and a nonstationary system is also non-ergodic and vice versa.  

 If the system dynamics is stochastic (a single input could result in multiple outputs), then ergodicity and 
stationarity do not necessarily coincide. However, recalling that a stochastic process is a model and not 
part of the real world, we can always conveniently device a stochastic process that is ergodic, provided 
that we have excluded nonstationarity (see example in Koutsoyiannis and Montanari, 2014).  

 In conclusion, from a practical point of view ergodicity can always be assumed when there is 
stationarity, while this assumption if fully justified by the theory if the system dynamics is deterministic. 
Conversely, if nonstationarity is assumed, then ergodicity cannot hold, which forbids inference from 
data. This contradicts the basic premise in geosciences, where data are the only reliable information in 
building models and making inference and prediction. 
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A schematic for definitions and notation 

 

t0 Δ 2Δ … (i – 1)Δ iΔ

xi := x(iΔ) 
(instantaneous process 
sampled at spacing Δ)

Xi:= 

(cumulative sampled at 
spacing Δ, nonstationary)

X(t) ≔

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

=

= X(iΔ)/Δ – Χ((i– 1)Δ)/Δ

(averaged at time scale Δ)
t0 Δ 2Δ … (i – 1)Δ iΔ
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Definitions and notation 
Type Continuous time Discrete time by 

integrating at time scale 
Δ  

Discrete time by sampling at 
spacing Δ (and aggregating at 
scale kΔ, where k is integer) 

Stochastic 
processes 

x(t): instantaneous, 
stationary 

X(t) ≔ ∫ 𝑥(𝜉)d𝜉
𝑡

0
: 

cumulative, 
nonstationary 

𝑋𝑖
(𝛥)

 ≔ X(iΔ) – X((i – 1)Δ): 

aggregated, stationary 
intervals of X(t) 

𝑥𝑖
(𝛥)

 ≔ 𝑋𝑖
(𝛥)  / Δ: averaged 

𝑥𝑖 := x(iΔ): sampled instantaneous 

𝑋𝑖 ≔ ∑ 𝑥𝑗
𝑖
𝑗=1 : cumulative 

�̌�𝑖
(𝑘)
≔ 𝑋𝑖𝑘 − 𝑋(𝑖−1)𝑘: aggregated 

𝑥𝑖
(𝑘)
≔ �̌�𝑖

(𝑘)
𝑘⁄ : averaged 

Characteristic 
variances 

γ0 ≔ Var[x(t)] 

Γ(t) ≔ Var[X(t)] 
γ(t) ≔ Var[X(t)/t] = Γ(t)/t2 
Note: 𝛤(0) = 0;  𝛾(0) = 𝛾0  

Var[𝑋𝑖
(𝛥)

] = Γ(Δ) 

Var[𝑥𝑖
(𝛥)

] = γ(Δ) 

γ0 (= Var[𝑥𝑖]) 

�̌�(𝑘)≔ Var[�̌�𝑖
(𝑘)

] 

 𝛾(𝑘)≔ Var[𝑥𝑖
(𝑘)

] = �̌�(𝑘) 𝑘2⁄  

Note: �̌�(1) = 𝛾(1) = 𝛾0 

Autocovariance 
function 

c(τ) ≔ Cov[x(t), x(t + τ)] 
Note: c(0) ≡ γ0 = γ(0)  

𝑐𝑗
(𝛥)

≔ Cov[𝑥𝑖
(𝛥)
, 𝑥𝑖+𝑗
(𝛥)

] 

Note: 𝑐0
(𝛥)

≡ 𝛾(𝛥) 

�̌�𝑗≔ Cov[𝑥𝑖 , 𝑥𝑖+𝑗] = c(jΔ)  

Note: �̌�0 ≡ γ0 

Power 
spectrum  
(spectral 
density) 

s(w) := 

2∫ 𝑐(𝜏) cos(2π𝑤𝜏) d𝜏
∞

−∞
 

𝑠d
(𝛥)(𝜔) ≔ 

2∑ 𝑐𝑗
(𝛥)∞

𝑗=−∞ cos(2π𝜔𝑗) 

𝑠(𝛥)(𝑤) = 𝛥𝑠d
(𝛥)(𝑤𝛥)  

Note: w = ω/Δ 

�̌�d(𝜔) ≔ 2∑ �̌�𝑗
∞
𝑗=−∞ cos(2π𝜔𝑗)  

�̌�(𝑤) = 𝛥𝑠d(𝑤𝛥)  
Note: w = ω/Δ 
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Notes on notation 

1. The continuous time is denoted as t and the discrete time as i = 0, 1, …; Δ is the time step, in case 
of sampling or the time scale in case of aggregating or averaging; k is an integer that multiplies 
the spacing Δ to give an aggregation scale kΔ. 

2. Frequency (inverse time) is denoted as w while ω = wΔ is nondimensionalized frequency. Both w 
and ω are real numbers ranging in (–∞, ∞) for a continuous-time process, while for a discrete-
time process w ranges in [–1/2Δ, 1/2Δ] and ω in [–½, ½]. As both the autocovariance function 
and the power spectrum are even functions, we make all calculations for a continuous-time 
process in (0, ∞), and for a discrete-time process in [0, 1/2Δ] for w and in [0, ½] for ω (see 
below).  

3. The standard deviations of the instantaneous and averaged processes are denoted, respectively, 

as σ0 ≔ √𝛾0, σ(Δ) ≔ √𝛾(𝛥). 

4. The power spectrum of the continuous-time (instantaneous) process, denoted as s(w), is twice 
the cosine Fourier transform of the autocovariance function of the process, while those of the 

discrete-time processes, denoted as 𝑠d
(𝛥)(𝜔) and �̌�d(𝜔), are twice the inverse finite cosine Fourier 

transforms of the respective autocovariance functions. The convention of the multiplying factor 2 
in the Fourier transforms was adopted so that the integral of the spectrum on positive 
frequencies only equals the variance of the process. 

5. In the discrete-time cases, both the lag j and the frequency ω are dimensionless. To make the 
spectra equivalent and comparable to the continuous-time spectrum s(w) we have introduced the 
versions 𝑠(𝛥)(𝑤) and �̌�(𝑤) (with w = ω/Δ) for the averaged and the sampled process, respectively, 
which have the same dimensions as s(w).  
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Computation of variances and covariances 
The climacogram and the autocovariance function of a process either continuous- or discrete-time, 
are transformations one another. The climacogram of the continuous time process, as well as those 
of the averaged or aggregated process, can be calculated from the autocovariance function of the 
continuous time process as follows (cf. Papoulis, 1991, p. 299): 

𝛤(𝛥) = 2∫(𝛥 − 𝜏)𝑐(𝜏)d𝜏

𝛥

0

 (1) 

𝛾(𝛥) =
𝛤(𝛥)

𝛥2
=
2

𝛥2
∫(𝛥 − 𝜏)𝑐(𝜏)d𝜏

𝛥

0

= 2∫(1 − 𝜉)𝑐(𝜉𝛥)d𝜉

1

0

 (2) 

The inverse formula, by which we can find the autocovariance if the climacogram is known, is easily 
derived by taking the second derivative in (1) also using Leibniz’s integral rule:  

𝑐(𝜏) =
1

2
 
d2𝛤(𝜏)

d𝜏2
=
1

2
 
d2(𝜏2𝛾(𝜏))

d𝜏2
 (3) 

The climacogram of the sampled aggregated and the sampled averaged process cannot be found in 
this way, but needs to be calculated in a purely discrete-time framework (cf. Papoulis, 1991, p. 432; 
Koutsoyiannis, 2010), as shown in next page.  

Using l'Hôpital's rule on (2), the following useful asymptotic properties are derived: 

𝑐(0) = 𝛾(0),   𝑐′(0) = 3𝛾′(0) (4) 
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Computation of variances and covariances (contd.) 
The following relationships give the climacogram from the autocovariance function for the discrete-
time sampled process. 

�̌�(𝑘) = 𝑘𝛾
0
+  2∑ (𝑘 − 𝑗)�̌�𝑗

𝑘−1
𝑗=1   (5) 

�̌�(𝑘) =
�̌�(𝑘)

𝑘2
=
1

𝑘
(𝛾
0
+  2∑ (1 −

𝑗

𝑘
) 𝑐𝑗

∗𝑘−1
𝑗=1 )  (6) 

The following recursive relationship facilitates calculation of the climacogram: 

�̌�(𝑘) = 2�̌�(𝑘−1) − �̌�(𝑘−2) + 2�̌�𝑘−1,   �̌�
(0) = 0,   �̌�(1) = �̌�0  (7) 

The following inverse relationships give the autocovariance functions from the climacograms for 
the discrete-time processes of interest. 

𝑐𝑗
(𝛥)
=
1

2
 
δ𝛥
2𝛤(𝑗𝛥)

𝛥2
=

1

𝛥2
 (
𝛤((𝑗+1)𝛥)+𝛤((𝑗−1)𝛥)

2
− 𝛤(𝑗𝛥))  (8) 

�̌�𝑗 =
1

2
 δ1
2�̌�(𝑗) =

�̌�(𝑗+1) + �̌�(𝑗−1)

2
− �̌�(𝑗) (9) 

Here δ𝛥
2 is the second order central difference operator for spacing Δ and δ𝛥

2 𝛥2⁄  is the second finite 
derivative. Both formulae are exact (not approximations). The latter holds also for any type of 
discrete time process, even if it is not linked to a continuous-time one. Both are valid for j > 0, but 
can be written in the following manner so as to be valid for any integer j: 

𝑐𝑗
(𝛥)
=

1

𝛥2
 (
𝛤(|𝑗+1|𝛥)+𝛤((|𝑗−1|𝛥)

2
− 𝛤(|𝑗|𝛥)), �̌�𝑗 =

�̌�(|𝑗+1|)+�̌�(|𝑗−1|)

2
− �̌�(|𝑗|) (10) 



  D. Koutsoyiannis, Encolpion of stochastics   11 

Power spectrum 
The power spectrum of the continuous-time process is calculated from the autocovariance function 
as 

𝑠(𝑤) = 4∫ 𝑐(𝜏) cos(2π𝑤𝜏) d𝜏

∞

0

 (11) 

The inverse transformation is 

𝑐(𝜏) = ∫ 𝑠(𝑤) cos(2π𝑤𝜏) d𝑤

∞

0

 (12) 

The power spectrum of a discrete-time process is calculated from the autocovariance function as 

𝑠d
(𝛥)(𝜔) = 2𝑐0

(𝛥) + 4∑ 𝑐𝑗
(𝛥)

∞

𝑗=1

cos(2π𝜔𝑗), �̌�d(𝜔) = 2�̌�0 + 4∑ �̌�𝑗

∞

𝑗=1

cos(2π𝜔𝑗)  (13) 

while 𝑠(𝛥)(𝑤) and �̌�(𝑤) are readily derived from their definitions.  

The inverse transformation is 

𝑐𝑗
(𝛥)
= ∫ 𝑠d

(𝛥)(𝜔) cos(2π𝜔𝑗) d𝜔

1 2⁄

0

, �̌�𝑗 = ∫ �̌�d(𝜔) cos(2π𝜔𝑗) d𝜔

1 2⁄

0

 (14) 

Notice that, even in the discrete case, the inverse transformation is an integral, not a sum.  
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Relationships between power spectra of discrete and 
continuous time 
The direct calculation of the discrete-time power spectra from that of the continuous time is 
feasible but involved.  

Specifically, the following relationship connects �̌�d(𝜔) with s(w) (cf. Papoulis, 1991, p. 336): 

�̌�d(𝜔) =
�̌�(𝑤)

𝛥
=
1

𝛥
∑ 𝑠 (

𝜔 + 𝑗

𝛥
)

∞

𝑗=−∞

=
1

𝛥
∑ 𝑠 (𝑤 +

𝑗

𝛥
)

∞

𝑗=−∞

, 𝑤 = 𝜔 ∕ 𝐷 (15) 

To find the relationship of 𝑠d
(𝛥)(𝜔) with s(w), we utilize (15) after we have applied a moving average 

operation to the process. The power spectrum of the process 𝑦(𝑡) obtained as the moving average 

of 𝑥(𝑡) at time scale Δ, i.e., 𝑦(𝑡) ≔
1

𝛥
∫ 𝑥(𝜉)d𝜉
𝑡

𝑡−𝛥
 is (cf. Papoulis, 1991, p. 325, also noticing the 

different notational and other conventions): 

𝑠𝑦(𝑤) = 𝑠(𝑤) sinc
2(π𝑤𝛥) (16) 

where sinc(x) ≔ sin(x)/x. By sampling 𝑦(𝑡) at intervals Δ, we find: 

𝑠d
(𝛥)(𝜔) =

𝑠(𝛥)(𝑤)

𝛥
=
1

𝛥
∑ 𝑠 (

𝜔+𝑗

𝛥
) sinc2(π(𝜔 + 𝑗))∞

𝑗=−∞   

=
1

𝛥
∑ 𝑠 (𝑤 +

𝑗

𝛥
)∞

𝑗=−∞  sinc2(π(𝑤𝛥 + 𝑗)),  

𝑤 = 𝜔 ∕ 𝛥 

(17) 
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Relationship between climacogram and power spectrum 
As both the climacogram and the power spectrum are transformations of the autocovariance 
function, the two are also related to each other by simple transformations. Thus, by virtue of (3), 
expressing c(τ) in terms of γ(τ) in (11) and using known properties of the Fourier transform, we 
find 

𝑠(𝑤) = 2 𝑤2
d2

d𝑤2
∫ 𝛾(𝜏) cos(2π𝑤𝜏) d𝜏

∞

0

 (18) 

which after algebraic manipulations becomes  

𝑠(𝑤) = −2 ∫(2π𝑤𝜏)2𝛾(𝜏) cos(2π𝑤𝜏) d𝜏

∞

0

 (19) 

On the other hand, combining (2) and (12) we find 

𝛾(𝛥) = 2∫(1 − 𝜉)∫ 𝑠(𝑤) cos(2π𝑤𝜉𝛥) d𝑤

∞

0

d𝜉

1

0

= 2∫ 𝑠(𝑤)∫(1 − 𝜉) cos(2π𝑤𝜉𝛥)

1

0

d𝜉 d𝑤

∞

0

 (20) 

and after algebraic manipulations, we find the following equation giving directly the climacogram 
from the power spectrum (which could be also derived by combining (12) and (16) for τ = 0): 

𝛾(𝛥) = ∫ 𝑠(𝑤) sinc2(π𝑤𝛥) d𝑤

∞

0

 (21) 
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The autocorrelation function 
The autocorrelation function is the autocovariance function standardized by variance, i.e., 

𝜌(𝜏) ≔
𝑐(𝜏)

𝛾0
, 𝜌𝑗

(𝛥)
≔
𝑐𝑗
(𝛥)

𝛾(𝛥)
, �̌�𝑗 ≔

�̌�𝑗

𝛾0
 (22) 

for the continuous-time, the averaged and the sampled process, respectively. All these 
autocorrelation functions are bounded from below and above, ranging in [–1, 1].  

In some processes (including the white noise and the Hurst-Kolmogorov process) the 
instantaneous variance γ0 = ∞, while c(τ) < ∞, so that ρ(τ) = �̌�𝑗  = 0 for any lag τ or j (except τ = j = 0, 

in which ρ(0) = �̌�0 = 1). However, if the processes are ergodic (and normally they should be as 

explained in p. 5), the aggregated and averaged process the variance is finite, so that generally 𝜌𝑗
(𝛥)

 

≠ 0. 
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The structure function and the climacogram-based 
structure function 
The structure function, also known as semivariogram or variogram, is defined to be  

ℎ(𝑡, 𝑠) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑠)] ≡

1

2
(Var[𝑥(𝑡)] + Var[𝑥(𝑠)]) − Cov[𝑥(𝑡), 𝑥(𝑠)]  (23) 

In a stationary process, for τ ≔ s – t,  

ℎ(𝜏) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑡 + 𝜏)] ≡ Var[𝑥(𝑡)] − Cov[𝑥(𝑡), 𝑥(𝑡 + 𝜏)]  (24) 

which in the various processes examined here takes the form 

ℎ(𝜏) ≔ 𝛾0 − 𝑐(𝜏), ℎ𝑗
(𝛥)
≔ 𝛾(𝛥) − 𝑐𝑗

(𝛥)
,  ℎ̌𝑗 ≔ 𝛾0 − �̌�𝑗 (25) 

By analogy, we define the climacogram-based structure function CBSF: 

g(Δ) ≔ γ0 – γ(Δ),  𝑔𝑘
(𝛥)
≔ 𝛾(𝛥) − 𝛾(𝑘𝛥),   �̌�(𝑘) ≔ 𝛾0 − �̌�

(𝑘) (26) 

The CBSF, g, is related to the structure function, h, by the same way as the climacogram, γ, is related 
to the autocovariance function, c:   

𝑐(𝜏) =
1

2
 
d2(𝜏2𝛾(𝜏))

d𝜏2
, ℎ(𝜏) =

1

2
 
d2(𝜏2𝑔(𝜏))

d𝜏2
 (27) 

By nondimensionalizing h(τ) or g(Δ) (by dividing by γ0, etc.) we get the nondimensionalized 
structure function, which is the complement of ρ from 1, and the nondimensionalized climacogram-
based structure function (NCBSF), i.e.,  

1 – ρ(τ) ,   1 − 𝜌𝑗
(𝛥)

,   1 − 𝜌𝑗
∗,  1 – γ(Δ) / γ0,  1 − 𝛾(𝑘𝛥)/𝛾(𝛥),   1 − �̌�(𝑘)/𝛾0 
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Autocorrelation function and structure function in 
processes with infinite variance 
In cases where γ0 = ∞, the structure function is h(τ) = ∞, while ρ(τ) = 0 and 1 – ρ(τ) = 1 for any lag 
τ ≠ 0. This is an improper behaviour.  

However, assuming that the process is ergodic, such problems do not appear in the averaged 
process, in which we will have: 

0< γ(Δ) < ∞,   0 ≤ 1 − 𝜌𝑗
(𝛥)
≤ 2 

The geostatistics literature includes the so-called intrinsic models in which γ0 = ∞ and c(τ) = ∞, 
while h(τ) = γ0 – c(τ) < ∞ (e.g. h(τ) = a τb), so that 1 – ρ(τ) = 0 for any τ ≠ ∞. In such models the 
infinities are transferred even in the averaged process: 

𝛾(𝛥) = 𝑐𝑗
(𝛥)
= ∞,  1 − 𝜌𝑗

(𝛥)
= 1 − 𝜌𝑗

∗ = 0 

In particular, the property γ(Δ) = ∞ means that the process is non-ergodic (in ergodic processes 
γ(Δ) should tend to zero as Δ tends to infinity; see p. 17). For these reasons, as explained in p. 4, 
such processes are not recommended in modelling. There are much better alternatives (see 
examples below). 
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The climacogram-based spectrum (CBS) 
While the power spectrum is a magnificent tool for stochastic processes, its estimation from data is 
problematic. An empirical spectrum (periodogram) constructed from empirical autocovariances is 
too rough. Techniques to smooth the power spectrum need too many data to be applied, and they 
may also involve uncontrolled biases. 

A substitute of the power spectrum which has similarities in its properties, is the climacogram-
based spectrum (CBS) defined as  

𝜓(𝑤)  ≔
2 

𝑤𝛾0
𝛾(1 𝑤⁄ )𝑔(1 𝑤⁄ ) =

2 𝛾(1 𝑤⁄ )

𝑤
(1 −

𝛾(1 𝑤⁄ )

𝛾(0)
) (28) 

In contrast to the empirical periodogram, the empirical ψ(w) is pretty smooth. Its value at w = 0 
equals that of the power spectrum; indeed from (1), (2), (11) we obtain 𝜓(0) = 𝑠(0) = 𝛥 𝛾(𝛥)|𝛥→∞  

= 4∫ 𝑐(𝜏)d𝜏
∞

0
.  

At frequencies where the power spectrum has peaks, signalling periodicities, the CBS has troughs 
(negative peaks, see example in p. 43).  

The CBS combines the climacogram and the CBSF; it is valid for both finite and infinite variance. In 
processes with infinite variance (γ(0) = c(0) = ∞) the CBS simplifies to 

𝜓(𝑤) =
2 𝛾(1 𝑤⁄ )

𝑤
 (29) 
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Some important stochastic properties  
The climacogram γ(Δ) denotes variance and therefore should be nonnegative for any time scale Δ. It could 
be positive finite or even infinite for Δ = 0. For (mean) ergodic processes it should necessary tend to 0 for 
Δ → ∞ (Papoulis, 1991, p. 429). Thus, 

𝛾(𝛥) > 0, 𝛾(∞) = 0 (30) 

As the autocovariance c(τ) equals the variance for τ = 0, it follows that c(0) > 0. For τ ≠ 0, c(τ) can take on 
negative values as well. However, c(τ) must be a positive definite function (see e.g. Stewart, 1976), a 
property which, among other things, makes it bounded from below and above by ± c(0). Ergodicity also 
imposes a constraint about its asymptotic behaviour (Papoulis, 1991, p. 430); in conclusion:  

𝑐(0) > 0,   |𝑐(𝜏)| ≤ 𝑐(0),
1

𝛥
∫ 𝑐(𝑡)
𝛥

0

d𝜏
𝛥→∞
→  0 (31) 

In order for the function c(τ) to be positive definite, its Fourier transform, i.e. the power spectrum s(w) 
should be nonnegative. Thus, 

𝑠(𝑤) ≥ 0 (32) 

Additional properties of s(w) are discussed in next section.  

The autocovariance c(τ) is often a nonnegative and nonincreasing function. In this case γ(Δ) is 
nonincreasing too. To see this, we take the derivative with respect to Δ from (2) and we find 

𝛾′(𝛥) =
4

𝛥3
∫ (𝜏 − 𝛥 /2)𝑐(𝜏)d𝜏
𝛥

0
  (33) 

The term (τ – Δ/2) within the integral is symmetric with respect to Δ/2 (negative for τ < Δ/2 and positive 
for τ > Δ/2). As c(τ) is nonincreasing, its values for τ < Δ/2 are greater than those for τ > Δ/2. Clearly then 
the negative product prevails over the positive product and thus γ΄(Δ) < 0. 
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Asymptotic power laws and the log-log derivative 
It is quite common that functions f(x) defined in [0, ∞), whose limits at 0 and ∞ exist, are associated 
with asymptotic power laws as 𝑥 → 0 and ∞ (Koutsoyiannis, 2014b).  

Power laws are functions of the form 

𝑓(𝑥) ~ 𝑥𝑏  (34) 

A power law is visualized in a graph of f(x) plotted in logarithmic axis vs. the logarithm of x, so that 
the plot forms a straight line with slope b. Formally, the slope b is expressed by the log-log 
derivative: 

𝑓#(𝑥) ≔
d(ln 𝑓(𝑥))

d (ln 𝑥) 
=
𝑥𝑓 ′(𝑥)

𝑓(𝑥)
 (35) 

If the power law holds for the entire domain, then 𝑓#(𝑥) = 𝑏 = constant. Most often, however, 
𝑓#(𝑥) is not constant. Of particular interest are the asymptotic values for 𝑥 → 0 and ∞, symbolically 
f #(0) and f #(∞), which define two asymptotic power laws. 
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Asymptotic properties of the power spectrum 
The asymptotic behaviour of the log-log derivative of the power spectrum s(w) is quite important to 
characterize the process. Generally, this log-log derivative is  

𝑠#(𝑤) ≔
d(ln 𝑠(𝑤))

d (ln𝑤) 
=
𝑤 𝑠 ′(𝑤)

𝑠 (𝑤)
=
𝑎(𝑤)

𝑠(𝑤)
  (36) 

where 𝑎(𝑤) ≔ 𝑤𝑠′(𝑤). We will find its asymptotic behaviour for 𝑤 → 0, i.e. 𝑠#(0). Note that 
continuous time is assumed for the process as well as the spectrum. From (11), the derivative is  

𝑠 ′(𝑤) = −4∫ 2π𝜏 𝑐(𝜏) sin(2π𝑤𝜏) d𝜏
∞

0
  (37) 

We define: 

𝐴(𝑤) ≔ 𝑎(𝑤) + 𝑠(𝑤) = 4∫ 𝑐(𝜏) (cos(2π𝑤𝜏) − 2π𝑤𝜏 sin(2π𝑤𝜏)) d𝜏
∞

0
  (38) 

and we observe that 

𝐴(0) = 4∫ 𝑐(𝜏) d𝜏 = 𝑠(0)
∞

0
  (39) 

In other words 

𝑎(0) + 𝑠(0) = 𝑠(0) (40) 

If 0 < 𝑠(0) < ∞ then (40) simplifies to 

𝑎(0) = 0 (41) 

and hence 

0 < 𝑠(0) < ∞ ⇒ 𝑠#(0) = 0 (42) 
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Asymptotic properties of the power spectrum (contd.) 
If 𝑠(0) = 0 then (41) is still valid, but the log-log derivative 𝑠#(0) becomes an indeterminate 
quantity (0/0). This should necessarily be positive, so that 𝑠#(𝑤)>0 for w >0. Thus, 

𝑠 (0) = 0 ⇒ 𝑠#(0) > 0 (43) 

If 𝑠(0) = ∞ (hence 𝑠′(0) = −∞, 𝑎(0) < 0, while s(w) is continuous), then (because 𝑠(𝑤) is 
nonnegative) (40) results in  

lim
𝑤→0

(𝑎(𝑤) + 𝑠(𝑤)) > 0 (44) 

and 

lim
𝑤→0

(
𝑎(𝑤)

𝑠(𝑤)
+ 1) > 0  (45) 

Consequently, 

𝑠(0) = ∞ ⇒ 𝑠#(0) > −1 (46) 

In conclusion, the asymptotic log-log derivative of the power spectrum for w → 0 can never be 
lower (steeper) than –1 and more specifically it ranges as follows: 

𝑠#(0) > 0, 𝑠(0) = 0

𝑠#(0) = 0,  0 < 𝑠(0) < ∞

−1 < 𝑠#(0) < 0, 𝑠(0) = ∞

 (47) 

The asymptotic log-log derivative for w → ∞ should necessarily be non-positive, without other 
restrictions, i.e.: 

𝑠#(∞) ≤ 0 (48) 
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A comment on the asymptotic slope of the power spectrum 
We often see publications reporting logarithmic slopes in empirical power spectra 𝑠# < −1 (e.g. 
𝑠# = −1.5, etc.). Does this mean that (46) is wrong or that the reality does not comply with this theoretical 
property?  

First we should point out that a slope 𝑠#(𝑤) < −1 is mathematically and physically possible for large w. 
However it is infeasible for w → 0. Therefore, reported values 𝑠# < −1 for small w are spurious and are 
due to inconsistent estimation algorithms (stemming from the fact that the periodogram constructed from 
empirical autocovariances is too rough and the estimation of slopes from this is too uncertain; cf. 
Koutsoyiannis, 2013a; Lombardo et al., 2013; Dimitriadis and Koutsoyiannis, 2015). Such results do not 
put into question the validity of (46) but are just invalid results.  

For additional support of this argument, let us assume the contrary, i.e., that for frequency range 0 ≤ w ≤ ε 
(with ε however small) the log-log derivative is 𝑠#(𝑤) = −𝛽, or else s(w) = α w–β where α and β are 
constants, with 𝛽 > 1. We notice in (21) that the fraction within the integral takes significant values only 
for w < 1/Δ (cf. Papoulis, 1991, p. 433). Hence, assuming a scale Δ ≫ 1/ε, and with reference to (21) we 
may write: 

𝛾(𝛥) = ∫ 𝑠(𝑤) sinc2(π𝑤𝛥) d𝑤
∞

0
≈ ∫ 𝛼𝑤−𝛽  sinc2(π𝑤𝛥) d𝑤

𝜀

0
  (49) 

On the other hand, it is easy to verify that, for 0 < w < 1/Δ, 

sinc(π𝑤𝛥) ≥ 1 − 𝑤𝛥 ≥ 0 (50) 

and since ε ≫ 1/Δ, while the function in the integral (49) is nonnegative, 

𝛾(𝛥) ≈ ∫ 𝛼𝑤−𝛽  sinc2(π𝑤𝛥) d𝑤
𝜀

0
≥ ∫ 𝛼𝑤−𝛽  sinc2(π𝑤𝛥) d𝑤

1 /𝛥

0
≥ ∫ 𝛼𝑤−𝛽(1 − 𝑤𝛥)2 d𝑤

1 /𝛥

0
  (51) 
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Comment on the asymptotic slope of the power spectrum (contd.) 
Substituing ξ = wΔ in (51), we find: 

 𝛾(𝛥) ≥ 𝑎𝛥𝛽−1 ∫ 𝜉−𝛽(1 − 𝜉)2 d𝜉
1 

0
 (52) 

To evaluate the integral in (52) we take the limit for q → 0 of the integral: 

𝐵(𝑞) ≔ ∫ 𝜉−𝛽(1 − 𝜉)2 d𝜉
1 

𝑞
 =

𝑞1−𝛽−1

𝛽−1
− 2

𝑞2−𝛽−1

𝛽−2
+
𝑞3−𝛽−1

𝛽−3
  (53) 

Clearly, for β > 1 the first term of the latter integral diverges for q → 0, i.e., B(0) = ∞ and thus, by virtue of 
the inequality (52), γ(Δ)= ∞. Therefore, the process is non-ergodic (see p. 17).* This analysis generalizes a 
result by Papoulis (1991, p. 434) who shows that an impulse at w = 0 corresponds to a non-ergodic 
process.  

In a non-ergodic process there is no possibility to infer statistical properties from the samples, so the 
statistical analyses are in vain and hence the reported results not meaningful (see also p. 5).  

Sometimes reported slopes 𝑠# < −1 are interpreted as indications of nonstationarity. Such 
interpretations are equally invalid because even the definition of the power spectrum as a function of 
frequency only (as well as those of autocorrelation and climacogram as functions of lag and scale, 
respectively) assumes stationarity.  

                                           
* It is interesting to note that, if |β| < 1, the integral in  (49) can be evaluated to give: 

𝛾(𝛥) ≈ 𝛼∫ 𝑤−𝛽  sinc2(π𝑤𝛥) d𝑤

∞

0

=
sin(π𝛽 2⁄ )

(π𝛽 2⁄ )
 
(2π)𝛽𝛼Γ(1 − 𝛽)

2(𝛽 + 1)𝛥1−𝛽
  

Clearly, for Δ → ∞, the last expression gives γ(Δ) → 0 and thus for |β| < 1 the process is mean ergodic. 
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Asymptotic properties of the climacogram, CBSF and CBS 
The asymptotic behaviour of the climacogram is the same with that of the autocovariance function (under 
some general conditions and with the exception where γ#(∞) = –1 or –2*). 

The asymptotic behaviour of the CBSF is the same with that of the structure function (under similar 
conditions and with the exception where g#(0) = 1 or 2; the proof is similar to that below, by virtue of 
(27)). 

The asymptotic behaviour of the CBS is the same with that of the power spectrum (under some general 
conditions and with some exceptions not fully investigated yet; cf. Stein, 1999). In most processes the log-
log derivatives 𝜓#(𝑤) of CBS at frequencies (or resolutions) w→0 and w→∞ are precisely equal to those of 
the power spectrum 𝑠#(𝜔), as illustrated in the examples below (pp. 33-44). 

The logarithmic slope 𝜓#(𝑤) of CPBS is connected with that of the climacogram and the CBSF by:  

𝜓#(𝑤) = −1−(2 −
1

1−𝛾(1 𝑤⁄ ) 𝛾(0)⁄
) 𝛾#(1 𝑤⁄ )   (54) 

𝜓#(𝑤) = −1−(2 −
1

1−𝑔(1 𝑤⁄ ) 𝛾(0)⁄
)𝑔#(1 𝑤⁄ )  (55) 

From (54), if 𝛾(0)  =  ∞ , then 𝜓#(𝑤) = −1− 𝛾#(1 𝑤⁄ ). Also, for 𝑤 = 0, 𝜓#(0) = −1− 𝛾#(∞). Since γ΄(∞) ≤ 
0 (cf. p. 17) and hence γ#(∞) ≤ 0, it follows that ψ#(0) ≥ –1 (same behaviour as in s#(0)).  
When 0 < 𝛾(0) < ∞,  𝛾#(0)= 0, so that in 𝜓#(∞) an expression ∞·0 appears in the right-hand side of (54). 
In that case, as g(0) = 0, (55) gives 𝜓#(∞) = −1− 𝑔#(0). 
—————— 
*Proof: We assume that γ(Δ) has first and second derivative which → 0 as Δ → ∞. We use l’Hopital’s rule to find:  

lim𝜏→∞ 𝜏
𝑏𝑐(𝜏) = lim𝜏→∞

𝑐(𝜏)

𝜏−𝑏
= lim𝜏→∞

1

2
 
d2(𝜏2𝛾(𝜏))/d𝜏2

𝜏−𝑏
= lim𝜏→∞ (

𝛾(𝜏)

𝜏−𝑏
+ 2

𝛾′(𝜏)

𝜏−𝑏−1
+
1

2

𝛾′′(𝜏)

𝜏−𝑏−2
) =

1

2
(𝑏 − 1)(𝑏 − 2)lim

𝜏→∞
(
𝛾(𝜏)

𝜏−𝑏
) =

1

2
(𝑏 − 1)(𝑏 − 2)lim

𝜏→∞
𝜏𝑏𝛾(𝜏)  

Unless b = 1 or b = 2, the limit lim𝜏→∞ 𝜏
𝑏𝑐(𝜏) is 0, finite or ∞, if and only if lim𝜏→∞ 𝜏

𝑏𝛾(𝜏) is 0, finite or ∞, respectively.  
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Fractal parameter and Hurst coefficient 
A fractal parameter is a local property of a stochastic process characterizing its behaviour at short time 
scales. Specifically (Gneiting and Schlather, 2004), assuming that for small lags τ or small time scales Δ the 
structure function or, respectively, the CBSF is given as 

ℎ(𝜏) ≔ 𝛾0 − 𝑐(𝜏) ~ 𝜏
𝑎 or 𝑔(𝛥) ≔ 𝛾0 − 𝛾(𝛥) ~ 𝛥

𝑎 (56) 

The fractal parameter κ and the fractal dimension DF are  

𝜅 =
𝛼

2
=
ℎ#(0)

2
=
𝑔#(0)

2
,    𝐷F = 2 −

𝑎

2
= 2 −

ℎ#(0)

2
= 2 −

𝑔#(0)

2
  (57) 

Conversely, the Hurst coefficient is a global property of a stochastic process characterizing its behaviour at 
large time scales. Specifically (cf. Gneiting and Schlather, 2004), assuming that for large time scales Δ the 
climacogram is given as 

𝛾(𝛥) ~ 𝛥−𝑏  (58) 

the Hurst coefficient is  

𝐻 = 1 −
𝑏

2
= 1 +

𝛾#(∞)

2
  (59) 

Typically, these slopes are reflected in the power spectrum, i.e. s#(∞) = –a  – 1, s#(0) = b – 1, so that   

𝜅 =
𝑔#(0)

2
= −

1

2
−
𝑠#(∞)

2
  (60) 

𝐻 = 1 +
𝛾#(∞)

2
=
1

2
−
𝑠#(0)

2
  (61) 

while in most cases the slopes of the spectrum ψ# could be used instead of those of the spectrum s#. 
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Definition and importance of entropy 
Historically entropy was introduced in thermodynamics but later it was given a rigorous definition 
within probability theory (owing to Boltzmann, Gibbs and Shannon). Thermodynamic and 
probabilistic entropy are essentially the same thing (Koutsoyiannis, 2013b, 2014a; but others have 
different opinion). 
Entropy is a dimensionless measure of uncertainty defined as follows: 

For a discrete random variable z with probability mass function Pj ≔ P{z = zj} 

Φ[z] := E[–ln P(z)] = –∑ P
j
ln P

j

w
j = 1  (62) 

For a continuous random variable z with probability density function f(z):  

Φ[z] := E [– ln
f(z)

h(z)
]  = – ∫ ln

f(z)

h(z)
f(z)dz

∞

-∞
 (63) 

where h(z) is the density of a background measure (usually h(z) = 1[z–1]). 

Entropy acquires its importance from the principle of maximum entropy (Jaynes, 1957), which 
postulates that the entropy of a random variable should be at maximum, under some conditions, 
formulated as constraints, which incorporate the information that is given about this variable. 

Its physical counterpart, the tendency of entropy to become maximal (2nd Law of thermodynamics) 
is the driving force of natural change. 
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Entropy production in stochastic processes 
In a stochastic process the change of uncertainty in time can be quantified by the entropy 
production, i.e. the time derivative (Koutsoyiannis, 2011a): 

Φ΄[X(t)] := dΦ[X(t)]/dt (64) 

A more convenient (and dimensionless) measure is the entropy production (i.e. the derivative) in 
logarithmic time (EPLT): 

φ(t) ≡ φ[X(t)] := Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (65) 

For a Gaussian process, the entropy depends on its variance Γ(t) only and is given as (Papoulis, 
1991): 

Φ[X(t)] = (1/2) ln(2πe Γ(t)) (66) 

The EPLT of a Gaussian process is thus easily shown to be: 

φ(t) = Γ΄(t) t / 2Γ(t) (67) 

When the past and the present are observed, instead of the unconditional variance Γ(t) we should 
use a variance ΓC(t) conditional on the known past and present. This turns out to be:  

ΓC(t) ≈ 2Γ(t) – Γ(2t)/2 (68) 
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The climacogram and the climacogram-based metrics 
compared to more standard metrics 
 In stochastic processes, almost all classical statistical estimators are biased and uncertain; in 

processes with LTP bias and uncertainty are very high. 

 In the climacogram (variance), bias and uncertainty are easy to control as they can be calculated 
analytically (and a priori known; see below).  

 The autocovariance function is the second derivative of the climacogram.  

o Estimation of the second derivative from data is too uncertain and makes a very rough 
graph.  

o Estimation of autocovariance is too biased in processes with LTP. 

 The power spectrum is the Fourier transform of the autocovariance and entails an even rougher 
shape and more uncertain estimation than in the autocovariance (see also Dimitriadis and 
Koutsoyiannis, 2015). 

 An additional advantage of the climacogram is its close relationship with EPLT. Specifically, 
combining equations (67), (2) and (35) we conclude that for Gaussian processes the EPLT is 

φ(t) = 1 + ½ γ#(t) 

 This entails that the Hurst coefficient H equals the global EPLT, φ(∞). 
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Statistical estimation—Averaged process 
The following analysis is based on Koutsoyiannis (2011a, 2015). We assume that we have n = 

⌊𝑇o 𝛥⁄ ⌋ = 𝑇 𝛥⁄  observations of the averaged process 𝑥𝑖
(𝛥)

, where To is the observation period, ⌊ ⌋ 

denotes the floor of a real number, and T ≔ ⌊𝑇o 𝛥⁄ ⌋𝛥 is the observation period rounded off to an 
integer multiple of Δ. The (unbiased) estimator of the common mean μ of the instantaneous process 

x(t) as well as of the discrete process 𝑥𝑖
(𝛥)

 is  

�̅�(𝛥)  ≔
1

𝑛
∑𝑥𝑖

(𝛥)
 =
𝑋(𝑇)

𝑛𝛥
=
𝑋(𝑇)

𝛵
= 𝑥1

(𝛵)
 

𝑛

𝑖=1

  (69) 

The standard (but biased except for white noise) estimator �̂�(𝛥) of the variance 𝛾(𝛥) of the 

averaged process 𝑥𝑖
(𝛥)

 is  

�̂�(𝛥) ≔
1

𝑛 − 1
 ∑(𝑥𝑖

(𝛥)
 − �̅�(𝛥))

2
𝑛

𝑖=1

=
1

𝑇 𝛥⁄ − 1
 ∑(𝑥𝑖

(𝛥)
 − �̅�(𝛥))

2
𝑇 𝛥⁄

𝑖=1

  (70) 

The following general equation can be used to estimate the bias of �̂�(𝛥) 

E [�̂�(𝛥) ] =
1

1 − 1 𝑛⁄
 (Var [𝑥𝑖

(𝛥)
] − Var[�̅�(𝛥)]) (71) 
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Statistical estimation—Averaged process (contd.) 
The general equation (71) in this case becomes 

E [�̂�(𝛥) ] =
1

1 − 𝛥 𝑇⁄
 (𝛾(𝛥) − 𝛾(𝑇)) =

1

1 − 𝛥 𝑇⁄
 (
𝛤(𝛥)

𝛥2
−
𝛤(𝑇)

𝑇2
) (72) 

or  

E [�̂�(𝛥) ] = 𝜂(𝛥, 𝛵)𝛾(𝛥) (73) 

where the bias correction coefficient η is 

𝜂(𝛥, 𝛵) =
1 − 𝛾(𝑇) 𝛾(𝛥)⁄

1 − 𝛥 𝑇⁄
=
1 − (𝛥 𝛵⁄ )2𝛤(𝛵) 𝛤(𝛥)⁄

1 − 𝛥 𝑇⁄
  (74) 

Important note: It becomes clear from the above equations that direct estimation of the variance 
𝛾(𝛥), let alone that of the instantaneous process γ0, is not possible merely from the data. We need to 
know the ratio 𝛾(𝑇) ∕ 𝛾(𝛥) and thus we should assume a stochastic model which evidently 
influences the estimation of 𝛾(𝛥). Once the model is assumed and its parameters estimated based 
on the data, we can expand our calculations to estimate the variance for any time scale, including 
that of the instantaneous scale γ0. 
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Statistical estimation—Sampled process 
If the observed process is the sampled (𝑥𝑖) at time steps Δ, rather than the averaged one (𝑥𝑖

(𝛥)
), then 

(69) becomes 

�̅�  ≔
1

𝑛
∑𝑥𝑖 = �̌�1

(𝑛)
 

𝑛

𝑖=1

 (75) 

The standard (and again biased) estimator �̂̌�(𝑘) of the variance �̌�(𝑘) of the sampled process is 

�̂̌�(𝑘) ≔
1

𝑛 − 1
 ∑(�̌�𝑖

(𝑘)
 − �̅�)

2
𝑛

𝑖=1

 (76) 

In a similar manner it is shown that (73) and (74) become respectively 

E [  �̂̌�(𝑘) ] = 𝜂′(𝛥, 𝑛)�̌�(𝑘) (77) 

𝜂′(𝛥, 𝑛) =
1 − �̌�(𝑛)/�̌�(𝑘)

1 − 1/𝑛
≈
1 − 𝛾(𝛵)/𝛾(𝑘𝛥)

1 − 𝛥 ⁄ 𝑇
  (78) 

Important note: Even if our target is to estimate the variance of the instantaneous process, 

�̌�(1) = 𝛾(0) = 𝛾
0
, again this is not possible merely from the data. We need to know the ratio 

�̌�(𝑛) 𝛾(0)⁄  and thus we should again, as above, assume a stochastic model. Once the model is 

assumed and its parameters estimated, we can expand our calculations to estimate �̌�(𝑘) for any 
multiple k of the time step Δ.  
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Example 1: The Markov process 
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

𝛾0 = 𝛾(0) = 𝑐(0) = 𝜆  Not applicable �̌�0 = 𝛾0 = 𝛾(0) = 𝜆  

Climacogram 
(Variance at scale 
Δ or kΔ) 

𝛾(𝛥) =
2𝜆

𝛥 𝛼⁄
(1 −

1−𝑒−𝛥 𝛼⁄

𝛥 𝛼⁄
)  As in continuous time �̌�(𝑘) =

𝜆

𝑘 (1−𝜌)2
 (1 − 𝜌2 −

2𝜌(1−𝜌𝑘)

𝑘
), 𝑘 = 1, 2, …  

where 𝜌 = 𝑒−𝛥/𝛼 
Autocovariance 
function for lag τ = 
jΔ 

𝑐(𝜏) = 𝜆e−𝜏/𝛼 
𝑐𝑗
(𝛥)
=
𝜆(1−𝑒−𝛥 𝛼⁄ )

2

(𝛥 𝛼⁄ )2
 e−(𝑗−1)𝛥 𝛼⁄

 , 

𝑗 = 1, 2,… 

�̌�𝑗 =  𝜆e
−𝑗𝛥/𝛼 = 𝜆𝜌𝑗, 

𝑗 = 1, 2,…  

Power spectrum  
for frequency 
w = ω/Δ 

s(w) =
4𝛼𝜆

1+(2π𝛼𝑤)2
 𝑠(𝛥)(𝑤) = 4𝛼𝜆 (1 −

1

𝛥 𝛼⁄
 
(1−cos(2𝜋𝛥𝑤)) sinh(𝛥 𝛼⁄ )

cosh(𝛥 𝛼⁄ )−cos(2𝜋𝛥𝑤)
)  

�̌�𝑗(𝑤) =
2𝜆𝛥 sinh(𝛥 𝛼⁄ )

cosh(𝛥 𝛼⁄ )−cos(2𝜋𝛥𝑤)
  

Asymptotic 
slopes, global 

𝛾#(∞) = 2𝜎#(∞) = −1 
(c#(∞) = –∞)* 
𝜓#(0) = 𝑠#(0) = 0  

  

Asymptotic 
slopes, local 

𝛾#(0) = 𝜎#(0) = 0 
g#(0) = h#(0) =1 
𝜓#(∞) = 𝑠#(∞) = −2  

  

* With respect to the observations on p. 24, it is seen that the Markov process belongs to the exceptions 
because γ#(∞) = –1; this explains why c#(∞) = –∞. 

Note: It is readily verifiable that the sampled discrete-time process is equivalent to the AR(1) process 
(notice that 𝑐𝑗

∗ = 𝜆𝜌𝑗) while the averaged discrete-time process is not an AR(1) but an ARMA(1,1) process.  
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Example 1: The Markov process (contd.) 

 

Notes 

1. The parameters are λ = 1, α = 10 and the spacing is Δ = 1, resulting in ρ = 0.905. 
2. The plotted autocovariance function and climacogram are for the continuous-time process, 

whereas those of the discretized processes are visually indistinguishable. 
3. The power spectra of the discretized processes fail to capture the slopes for w > 1 / 10Δ, 

while for w = 1 / 2Δ they give a slope which is precisely zero (this is a consequence of the fact 
that the discrete-time spectrum is symmetric around w = 1 / 2Δ). 

4. The CBS performs better in identifying the asymptotic slopes (even in the worst case of the 
sampled process). 
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Example 2: The Hurst-Kolmogorov (HK) process 
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

𝛾0 = 𝛾(0) = 𝑐(0) = +∞  Not applicable �̌�0 = 𝛾0 = 𝛾(0) = ∞ 

Climacogram 
(Variance at scale 
Δ or kΔ) 

𝛾(𝛥) = 𝜆(𝛼 𝛥⁄ )2−2𝛨  As in continuous time 𝛾(𝑘) = +∞  

Autocovariance 
function for lag τ = 
jΔ 

Η > ½: 𝑐(𝜏) = 
𝜆𝐻(2𝐻 − 1)(𝛼 𝜏⁄ )2−2𝛨  

Η = ½: 𝑐(𝜏) = 𝜆 δ(𝜏/𝛼) 
Η < ½: (𝜏) = 𝜆𝐻(2𝐻 −
1)((𝛼 𝜏⁄ )2−2𝛨 +
 δ′′(𝜏/𝛼)) 

𝑐𝑗
(𝛥)
= 𝜆(𝛼 𝛥⁄ )2−2𝛨 ×

 (
|𝑗−1|2𝐻+|𝑗+1|2𝐻

2
− |𝑗|2𝐻)  

�̌�𝑗 = 𝑐(𝑗𝛥), 𝑗 = 1, 2,…    

Power spectrum  
for frequency 
w = ω/Δ 

s(w) = 

4𝛼𝜆 𝐻(2𝐻−1)Γ(2𝛨−1)sin (𝜋𝐻)

(2π𝛼𝑤)2𝐻−1
  

𝑠(𝛥)(𝑤): not a closed 
expression  

�̌�(𝑤) = +∞  

Slopes (constant 
for any w and Δ) 

𝛾#(𝛥) = 2𝜎#(𝛥) = 2𝐻 − 2 
𝜓#(𝑤) = 𝑠#(𝑤) = 1 − 2𝐻  

  

Notes: (a) Γ( ) is the gamma function, δ( ) is the Dirac delta function and δ΄΄( ) is its second derivative. While the 
power spectra of the continuous-time and the averaged process converge except for w = 0, that of the sampled 
discrete-time process diverges, because its variance is ∞ for any w. To see that it diverges, we apply the definition 
of the discrete-time power spectrum (like in eq. (13)) for nondimensionalized frequency ω = 1/4. The first term is 
∞ and in order for �̌�(𝑤) to converge the second term (the sum) must be –∞. This sum can be written as a quantity 
proportional to 42𝐻−2 + 82𝐻−2 +⋯ – (22𝐻−2 + 62𝐻−2 +⋯), which equals 22𝐻(22𝐻−1 − 1) ζ(2 − 2𝐻), where ζ() is 
the zeta function. This however is a finite quantity and thus �̌�(𝑤) = ∞.  
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Example 2: The Hurst-Kolmogorov (HK) process (contd.) 

 
Notes 

1. The parameters are λ = 25/12, α = 10, H = 0.8 (so that λH(2H – 1) = 1)and the spacing is Δ = 1. Notes 
2-4 of Example 1 are also valid in this example.  

2. Notice that the model parameters are in essence two, i.e. H and (λ α2 – 2H). Despite that, we prefer the 
formulation shown with three nominal parameters for dimensional consistency: the units of α and λ 
are [τ] and [x]2, respectively, while H is dimensionless.  

3. The process is most often used with ½ ≤ H < 1, being called in this case a persistent process, while 
for 0 < H < ½ it is called an antipersistent process. In the latter case, the autocovariance c(τ) is 
negative for any lag τ > 0 and tends to –∞ as τ→ 0, having a discontinuity at 0 so that c(0) = +∞. 
Consequently, the averaged process has positive variance and all covariances negative. Such a 
process is not physically realistic as for small τ, c(τ) should be positive. More realistic antipersistent 
process is discussed in other examples below.  

4. Clearly, the case H > 1 is invalid for reasons explained in pp. 19-22.  
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Example 3: Α modified finite-variance HK process 
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

𝛾0 = 𝛾(0) = 𝑐(0) = 𝜆  Not applicable 𝛾0 = 𝛾0 = 𝛾(0) = 𝜆  

Climacogram 
(Variance at scale 
Δ or kΔ) 

𝛾(𝛥) = 𝜆(𝛼 ⁄ 𝛥) ×    

(
𝛼

𝛥
(1 +

𝛼

𝛥
)
2𝛨

−
𝛼

𝛥
− 2𝛨)  

As in continuous time 𝛾(𝑘) =
�̌�(𝑘)

𝑘2
, where �̌�(𝑘) is 

calculated from (7) 

Autocovariance 
function for lag τ = 
jΔ 

𝑐(𝜏) =
𝜆𝐻(2𝐻−1)

(1+𝜏 𝛼⁄ )2−2𝛨
  𝑐𝑗

(𝛥)
: From (8)  �̌�𝑗 =

𝜆𝐻(2𝐻−1)

(1+𝑗𝛥 𝛼⁄ )2−2𝛨
 , 𝑗 = 1, 2,…  

Power spectrum  
for frequency 
w = ω/Δ 

s(w): closed expression too 
complex 

𝑠(𝛥)(𝑤): not a closed 
expression  

�̌�(𝑤): not a closed 
expression  

Asymptotic 
slopes, global 

𝛾#(∞) = 2𝜎#(∞) = 2𝐻 − 2 
𝜓#(0) = 𝑠#(0) = 1 − 2𝐻  

  

Asymptotic 
slopes, local 

𝛾#(0) = 𝜎#(0) = 0 
𝜓#(∞) = 𝑠#(∞) = −2  

  

Note: In this example the asymptotic slopes of the power spectrum are both nonzero and different in the 
cases w → 0 and w → ∞. The slopes of the CBS are identical with those of the spectrum. 
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Example 3: Α modified finite-variance HK process (contd.) 

 
Note: The parameters are λ = 25/12, α = 10, H = 0.8 (so that λH(2H – 1) = 1) and the spacing is Δ = 1. 
Notes 2-4 of Example 1 are also valid in this example. 

A practical conclusion: When slope estimations are based on data, it is safer to use frequencies or 
resolutions w < 1 / 10Δ, or five times smaller than the absolute maximum that the observation 
period allows (in theory, this is 1 / 2Δ = n / 2T, where T is the observation period and n is the 
number of observations). Likewise, when estimating the climacogram and the CBS, although in 
theory it is possible to calculate the variance for time scales up to Τ/2 = (n/2)Δ, it is safer to use 
time scales 5 times smaller, i.e. up to T/10 =(n/10)Δ.  
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Example 4: The Hybrid Hurst-Kolmogorov process (HHK) 
An interesting process is defined by a Cauchy-type climacogram (Koutsoyiannis, 2015):  

𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)
𝐻−1
𝜅   (79) 

The expressions of its characteristics are too complex, but the framework provided above suffices 
to evaluate numerically all of its properties based on (79). As an exception, the autocovariance in 
continuous time has a rather simple expression: 

𝑐(𝜏) = 𝛾(𝜏)
1 + (3𝐻 + 2𝜅𝐻 − 2𝜅 − 1)(𝜏/𝑎)2𝜅 + 𝐻(2𝐻 − 1)(𝜏/𝑎)4𝜅

1 + 2(𝜏/𝑎)2𝜅 + (𝜏/𝑎)4𝜅
  (80) 

Furthermore, it has simple asymptotic properties. Namely, its global properties are 

γ#(∞) = c#(∞) = 2𝜎#(∞)= 2H – 2, ψ#(0) = s#(0) = 1–2H 

and its local properties are  

g#(0) = h#(0) = 2κ, ψ#(∞) = s#(∞) = –2κ – 1, 𝛾#(0) = 𝜎#(0) = 0 

An important feature of this process is that it allows explicit control of both asymptotic slopes as 
the global properties depend on the parameter H only, while the local properties depend on κ only.  
It realistically represents both persistent and antipersistent processes; in the latter case (0 < H < 
0.5), it has positive autocovariance for small lags and negative for large lags (in contrast to Example 
3, where autocovariances are either all positive or all negative). The name “hybrid” for the process 
reflects the fact that it incorporates both the Markov and the HK processes. Specifically, in the 
special case with H = κ = 0.5, HHK is practically indistinguishable from a Markov process (even 
though not precisely identical). Furthermore, as α → 0, the process tends to a pure HK process with 
the same Hurst coefficient H.  
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Example 4: The Hybrid Hurst-Kolmogorov process (contd.) 
 

 

Notes 

1. The parameters are λ = 1, α = 10, H = 0.8, κ = 0.9 (only the continuous-time properties are 
depicted). 

2. For small time scales HHK exhibits behaviour similar to Markov or, for κ = 0.5 the process is 
practically indistinguishable from Markov. For large time scales it exhibits Hurst behaviour.  

3. An intermediate steep slope that appears in the power spectrum is artificial and does not 
indicate a scaling behaviour.  
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Example 5: A simple antipersistent process  
Type Continuous time Discrete time, averaged Discrete time, sampled 
Variance of instan-
taneous process 

𝛾0 = 𝛾(0) = 𝑐(0) = 𝜆  Not applicable 𝛾0 = 𝛾0 = 𝛾(0) = 𝜆  

Climacogram 
(Variance at scale 
Δ or kΔ) 

𝛾(𝛥) =
2𝜆

𝛥 𝛼⁄
 ×  

(
1−𝑒−𝛥 𝛼⁄

𝛥 𝛼⁄
− 𝑒−𝛥 𝛼⁄ )  

 

As in continuous time 𝛾(𝑘) =
�̌�(𝑘)

𝑘2
, where �̌�(𝑘) is 

calculated from (7) 

Autocovariance 
function for lag τ = 
jΔ  

𝑐(𝜏) = 𝜆(1 − 𝜏 𝛼⁄ )e−𝜏/𝛼 𝑐𝑗
(𝛥)

: From (8)  �̌�𝑗 =  𝜆(1 − 𝑗𝛥 𝛼⁄ )e−𝑗𝛥/𝛼 

(𝑗 ≥ 0) 

Power spectrum  
for frequency 
w = ω/Δ 

s(w) = 8𝜆𝛼 (
2𝜋𝛼𝑤

1+(2π𝛼𝑤)2
)
2

 𝑠(𝛥)(𝑤): closed expression 
too complex 

�̌�(𝑤): closed expression 
too complex 

Asymptotic 
slopes, global 

𝛾#(∞) = 2𝜎#(∞) = −2  
𝜓#(0) = 1; 𝑠#(0) = 2  

  

Asymptotic 
slopes, local 

𝛾#(0) = 𝜎#(0) = 0 
𝜓#(∞) = 𝑠#(∞) = −2  

  

Notes  
1. It is readily verifiable that 4∫ 𝑐(𝜏)d𝜏 = 𝜓(0) = 𝑠(0) = 0

∞

0
 (while of course c(0) = γ(0) = λ > 0). This 

is the condition making the process antipersistent.  
2. In this process for τ > α the autocovariance is consistently negative—but for small τ it is positive. 
3. A similar antipersistent process but with autocovariance becoming again positive after a certain τ is 

the one with autocovariance 𝑐(𝜏) = 𝜆(1 − (5 3⁄ )(𝜏 𝛼)⁄ + (1 3⁄ )(𝜏 𝛼)⁄ 2
)e−𝜏/𝛼. 
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Example 5: A simple antipersistent process (contd.) 

 
Notes 

1. The parameters are λ = 1, α = 10, and the spacing is Δ = 1. Notes 2-4 of Example 1 are also 
valid in this example. 

2. As shown in the figures, antipersistence is manifested in the positive slopes in the power 
spectrum and the CBS. Clearly, these slopes are positive only for low frequencies w. For high 
w they should necessarily be negative. (Processes with increasing slopes for all frequencies, 
or negative autocorrelations for all lags, are physically unrealistic, even though they can be 
mathematically feasible, e.g. the HK process for H < 0.5).  

3. Due to the shape of the autocorrelation function, this process has been termed in the 
geostatistics literature “the hole-effect model”. 
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Example 6: A periodic process with white noise  
Type Continuous time Discrete time, averaged D.t., sampled 
Variance of instan-
taneous process 

𝛾0 = 𝛾(0) = 𝑐(0) = ∞  Not applicable 𝛾0 = 𝛾0 = 𝛾(0) =
∞  

Climacogram 
(Variance at scale Δ 
or kΔ) 

𝛾(𝛥) =
𝜆1

𝛥 𝛼⁄
+ 𝜆2sinc

2 (
π𝛥

𝛼
)  

 

As in continuous time 𝛾(𝑘) = ∞ 

Autocovariance 
function for lag τ = 
jΔ  

𝑐(𝜏) =
𝜆1δ(𝜏 𝛼⁄ ) + 𝜆2 cos(2𝜋 𝜏 𝛼⁄ )  

𝑐𝑗
(𝛥)
=

𝜆2

(2𝜋𝛥 𝛼⁄ )2
 × (2 cos (

2𝜋𝛥𝑗

𝑎
) −

cos (
2𝜋𝛥(𝑗+1)

𝑎
) − cos (

2𝜋𝛥(𝑗−1)

𝑎
))  

�̌�𝑗 =

 𝜆2 cos(2𝜋 𝛥𝑗 𝛼⁄ ) 
(𝑗 ≥ 1)  

Power spectrum  
for frequency 
w = ω/Δ 

𝑠(𝑤) =  
2𝜆1𝛼 + 𝜆2𝛼 δ(𝛼𝑤 − 1)  

𝑠(𝛥)(𝑤) = 2𝜆1𝛼+𝜆2𝛼 δ(𝛼𝑤 − 1) 
(as in continuous time) 

�̌�(𝑤) = ∞  

Asymptotic slopes 
for λ1 > 0 [and for 
λ1 = 0; but not valid 
for s#( )]  

𝛾#(∞) = 2𝜎#(∞) = −1 [−2] 
𝜓#(0) = 𝑠#(0) = 0 [+1]  
𝛾#(0) = 𝜎#(0) = −1 [0] 
𝜓#(∞) = 𝑠#(∞) = 0 [−3]  

  

Notes  
1. Strictly speaking, the periodic component is a deterministic rather than a stochastic process. In this 

respect, the process should be better modelled as a cyclostationary one. 
2. However, the fact that the autocorrelation is a function of the lag τ only, allows the process to be 

treated as a typical stationary stochastic process. 
3. The infinite variance of the instantaneous process is a result of the white noise component, which in 

continuous time has infinite variance. 
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Example 6: A periodic process with white noise (contd.) 

 

Notes 

1. The parameters are λ1 = 0.05, λ2 = 1 (so that the random noise is 5% of the variability implied 
by periodicity), α = 100, and the spacing is Δ = 1.  

2. While asymptotically (for w → 0 and ∞) the spectrum and the CBS behave similarly, they 
have marked differences for other w. In particular, the power spectrum has a peak (an 
infinite impulse) at τ = 1/α; the CBS has a trough (negative peak) at this value as well as at τ = 
1/kα for integer k (as the variance is diminished at these resolutions). 

3. Thus, the power spectrum is more robust in identifying periodicities, yet the CBS provides a 
hint about their existence.  
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Example 7: A composite long-range and short-range 
dependence 
The process whose characteristics are shown in the figures below is composed of a modified HK 
process (p. 36) and a Markov process (p. 32) and has autocovariance:  

𝑐(𝜏) = 𝜆1(1 + 𝜏 𝛼⁄ )2𝛨−2 + 𝜆2e
−𝜏/𝛼 (81) 

 
Notes 

1. The parameters are λ1 = 1, λ2 = 20, α = 10, H = 0.85 (only the continuous time properties are depicted). 
2. As in the Example 4, again an intermediate slope (in this case a mild one) appears in the power 

spectrum. Again this is artificial, here imposed by the Markov process, and does not indicate a scaling 
behaviour.  
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