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Summary 

Commonly, probability is regarded to be a branch of applied mathematics that provides tools 
for data analysis. Nonetheless, probability is a more general concept that helps shape a 
consistent, realistic and powerful view of the world. Historically, the modern science was 
initiated from deterministic views of the world, in which probability had a marginal role for 
peculiar unpredictable phenomena. However, in the turn of the nineteenth century, radical 
developments in physics, and particularly thermodynamics, dynamical systems and quantum 
physics, as well as in mathematics has given the probability theory a central role in the 
scientific scene, in the understanding and the modelling of natural phenomena. Furthermore, 
probability has provided grounds for philosophical concepts such as indeterminism and 
causality, as well as for extending the typical mathematical logic, offering the mathematical 
foundation of induction. In typical scientific and technological applications, probability 
provides the tools to quantify uncertainty, rationalize decisions under uncertainty, and make 
predictions of future events under uncertainty, in lieu of unsuccessful deterministic 
predictions. Uncertainty seems to be an intrinsic property of nature, as it can emerge even 
from pure and simple deterministic dynamics, and cannot been eliminated. This is 
demonstrated here using a working example with simple deterministic equations and showing 
that deterministic methods may be good for short-term predictions but for long horizons their 
predictive capacity is cancelled, whereas the probabilistic methods can perform much better. 

1.1 Determinism and indeterminism 

The philosophical proposition of determinism is widely accepted in science. It is manifested 
in the idea of a clockwork universe, which comes from the French philosopher and scientist 
René Descartes (1596-1650) and was perfected by the French mathematician and astronomer 
Pierre-Simon Laplace (1749-1827). It is vividly expressed in the metaphor of Laplace's 
demon, a hypothetical all-knowing entity that knows the precise location and momentum of 
every atom in the universe at present, and therefore could use Newton's laws to reveal the 
entire course of cosmic events, past and future. (Isaac Newton – 1643-1727 – however, 
rejected cartesian thinking and especially the clockwork idea; he was aware of the fragility the 
world and believed that God had to keep making adjustments all the time to correct the 
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emerging chaos.) The demon who knows the present perfectly is of course a metaphor; what 
is more important in this idea is that knowing the present perfectly one can deduce the future 
and the past using Newton’s laws. The metaphor helps us understand that, according to 
deterministic thinking, the roots of uncertainty about future should be subjective, i.e. rely on 
the fact that we do not know exactly the present, or we do not have good enough methods and 
models. It is then a matter of time to eliminate uncertainty, acquiring better data 
(observations) and building better models. 
 However, according to indeterminism, a philosophical belief contradictory to determinism, 
uncertainty may be a structural element of nature and thus cannot be eliminated. 
Indeterminism has its origin in the Greek philosophers Heraclitus (ca. 535–475 BC) and 
Epicurus (341–270 BC). In science, indeterminism largely relies on the notion of probability, 
which according to the Austrian-British philosopher Karl Popper (1902-1994) is the extension 
(quantification) of the Aristotelian idea of potentia (Popper, 1982, p. 133). Practically, the 
idea is that several outcomes can be produced by a specified cause, while in deterministic 
thinking only one outcome is possible (but it may be difficult to predict which one). 
Probability is a quantification of the likelihood of each outcome or of any set of outcomes. In 
this chapter we use the term probability in a loose manner. In the next chapter we will provide 
a precise description of the term using the axiomatization introduced by the soviet 
mathematician Andrey Nikolaevich Kolmogorov (1903-1987). 
 In everyday problems deterministic thinking may lead to deadlocks, for instance in dealing 
with the outcome of a dice throw or a roulette spin. The movements of both obey Newton’s 
laws; however, application of these laws did not help anyone to become rich predicting the 
dice outcomes. In an attempt to rectify such deadlocks, some have been tempted to divide the 
natural phenomena into two categories, deterministic (e.g. the movement of planets) and 
random (e.g. the movement of dice). We maintain that this is a fallacy (both planets and dice 
obey to the same Newton’s laws). Another very common fallacy of the same type (in fact, an 
extension of the former) is the attempt to separate natural processes into deterministic and 
random components, one superimposed (usually added) to the other. Both fallacies can be 
avoided by abandoning the premise of determinism.   

1.2 Deduction and induction 

In mathematical logic, determinism can be paralleled to the premise that all truth can be 
revealed by deductive reasoning or deduction (the Aristotelian apodeixis). This type of 
reasoning consists of repeated application of strong syllogisms such as: 

 If A is true, then B is true   
 A is true 
 Therefore, B is true 

and  
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 If A is true, then B is true;   
 B is false 
 Therefore, A is false 

 Deduction uses a set of axioms to prove propositions known as theorems, which, given the 
axioms, are irrefutable, absolutely true statements. It is also irrefutable that deduction is the 
preferred route to truth; the question is, however, whether or not it has any limits. David 
Hilbert (1862-1943) expressed his belief that there are no limits in his slogan (from his talk in 
1930; also inscribed in his tombstone at Göttingen): “Wir müssen wissen, wir werden wissen - 
We must know, we will know”. His idea, more formally known as completeness, is that any 
mathematical statement could be proved or disproved by deduction from axioms.  
 In everyday life, however, we use weaker syllogisms of the type: 

 If A is true, then B is true;   
 B is true 
 Therefore, A becomes more plausible 

and  

 If A is true, then B is true;   
 A is false 
 Therefore, B becomes less plausible 

The latter type of syllogism is called induction (the Aristotelian epagoge). It does not offer a 
proof that a proposition is true or false and may lead to errors. However, it is very useful in 
decision making, when deduction is not possible.  
 An important achievement of probability is that it quantifies (expresses in the form of a 
number between 0 and 1) the degree of plausibility of a certain proposition or statement. The 
formal probability framework uses both deduction, for proving theorems, and induction, for 
inference with incomplete information or data. 

1.3 The illusion of certainty and its collapse 

Determinism in physics and completeness in mathematics reflect the idea that uncertainty 
could in principle be eliminated. However, in the turn of the nineteenth century and the first 
half of the twentieth century this idea proved to be an illusion as it received several blows in 
four major scientific areas, summarized below. 

1.3.1 Statistical physics and maximum entropy 

In its initial steps, thermodynamics was based on purely deterministic concepts and 
particularly on the notion of the caloric fluid, a hypothetical fluid (a weightless gas) that flows 
from hotter to colder bodies (passes in pores of solids and liquids). The caloric theory was 
proposed in 1783 by Antoine Lavoisier and persisted in scientific literature until the end of 
the 19th century. In 1902 the term statistical thermodynamics was coined by the American 
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mathematical-engineer, physicist, and chemist J. Willard Gibbs. The statistical theory of 
thermodynamics is essentially based on the probabilistic description of kinetic properties of 
atoms and molecules and was very successful in explaining all concepts and phenomena 
related to heat transfer.  
 The concept of entropy (from the Greek εντροπία), which was essential for the formulation 
of the second law of thermodynamics (by Rudolf Clausius in 1850), was given a statistical 
interpretation by Ludwig Boltzmann (in 1872). The second law says that the entropy of an 
isolated system which will tend to increase over time, approaching a maximum value at 
equilibrium. Boltzmann showed that entropy can be defined in terms of the number of 
possible microscopic configurations that result in the observed macroscopic description of a 
thermodynamic system. In 1878, Gibbs extended this notion of entropy introducing the idea 
of the statistical (or thermodynamic) ensemble, an idealization consisting of a large number 
(sometimes infinitely many) of mental copies of a system, each of which represents a possible 
state that the real system might be in. In 1948, Claude E. Shannon generalized the concept of 
entropy and gave it an abstract probabilistic definition applicable for any random variable, 
thus essentially showing that entropy is a measure of uncertainty of a system. Kolmogorov 
and his student Sinai went far beyond and suggested a definition of the metric entropy for 
dynamical systems (their results were published in 1959). In 1957, the American 
mathematician and physicist Edwin Thompson Jaynes extended Gibbs’ statistical mechanics 
ideas showing that they can be applied for statistical inference about any type of a system. 
Specifically, he showed that the principle of maximum entropy can be used as a general 
method to infer the unknown probability distribution of any random variable. For instance, 
the principle of maximum entropy can easily produce that the probability of the landing of a 
die in each of its six faces will be 1/6 (any departure from equality of all six probabilities 
would decrease the uncertainty of the event). It is thus impressive that the principle that 
predicts that heat spontaneously flows from a hot to a cold body, is the same principle that can 
give the probability distribution of dice. 
 Thus, statistical thermodynamics has formed a nice paradigm entirely based on probability 
as a tool for both explanation and mathematical description of natural behaviours. 
Furthermore, the second law of thermodynamics essentially shows that nature works in a way 
that maximizes uncertainty in complex systems. Following nature’s behaviour and applying 
the principle of maximum entropy (maximum uncertainty) to any type of system we can infer 
useful knowledge about the system’s behaviour. This knowledge, however, is no longer 
expressed in terms of certainty about the sharp states of the system, but rather in terms of 
probabilities of these states. In large systems however, it turns out that this knowledge can 
lead to nearly precise descriptions of macroscopical properties, despite the maximum 
uncertainty at the microscopical level. For instance, we can easily infer that the average of the 
outcomes of 45 000 dice throws will be between 3.49 and 3.51 with probability 99.99%. From 
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a practical point of view such a statement is almost equivalent to certainty; however, it does 
not preclude the case that all 45 000 will be sixes (and the average will be also six).  

1.3.2 Dynamical systems and chaos 

Chaos (from the Greek χάος) is most often referred to as a deterministic notion (deterministic 
chaos). Yet it offers an excellent insight of uncertainty, even in the case of purely 
deterministic dynamics. The basic concepts of chaos are due to the French mathematician 
Jules Henri Poincaré (1854–1912). In 1890, Poincaré’s memoir on the three body problem 
was published in the journal Acta Mathematica as the winning entry in the international prize 
competition sponsored by Oscar II, King of Sweden and Norway, to mark his 60th birthday. 
Today this paper is renowned for containing the first mathematical description of chaotic 
behavior in a dynamical system (Barrow-Green, 1994). It was the first time that the 
complexity of Newtonian dynamics was demonstrated, even in a system as apparently simple 
as three gravitational bodies. Poincaré gave the first example of the sensitive dependence on 
initial conditions, a characteristic of chaotic behaviour that is met in unstable dynamical 
systems.  
 Ironically, however, the prize winning work of Poincaré was not exactly the published one. 
In contrast, in his original work Poincaré, had found certain stability results for the three-body 
problem. After the prize award (1889) and after the prize winning essay had been printed (but 
not distributed), Poincaré discovered a fatal flaw in his proof that was supposed to show that 
the universe worked like clockwork. Poincaré then had to spend his monetary prize plus 1000 
Crowns to withdraw the printed volumes with the erroneous version of the memoir, as well as 
several months of work to correct the error. In the final paper he had reinstated the chaos in 
the movement of the astral bodies and brought down for ever the idea of a clockwork 
universe. 
 We can understand the emergence of chaos and chance from purely deterministic dynamics 
reading his own words (from Henri Poincaré, Science et méthode, 1908; reproduced in 
Poincaré, 1956, p. 1382):  

A very small cause, which escapes us, determines a considerable effect which we cannot 
help seeing, and then we say that the effect is due to chance. If we could know exactly 
the laws of nature and the situation of the universe at the initial instant, we should be 
able to predict the situation of this same universe at a subsequent instant. But even 
when the natural laws should have no further secret for us, we could know the initial 
situation only approximately. If that permits us to foresee the succeeding situation with 
the same degree of approximation, that is all we require, we say the phenomenon had 
been predicted, that it is ruled by laws. But it is not always the case; it may happen that 
slight differences in the initial conditions produce very great differences in the final 
phenomena; a slight error in the former would make an enormous error in the latter. 
Prediction becomes impossible, and we have the fortuitous phenomenon.  
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… Why have the meteorologists such difficulty in predicting the weather with any 
certainty? Why do the rains, the tempests themselves seem to us to come by chance, so 
that many persons find it quite natural to pray for rain or shine, when they would think 
it ridiculous to pray for an eclipse? We see that great perturbations generally happen in 
regions where the atmosphere is in unstable equilibrium... Here again we find the same 
contrast between a very slight cause, inappreciable to the observer, and important 
effects, which are sometimes tremendous disasters.  

 Non-linear chaotic dynamics remained in the backwoods of mathematics and physics until 
the 1960s, even though some of the leading mathematicians, mostly in Russia/USSR 
(Lyapunov, Kolmogorov, Andronov), worked on it. Then the use of computers made it 
possible to experiment with chaos in numerical applications. The American meteorologist 
Edward Norton Lorenz was an early pioneer of experimenting chaos with computers; also he 
coined the term butterfly effect to encapsulate the notion of sensitive dependence on initial 
conditions in chaotic systems: a butterfly’s wings (a small change in the initial condition of 
the atmospheric system) might create tiny changes in the atmosphere that ultimately cause a 
tornado to appear.  
 Now the mathematical theory of nonlinear complex chaotic dynamic systems is centre 
stage and mainstream. A prominent characteristic of the notion of chaos is that it is easily 
understandable, as it may involve simple deterministic dynamics, and allows the 
experimentation with very simple examples that exhibit chaotic behaviour. Such a simple 
example we will study in the next section. It is fascinating that a simple nonlinear 
deterministic system (such as the gravitational movement of three bodies or the hydrological 
system studied below) can have a complex, erratic evolution. Sadly, however, most of 
hydrological studies understood this in the opposite direction: they attempted to show, making 
naïve and mistaken use of tools from dynamical systems, that complexity in hydrological 
phenomena implies that their dynamics are simple (Koutsoyiannis, 2006). 

1.3.3 Quantum physics 

While chaotic systems demonstrated that uncertainty can be produced even in a purely 
deterministic framework, quantum physics has shown that uncertainty is an intrinsic 
characteristic of nature. In this respect, probability is not only a necessary epistemic addition 
or luxury for modelling natural phenomena. Rather it is a structural element of nature, an 
ontological rather than epistemic concept.   
 Quantum physics has put limits to the knowledge we can obtain from observation of a 
microscopic system and has shown that exact measurements are impossible. The outcome of 
even an ideal measurement of a system is not sharp (exact), but instead is characterized by a 
probability distribution. The Heisenberg uncertainty principle gives a lower bound on the 
product of the uncertainty measures of position and momentum for a system, implying that it 
is impossible to have a particle that has an arbitrarily well-defined position and momentum 
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simultaneously. Thus, our familiar deterministic description proves to be impossible for the 
microscopic world.  
 A famous example that shows how fundamental the notion of probability is in nature is the 
double-slit experiment. Light is shined at a thin, solid barrier that has two slits cut into it. A 
photographic plate is set up behind the barrier to record what passes through slits. When only 
one slit is open, there is only one possibility for a photon, to pass through the open slit. Indeed 
the plate shows a single dark line where all the photons are accumulated. However, when both 
slits are open and only one photon at a time is fired at the barrier, there are two possibilities 
for the photon, which however are not mutually exclusive because, according to the 
uncertainty principle, the position of the photon is not sharp. Thus, it seems that the photon 
passes from both slits simultaneously. This will be recorded in the photographic plate, which 
shows regions of brightness and darkness (interference fringes). It seems that a single photon 
materializes the theoretical probability distribution in each case. According to our 
macroscopic experience the phonon would follow one of the two available options, and at the 
time it passes though the barrier it would be in one of the two slits with equal probabilities. 
However, in a quantum physics description the photon is simultaneously in both slits and the 
two probabilities interfere. 
 Such phenomena are difficult to describe or explain based on our experience (and 
language) of the macroscopic world. However, the phenomena of the quantum physics are 
reflected in the macroscopic world too (e.g. in the double-slit experiment), and thus cannot be 
irrelevant to our description of macrocosmos. For instance, statistical physics is strongly 
influenced by quantum physics. 

1.3.4 Incompleteness  

While the three previous developments eventually deal with physics, this fourth one concerns 
pure mathematical logic. In 1931 the Austrian mathematician Kurt Gödel proved two 
important theorems, so-called incompleteness theorems, stating inherent limitations of 
mathematical logic. The theorems are also important in the philosophy of mathematics and in 
wider areas of philosophy. The first incompleteness theorem practically says that any system 
with some axioms, containing the natural numbers and basic arithmetic (addition, 
multiplication) is necessarily incomplete: it contains undecidable statements, i.e. statements 
that are neither provably true nor provably false. Furthermore, if an undecidable statement is 
added to the system as an axiom, there will always be other statements that still cannot be 
proved as true, even with the new axiom. The second theorem says that if the system can 
prove that it is consistent, then it is inconsistent. That is to say, we can never know that a 
system is consistent, meaning that it does not contain a contradiction. Note that if the system 
contains a contradiction, i.e. a case where a proposition and its negation are both provably 
true, then every proposition becomes true.  



8  1. The utility of probability 
 
 Ironically, Gödel had presented his incompleteness results the day before Hilbert 
pronounced his slogan discussed above (Wir müssen wissen, wir werden wissen). Obviously, 
the slogan received a strong blow by Gödel’s results. The conjectured almightiness of 
deduction was vitiated. In other words, Gödel’s results show that uncertainty is not 
eliminable.  Simultaneously, they enhance the role of probability theory, as extended logic, 
and the necessity of induction (see also Jaynes, 2003, p. 47).  

1.3.5 The positive side of uncertainty 

 Surprisingly, the new role of probability is not well assimilated in the scientific 
community. The quest of determinism and uncertainty elimination still dominates in science. 
Another symptom of this type is the exorcism of probability and its replacement with any type 
of substitutes. One good example for this is provided by the fuzzy methods which are regarded 
much more fashioned than probability. However, no solutions using fuzzy approaches could 
not have been achieved at least as effectively using probability and statistics (Laviolette, et 
al., 1995). The Education still promotes deterministic thinking as if all above fundamental 
changes in science had not happened. Hopes are expressed that these results are flawed and 
determinism will be reinstated. These results are considered negative and pessimistic by 
many. We maintain that they are absolutely positive and optimistic. Life would not have any 
meaning without uncertainty. This is well known by people working in the media, who spend 
much money to show live (i.e. with uncertain outcome) reportages and sports games; had 
determinism been more fascinating, they would show recorded versions in the next day, with 
eliminated uncertainty (e.g. the score of the game would be known). Without uncertainty 
concepts such as hope, will (particularly free will), freedom, expectation, optimism, pessimism 
etc. would hardly make sense.  

1.4 A working example   

With this example we will see that, contrary to intuition, pure determinism does not help very 
much to predict the future, even in very simple systems. The example studies a hydrological 
system that is fully deterministic and is deliberately made extremely simple. This system is a 
natural plain with water stored in the soil, which sustains some vegetation. We assume that 
each year a constant amount of water I = 250 mm enters the soil and that the potential 
evapotranspiration is also constant, PET = 1000 mm. (Obviously in reality the inflow and 
potential evapotranspiration – especially the former – vary in an irregular manner but we 
deliberately assumed constant rates to simplify the example and make it fully deterministic). 
The actual evapotranspiration is E ≤ PET. We assume that a fraction f of the total plain area is 
covered by vegetation, and that the evapotranspiration rate in this area equals PET and in all 
other area is zero (assuming no route of soil water to the surface), so that in the entire plain, 
the average actual evapotranspiration will be 

 E = PET f (1.1) 
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It is easy to see that if f = I / PET = 0.25 then E = I = 250 mm, i.e. the input equals the output 
and the system stays at an equilibrium; the water stored in the soil stays at a constant value. 
The situation becomes more interesting if at some time f ≠ 0.25. In this case f may vary in 
time. It is natural to assume that f will increase if there is plenty of water stored in the soil (the 
vegetation will tend to expand) and to decrease otherwise. We denote s the water stored in the 
soil and we assume a certain reference level for which we set s = 0, so that s > 0 stands for 
soil water excess and s < 0 for soil water deficit.  
 Our system is described by the two state variables, the soil water s and the vegetation cover 
f, which can vary in time. If i = 1, 2, … denotes time in years, then the water balance equation 
for our system is 

 si = si – 1 + I – PET fi – 1 (1.2) 

Since our system is described by two state variables, we need one more equation to fully 
describe its dynamics (i.e. its evolution in time). Naturally, the second equation should be 
sought in the dynamics of grow and decay of plants, which however may be too complicated. 
Here we will approach it in an extremely simplified, conceptual manner. We set a basic 
desideratum that f should increase when s > 0 and decrease otherwise. A second desideratum 
is the consistency with the fact that 0 ≤ f ≤ 1.  
 Such desiderata are fulfilled by the curves shown in Fig. 1.1. The curves are described by 
the following equation, which takes an input x and produces an output y, depending on a 
parameter a that can take any real value, positive or negative:  

 y = g(x, a) := 
axa
xa

+−
+

)1,1max(
)1,1max(  (1.3) 

By inspection it can be verified that if 0 ≤ x ≤ 1, then 0 ≤ y ≤ 1, whatever the value of a is. 
Furthermore, it can be seen that if a = 0 then y = x, when a > 0 then y > x, and when a < 0 
then y < x.  
 Thus, if in equation (1.3) we replace x with fi – 1, y with fi, and a with some increasing 
function of si – 1 such that it takes the value 0 when si – 1 = 0, then we obtain an equation that is 
conceptually consistent with our desiderata. For the latter let us set a ≡ (si – 1/s*)3, where s* is 
a standardizing constant assumed to be s* = 100 mm. Hence, the equation that completes the 
system dynamics becomes  

 fi = g(fi – 1, (si – 1/s*)3)  (1.4) 

or  
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Fig. 1.1 Graphical depiction of equation (1.3) for several values of the parameter a, which is 
an increasing function of the soil water s. 

 From the system dynamics (1.2) and (1.5), it can be easily verified that if the initial 
conditions at time i = 0 are f0 = 0.25, s0 = 0, then the system will stay for ever at state fi = 0.25, 
si = 0 for any time i. Now let us assume that the initial conditions depart from these conditions 
of stability. For instance we consider f0 = 0.30, s0 = 100 mm. From the system dynamics (1.2) 
and (1.5) we can easily find that, at time i = 1, f1 = 0.462 (the vegetation cover was increased 
because of surplus water) and s1 = –111.5 mm (the increased vegetation consumed more 
water, so that the surplus was exhausted and now there is deficit). Continuing in this manner 
we can calculate (f2, s2), (f3, s3) etc. It is a matter of a few minutes to set up a spreadsheet with 
two columns that evaluate equations (1.2) and (1.5), and calculate the system state (fi, si) at 
time i = 1 to, say, 10 000, given the initial state (f0, s0) (homework). Fig. 1.2 depicts the first 
100 values of the evolution of system state. It is observed that the system does not tend to the 
stable state discussed above. Rather, the vegetation cover fluctuates around 0.25 (roughly 
between 0 and 0.8) and the soil water fluctuates around 0 (roughly between -400 and 400 
mm). These fluctuations seem to have a period of roughly 4-5 years but are not perfectly 
periodic. 
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Fig. 1.2 Graphical depiction of the system evolution for time up to 100. 

 Despite fluctuating behaviour, it appears that we can predict exactly any future state given 
the initial conditions f0, s0. The question we wish to examine here is this: Will predictions 
represent reality? We can split this question to two: (1) Is our model a perfect representation 
of reality? (2) Is our knowledge of the initial conditions perfectly accurate? The reply to both 
questions should be negative. No model can represent nature perfectly; all models are just 
approximations. Furthermore, our knowledge of initial conditions at the best case comes from 
measurements and all measurements include some error or uncertainty.  
 Let us circumvent the first problem, and assume that our model is perfect. Put it in a 
different way, let us temporarily forget that the mathematical system with dynamics (1.2) and 
(1.5) aims to represent a natural system, so that we do not care about model errors. What is 
then the effect of imperfect knowledge of the initial conditions? To demonstrate this, we 
assume that the initial conditions set above are obtained by rounding off some true values, 
which introduces some small error. (We suppose that rounding off mimics the measurement 
error in a natural system). Our true conditions are assumed to be f0 = 0.2999, s0 = 100.01 mm 
and our approximations are f΄0 = 0.30, s΄0 = 100 mm, as above; the errors in f0 and s0 are -
0.0001 and 0.01 mm, respectively. Repeating our calculations (with our spreadsheet) with the 
true conditions, we obtain a set of true values that are depicted in Fig. 1.3, along with the 
approximate values. By approximate we mean the values that were obtained by the rounded 
off initial conditions f΄0 and s΄0; these values are precisely those shown in Fig. 1.2. 
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Fig. 1.3 Graphical depiction of the true system evolution and its approximation for time up to 
100. 

 We can observe in Fig. 1.3 that the approximation is almost perfect for times up to 40 but 
becomes imperfect for larger times. For instance, the true value at time i = 60 is s60 = 245.9 
mm whereas the approximate value is s΄60 =  –105.4 mm. Thus a small error of 0.01 mm in 
the initial conditions is magnified to 245.9 – (–105.4) = 491.8 mm in 60 time steps. Here we 
have used this definition of error: 

 ei := si – s΄i (1.6) 

This large error clearly suggests that deterministic dynamics, even perfectly known and 
simple, may be unable to give deterministic future predictions for long lead times. 
 Nevertheless, in engineering applications it is often necessary to cast predictions for long 
time horizons. For instance, when we design a major project, we may have a planning horizon 
of say 100 years and we wish to know the behaviour of the natural system for the next 100 
years. However, in most situations we are interested about the events that may occur and 
particularly about their magnitude while we are not interested about the exact time of 
occurrence. Such predictions can be obtained in a different manner, which may not need to 
know the deterministic dynamics of the system. Rather, it is based on the statistical properties 
of the system trajectory as reflected in a time series of the system evolution.  
 In the simplest case, a statistical prediction is obtained by taking the average of the time 
series. In our system this average of s is around 0, so that the prediction for any future time is 
simply s΄i = 0. As strange as it may seem, for large lead times this prediction is better (i.e. 
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gives a smaller error) than obtained by running the deterministic model. For instance, at time i 
= 60, ei = 245.9 – 0  = 245.9 < 491.8 mm. A graphical depiction of prediction errors of both 
the deterministic and statistical method (where in the second method ei = si – 0 = si) is shown 
in Fig. 1.4 

-800

-600

-400

-200

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90 1

i

e i

00

Deterministic prediction error

Statistical prediction error

 

Fig. 1.4 Comparison of prediction errors of the deterministic and statistical methods for time 
up to 100. 

 We can observe that the deterministic method yields zero error for time up to 25 and 
negligible error for time up to 40. Then the error becomes high, fluctuating between about –
800 and 800. The error of the statistical prediction fluctuates in a narrower range, between –
500 and 500 mm. Statistics gives us a way to give a quantitative global measure of the error 
and compare the errors quantitatively rather than graphically. Thus for the n-year period [l, l + 
n –1] we define the root mean square (RMS) error as 

 eRMS := ∑
−+

=

1
21 nl

li
ie

n
 (1.7) 

The logic in taking the squares of errors and then summing up is to avoid an artificial 
cancelling up of negative and positive errors. Thus, for the last 50 years (l = 51, n = 50) the 
RMS error (calculated in the spreadsheet) is 342.0 and 277.9 mm, respectively. This verifies 
that the statistical prediction is better than the deterministic one for times > 50. On the other 
hand, Fig. 1.4 clearly shows that the deterministic prediction is better than the statistical for 
times < 50.  
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 This happens in most real world systems, but the time horizon, up to which a deterministic 
prediction is reliable, varies and depends on the system dynamics. For instance, we know that 
a weather prediction, obtained by solving the differential equations describing the global 
atmospheric system dynamics, is very good for the first couple of days but is totally unreliable 
for more than a week or ten days lead time. After that time, statistical predictions of weather 
conditions, based on records of previous years for the same time of the year, are more reliable.  
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Fig. 1.5 Relative frequency ν of the intervals of s, each with length 100 mm, as determined 
from the time series shown in Fig. 1.2.  

 A statistical prediction is generally more powerful than indicated in the example above. 
Instead of providing a single value (the value 0 in the example) that is a likely future state of 
the system, it can give ranges of likely values and a likelihood measure for each range. This 
measure is an empirical estimate of probability obtained by analyzing the available time series 
and using the theory of probability and statistics. That is to say, it is obtained by induction and 
not by deduction. In our example, analyzing the time series of Fig. 1.2, we can construct the 
histogram shown in Fig. 1.5, which represents empirically estimated probabilities for ranges 
of values of the soil water s. The histogram shows for instance that with probability 16%, s 
will be between –100 mm and 0, or that with probability 3%, s will be between –400 and 
–300 mm. We must be careful, however, about the validity of empirical inferences of this 
type. For instance, extending this logic we may conclude from Fig. 1.5 that with probability 
100% the soil water will be between –400 and 400 mm. This is a mistaken conclusion: we 
cannot exclude values of soil water smaller than –400 mm or higher than 400 mm. The 
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probabilities of such extreme (very low or very high) events are nonzero. To find them the 
empirical observations do not suffice and we need some theoretical tools, i.e. deductive 
reasoning. The tools are provided by the probability theory and the related areas of statistics 
and stochastics. Particularly, the latter area deals with processes that possess some 
dependence in time and perhaps cyclical behaviour (as happens in our example), and 
endeavour to incorporate any known deterministic laws within a unified, probability based, 
mathematical description.  

1.5 Concluding remarks 

If we try to make the above example more realistic, we should do several changes. 
Particularly: (a) the input (soil infiltration) should vary in time (and in space) in a rather 
irregular (random) manner; and (b) the relationship between soil water and vegetation cover 
should be revisited in light of some observational data in the specific area. For step (a) we 
need to build an additional model to simulate the input. This model should utilize infiltration 
data in the area, if available, or other hydrological data (rainfall, runoff) of the area; in the 
latter case an additional model that transforms rainfall to infiltration and runoff will be 
required. In all cases, the building of the model will require tools from probability, statistics, 
and stochastics.  For step (b), which aims at establishing a deterministic relationship, it is wise 
to admit from the beginning the great difficulty or impossibility to establish the relationship 
by pure theoretical (deductive) reasoning. Usually a mixed approach is followed: (b1) a 
plausible (conceptual) mathematical expression is assumed that contains some parameters 
strongly affecting its shape; and (b2) an available time series of measurements is used to 
estimate its parameters. Step b2 is clearly based on a statistical/inductive approach and will 
always give some error; in fact the parameter estimation is done with the target to minimize 
(but not to eliminate) the error. This error should be modelled itself, again using tools from 
probability, statistics, and stochastics. 
 It may seem contradictory, at first glance, that in the establishment of a deterministic 
relationship we use statistical tools. As strange as it may seem, this happens all the time. The 
detection of deterministic controls, based on observed field or laboratory data, and the 
establishment of deterministic relationships, again based on data, is always done using tools 
from probability, statistics, and stochastics. A variety of such tools, all probability-based, are 
available: least squares estimation, Bayesian estimation, spectral analysis, time delay 
embedding (based on the entropy concept) and others. Here it should be added that even 
purely deterministic problems such as the numerical optimization of a purely deterministic 
non-convex function and the numerical integration of a multivariate purely deterministic 
function can be handled more efficiently and effectively by probability-based methods 
(evolutionary algorithms and Monte Carlo integration, respectively) rather than by 
deterministic methods.  
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 Obviously, in a realistic setting of our example problem, the system trajectory should look 
more irregular than demonstrated above and the horizon for a reliable deterministic prediction 
should decrease significantly, perhaps to zero. In this case, a probabilistic-statistical treatment 
of the problem should be attempted from the outset, not for long horizons only. In this case 
we need not disregard the deterministic dynamics, if identified. On the contrary, stochastic 
methods are able to make explicit use of any identified deterministic control, so as to improve 
predictions as much as possible. That is to say, a stochastic approach from the outset does not 
deny causality and deterministic controls; rather it poses them in a more consistent framework 
admitting that uncertainty is inherent in natural systems. Here we should clarify that causality 
is conceptually different in a deterministic and a probabilistic approach. In the former case 
causality (or causation) is a directional relationship between one event (called cause) and 
another event (called effect), which is the consequence (result) of the first. In a stochastic 
view of the world, the definition of causality can be generalized in the following way (Suppes, 
1970): An  event  A is the prima facie cause of an event B if and only if (i) A occurs  earlier  
than B, (ii) A has a nonzero probability of occuring, and (iii) the conditional probability* of B 
occurring when  A  occurs  is  greater  than  the  unconditional  probability of B occurring.   
 It is, however, possible that in a real world problem our attempt to establish a causal 
relationship between our state variables fails. In a probabilistic framework this is not a 
tragedy, provided that we have a sufficient series of observations. We can build a model (for 
instance for the soil water s) without having identified the system dynamics. This is actually 
done in many cases of hydrological simulations.  
 All graphs in the above example indicate that the trajectories of the state variables of our 
system are irregular; simultaneously, they do not look like a purely random phenomenon, 
such as a series of roulette outcomes. This is very important and should be taken into serious 
consideration in any modelling attempt using probabilistic tools. In fact, the trajectories of 
natural systems never look like our more familiar purely random systems.† One major 
difference is the dependence in time, which may be very complex, contrary to the 
independence of roulette outcomes or to simple type of dependence (e.g. Markovian) 
encountered in simplistic stochastic models. In one of the next chapters we will examine these 
properties (revisiting the above example). We note, however, that such properties of natural 
processes, which seem peculiar in comparison to simple random systems, have been 
overlooked for years. Even worse, the standard statistical framework that was developed for 
independent events has been typically used in hydrological and geophysical applications, and 
this gave rise to erroneous results and conceptions.  

Acknowledgment I thank Richard Mackey for his discussions that have influenced and fed 
this text.  

                                                 
* For a formal definition of conditional probability see chapter 2. 
† We will revisit these differences in chapter 4. 
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