
Chapter 4  

Special concepts of probability theory in geophysical applications 

Demetris Koutsoyiannis 
Department of Water Resources and Environmental Engineering 
Faculty of Civil Engineering, National Technical University of Athens, Greece 

Summary 

Geophysical processes (and hydrological processes in particular, which are the focus of this 
text) are usually modeled as stochastic processes. However, they exhibit several peculiarities, 
which make classical statistical tools inappropriate, unless several simplifications are done. 
Typical simplifications include time discetization at the annual time scale and selection of 
annual maxima and minima in a manner which eliminates the effect of the annual cycle and 
effectively reduces dependence, which always exists in geophysical processes evolving in 
continuous time. These simplifications allow us to treat certain geophysical quantities as 
independent random variables and observed time series as random samples, and then perform 
typical statistical tasks are using classical statistics. In turn, they allow convenient handling of 
concepts such as return period and risk, which are essential in engineering design. However, 
we should be aware that the independence assumption has certain limits and that dependence 
cannot be eliminated as natural processes are characterized by large-scale persistence, or more 
rarely antipersistence, which are manifestations of strong dependence in time.  

4.1 General properties of probabilistic description of geophysical processes  

In a probability theoretic approach, geophysical processes (and hydrological processes in 
particular, which are the focus of this text)  are modeled as stochastic processes. For example, 
the river discharge X(t) in a specific location at time t is represented as a random variable and 
thus, for varying time t, X(t) makes a family of random variables, or a stochastic process, 
according to the definition given in chapter 2. More specifically, X(t) is a continuous state and 
continuous time stochastic process, and a sequence of observations of the discharge at regular 
times is a time series. 
 Some clarifications are necessary to avoid misconceptions with regard to the introduction 
of the notion of a stochastic process to represent a natural process. The stochastic process is a 
mathematical model of the natural process and it is important to distinguish the two. For 
instance, once we have constructed the mathematical model, we can construct an ensemble of 
as many synthetic “realizations” (time series) of the stochastic process as we wish. In contrast, 
the natural process has a unique evolution and its observation can provide a single time series 
only.  
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 In addition, the adoption of a probabilistic model, a stochastic process, does not mean that 
we refuse causality in the natural process or that we accept that natural phenomena happen 
spontaneously. We simply wish to describe the uncertainty, a feature intrinsic in natural 
processes, in an effective manner, which is provided by the probability theory. All 
deterministic controls that are present in the natural process are typically included in the 
stochastic description. For instance, most geophysical quantities display periodic fluctuations, 
which are caused by the annual cycle of earth, which affects all meteorological phenomena.  
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Fig. 4.1 Daily discharge of the Evinos River, Western Greece, at the Poros Reganiou gauge 
(hydrological years 1971-72 and 1972-73 − zero time is 1971/10/01). Dashed line shows the 
average monthly discharge of each month, estimated from a time series extending from 1970-
71 to 1989-90.  

 An example is depicted Fig. 4.1, which shows the evolution of discharge of a river for a 
two-year period, where the annual cycle is apparent. A stochastic model can well incorporate 
the periodicity in an appropriate manner. This is typically done by constructing a 
cyclostationary, rather than a stationary, stochastic process (see chapter 2). Some authors have 
suggested that the process should be decomposed into two additive components, i.e. X(t) = 
d(t) + Ξ(t), where d(t) is a deterministic periodical function and Ξ(t) is a stationary stochastic 
component. This, however, is a naïve approach, which adopts a simplistic view of natural 
phenomena of the type “actual” = “deterministic” + “stochastic”. Stochastic theory provides 
much more powerful cyclostationary methodologies, whose presentation, however, are is of 
the scope of this text. Another common misconception (e.g. Haan, 1977; Kottegoda, 1980) is 
that deterministic components include the so-called “trends”, which are either increasing or 
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decreasing, typically linear, deterministic functions of time. Whilst it is true that geophysical 
(and hydrological in particular) time series display such “trends” for long periods, these are 
not deterministic components unless there exists a deterministic theory that could predict 
them in advance (not after their observation in a time series). Such “trends”, after some time 
change direction (the increasing become decreasing and vice versa) in an irregular manner. In 
other words, typically they are parts of large-scale irregular fluctuations (Koutsoyiannis, 
2006a). 
 We use the term “stochastic” instead of “random” in the mathematical process to stress the 
fact that our model does not assume pure randomness in the evolution of the natural process 
under study. In contrast, a stochastic model assumes that there is stochastic dependence 
between variables X(t) that correspond to neighbouring times. Using the terminology of 
chapter 2, we say that the process has non negligible autocovariance or autocorrelation. 
Generally, these are decreasing functions of time lag but they sustain very high values for 
small lags. For example, if the discharge of a river at time t0 is X(t0) = 500 m3/s, it is very 
improbable that, after a small time interval ∆t, say 1 hour, the discharge becomes X(t0 + ∆t) = 
0.5 m3/s. On the contrary, it is very likely that this discharge will be close to 500 m3/s and this 
is expressed by a high autocorrelation at a lag of 1 hour. 
 While the dependence of this type is easily understandable and is called short-range 
dependence or short-term persistence, hydrological and other geophysical processes (and not 
only) display another type of dependence, known as long-range dependence or long-term 
persistence. Thus, it is not uncommon that long time series of hydrological and other 
geophysical processes display significant autocorrelations for large time lags, e.g. 50 or 100 
years. This property is related to the tendency of geophysical variables to stay above or below 
their mean for long periods (long period excursions from means), observed for the first time 
by Hurst (1951), and thus also known as the Hurst phenomenon. Another name for the same 
behaviour, inspired from the clustering of seven year drought or flood periods mentioned in 
the Bible, is the Joseph effect (Mandebrot, 1977). Koutsoyiannis (2002, 2006a) has 
demonstrated that this dependence is equivalent to the existence of multiple time scale 
fluctuations of geophysical processes, which, as mentioned above, were regarded earlier as 
deterministic trends. The long-term persistence will be further discussed in section 4.5. 
 Apart from periodicity (seasonality) and long-term persistence, geophysical processes have 
also other peculiarities that make classical statistical and stochastic models inappropriate for 
many modelling tasks. Among these are the intermittency and the long tails of distributions. 
Intermittency is visible in the flow time series of Fig. 4.1, where the flow alternates between 
two states, the regular flow (base flow) state and the flood state. In rainfall (as well as in the 
flow in ephemeral streams) this switch of states is even more apparent, as most of the time the 
processes are at a zero (dry) state. This is manifested in the marginal probability distribution 
of rainfall depth by a discontinuity at zero. Furthermore, the distribution functions of 
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geophysical processes are quite skewed on fine and intermediate time scales. The skewness is 
mainly caused by the fact that geophysical variables are non-negative and sometimes 
intermittent. This is not so common in other scientific fields whose processes are typically 
Gaussian. While at their lower end probability distributions of geophysical variables have a 
lower bound (usually zero), on the other end they are unbounded. Moreover, their densities 
f(x) tend to zero, as state x tends to infinity, much more slowly than the typical exponential-
type distributions, to which the normal distribution belongs. This gives rise to the long tails, 
which practically result in much more frequent extreme events than predicted by the typical 
exponential type models, a phenomenon sometimes called the Noah effect (Mandebrot, 1977). 

4.2 Typical simplifications for geophysical applications 

4.2.1 Processes in discrete time 
The study of a geophysical process in continuous time is difficult and, in most practical 
engineering problems, not necessary. The continuous time description of geophysical 
processes is out of the scope of this text, which focuses on discrete time representation. 
However, the discrete time representation, requires consistency with the continuous time 
evolution of the actual processes. To establish this consistency we need two characteristic 
time steps. The first, D, is fixed to the duration of the year, in which a full cycle of 
geophysical phenomena is completed. In hydrology, the partitioning of the continuous time in 
years is done using the convention of a hydrological year, whose starting point does not 
generally coincide with that of a calendar year. Rather it is taken to be the beginning of the 
rainy period of the year. In Europe, this is typically regarded to be the 1st of October. The 
second time step, ∆, defines a time window, or time scale, within which we view the process. 
In contrast to the year, this is not fixed but depends on the specific problem we study. It can 
range from a few minutes, if we study storms and floods in an urban area, to one year, if we 
study the hydrological balance of a catchment, or to many years, if we study overannual 
fluctuations of water balance.  
 Now we can proceed in several simplifications of a continuous time stochastic process 
representing a geophysical (hydrological in particular) process, as demonstrated in Fig. 4.2, 
where time in horizontal axis is measured in (hydrological) years whereas for demonstration 
purposes it was assumed ∆ = D/4. The first simplification of the full continuous time process 
(Fig. 4.2(1)) is the formation of a discrete time process (Fig. 4.2(2)). To this aim we partition 
continuous time t in intervals of length ∆. The values i = 1, 2, …, of discrete time correspond 
to continuous time intervals [0, ∆), [∆, 2∆), and so no. The discrete time process X∆(i) in time i 
is defined to be the time average of X(t) in the respective interval, i.e. 
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For instance, if X(t) represents the instantaneous discharge of a river and ∆ is taken to be one 
day or one month, then X∆(i) represents the daily (more rigorously: the time averaged daily) or 
the monthly (more rigorously: the time averaged monthly) discharge, respectively. 
Sometimes, we wish to study the aggregated quantity, rather than the time average, in the 
corresponding time interval ∆, that is, the quantity  
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In this example, X*
∆(i) represents the daily or the monthly runoff volume. Likewise, if X(t) 

represents the instantaneous rainfall intensity in a specific point of a catchment and ∆ is taken 
as one day or one month, then X*

∆(i) represents the daily or the monthly rainfall depth, 
respectively.  
 Even though time discretization is a step toward simplification of the study of a 
geophysical process, yet the mathematical description of X∆(i) or X*

∆(i) is complicated as it 
requires the analysis of periodicity and the autocorrelation of the process, for which the 
classical statistics, summarized in chapter 3, do not suffice. These issues are not covered in 
this text, except a few general discussions in the end of this chapter. The following 
simplifications, which are typical and useful in engineering problems, are more drastic and the 
resulting processes are easier to study using classical statistics. 
 If we construct the process X∆(i) (or X*

∆(i)) assuming a time window equal to one year 
(∆ = D) then we obtain the annual process, XD(i) (or X*

D(i)); now i denotes discrete time in 
years (Fig. 4.2(3)). Thus, 
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In this process the annual periodicity has been fully eliminated, because time intervals smaller 
than a year are not visible, and the process autocorrelation has been reduced significantly (but 
not eliminated), because of the large integration time step. This process, which represents the 
succession of an annual hydrological quantity (annual runoff, rainfall, evaporation, 
temperature) is very useful for problems of estimation of the water potential of an area.  
 One way to move to a time interval smaller than a year, simultaneously eliminating the 
annual periodicity and significantly reducing autocorrelation is shown in Fig. 4.2(4). In each 
hydrological year i = 1, 2, …, we take an interval of length ∆ < D, specifically the interval 

. Here j is a specified integer with possible values j = 1, 2, …, 

D/∆ (in Fig. 4.2(4) it has been assumed j = 1). The process obtained is: 
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For instance if X(t) represents the instantaneous discharge of a river, ∆ is taken as one month, 
and j = 1, then Y∆(i) represents the average monthly discharge of the month of October of each 
hydrological year (assuming that it starts at the 1st of October) and Y*

∆(i) is the corresponding 
runoff volume.  

4.2.2 Processes of extreme quantities  
In many problems, our interest is focused not of time averages, but on extreme quantities for a 
certain time interval, that is the maximum quantities (e.g. for flood studies) or the minimum 
quantities (e.g. for drought studies). For the study of these quantities we construct appropriate 
discrete time processes. Thus, Fig. 4.2(5) demonstrates the construction of the process of 
instantaneous annual maxima, Z0(i). In each year in a realization of the continuous time 
process X(t) we have taken only one value, the instantaneous maximum value that occurs 
during the entire year. We can extend this from the realization to the process and write  

 ( ) ( ){ }tXiZ
iti <≤−

=
10 max:  ( 5) 4.

Likewise, we can define the process of instantaneous annual minima. Again in these 
processes the annual periodicity has been fully eliminated and the process autocorrelation has 
been reduced significantly. 
 If, instead of instantaneous quantities, we are interested on an average during a time 
interval ∆, then we can construct and study the process of annual maxima on a specified time 
scale, i.e. (Fig. 4.2(6)) 
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This definition was based on the continuous time process X(t). Alternatively – but with 
smaller precision – it can be based on the already time discretized process X∆(i) (Fig. 4.2(7)):  
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**

2121

max:,max:
≤≤≤≤

=′=′  ( 7) 4.

where . Comparing Fig. 4.2(6) and Fig. 4.2(7), it is apparent that 

Z

( ) ∆iDj∆Dij /:, 1/1: 21 =+−=

∆(i) και Z΄∆(i) are not identical in terms of the time position or their magnitude, but they do 
not differ much. Likewise, we construct the process of annual minima on a specified time 
scale. The typical values of the time interval ∆ in flood and drought studies vary from a few 
minutes (e.g. in design storm studies of urban drainage networks) to a few months (in water 
quality studies of rivers in drought conditions). 
 A last series of maxima, known as series above threshold or partial duration series is 
demonstrated in Fig. 4.2(8), and can serve as a basis of the definition of the related processes. 
This is usually constructed from the discrete time process X∆(i), as in Fig. 4.2(7). The 
difference here is that instead of taking the maximum over each year, we form the series of all 
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values that exceed a threshold c, irrespectively of the location of these values in hydrological 
years, i.e. 

 ( ){ } ( ) ( ){ }KK ,2,1,|:,2,1, =≥== jcjXjXiiW ∆∆∆  ( 8) 4.
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Fig. 4.2 Auxiliary sketch for the definition of the different types of stochastic processes; time 
t is in years. 

Strictly speaking, the index i does not represent time, but it is just a the rank of the different 
variables W∆(i) in the time ordered series. The threshold c is usually chosen so that each year 
includes on the average one value greater than the threshold. Thus, in Fig. 4.2(8) the 
threshold, depicted as a horizontal dashed line, has been chosen so that it yields three values 
over three hydrological years. We observe that two values are located in the first year, none in 
the second year and one in the third year. With the above definition, it is possible that 
consecutive elements of the series correspond to adjacent time intervals, as in the two values 
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of the first year in our example. This may introduce significant stochastic dependence in the 
series. To avoid this, we can introduce a second threshold of a minimum time distance 
between consecutive elements of the series.  

4.2.3 From stochastic processes to random variables  
As clarified above, this text does not cover the analysis of the complete geophysical processes 
either in continuous or discrete time. However, we have defined six other types of processes, 
in which the “time” index is discrete and may differ from actual time. Each of these processes 
includes one element per year, except of the process over threshold, which includes a variable 
number of elements per year, with an average of one per year. For our study, we shall make 
the following assumptions:  

1. The processes are stationary: the distribution of each random variable remains the same 
from year to year. 

2. The processes are ergodic: ensemble averages equal time averages. 
3. The variables corresponding to different times are independent.  

 To clarify the meaning of these assumptions, we will discuss an example. Let X(t) 
represent the instantaneous discharge of a river at time t, and (according to the above 
notation) XD(τ) represent the mean annual discharge of (hydrological) year τ. Let us assume 
that 30 years of observations are available, so that we know the values xD(1), …, xD(30), 
which we regard as realizations of the random variables XD(1), …, XD(30). Obviously, for 
each of the variables XD(i) we can have (and we have) only one realization xD(i). In contrast to 
laboratory conditions, in nature we cannot repeat multiple experiments with different 
outcomes to acquire a sample for the same variable XD(i). Given the above observations, we 
can calculate time averages of certain quantities, for instance the standard sample average Dx  

= [xD(1) + … + xD(30)]/30. Does this quantity give any information for the variable XD(31)? 
In general, the answer is negative. However, if assumptions 1 and 2 are valid, then Dx  gives 

important information for XD(31) and, thus, it helps make a statistical prediction. Specifically, 
under the stationarity assumption all XD(i) have the same statistical properties, and this 
provides grounds to treat them collectively; otherwise a quantity such as Dx  would not have 

any mathematical or physical meaning at all. Simultaneously, the stationarity assumption 
allows us to transfer any statistical property concerning the variables XD(1), …, XD(30) to the 
variable XD(31). The ergodicity assumption makes it possible to transform the time average 

Dx  to an estimate of the unknown true average of each of the variables XD(i), i.e. to estimate 
m = E[XD(i)] as Dx . So, both stationarity and ergodicity assumptions are fundamental and 

powerful and allow us to make predictions of future events, e.g. E[XD(31)] = m. The third 
assumption, the independence, is not a fundamental one. It is just a simplification that makes 
possible the use of classical statistics. Otherwise, if the variables are dependent, the classical 
statistics need adaptations before they can be used (Koutsoyiannis, 2003).  
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 It is important to stress that the stationarity assumption is not some property of the natural 
system under study, e.g. the river and its flow. It is an assumption about the mathematical 
model, i.e. the stochastic process, that we build for the natural system (Koutsoyiannis, 2006a). 
In this respect, it is related to the behaviour of the system but also to our knowledge of the 
system. For instance, let us assume that we have a reliable deterministic model of the 
evolution of the river discharge that predicts that at year 31 the average discharge will be 
xD(31) = 2m. If we build an additional stochastic model for our system, in an attempt to 
describe the uncertainty of this deterministic prediction, it will be reasonable to assume that 
E[XD(31)] = 2m, rather than E[XD(31)] = m. Thus, our process will be not stationary. Even 
without this hypothetical deterministic model, we can arrive to a similar situation if there is 
stochastic dependence among the consecutive variables. In case of dependence, the past 
observations affect our future predictions. In this situation, it is natural to use the conditional 
mean E[XD(31)|xD(1), …, xD(30)] instead of the unconditional mean E[XD(31)] = m as a 
prediction of the next year; the two quantities are different. Likewise, for year 32, given past 
information, the quantity E[XD(32)|xD(1), …, xD(30)] will be different both from 
E[XD(31)|xD(1), …, xD(30)] and m. In other words, dependence along with past observation 
make our model to behave as a nonstationary one in terms of conditional expectations, even 
though in an unconditional setting it is a stationary process (see also Koutsoyiannis et al., 
2007).  
 Under the assumptions of stationarity, ergodicity and independence, we can replace the 
notion of a stochastic process XD(t) with a unique realization xD(t), with the notion of a single 
underlying random variable XD with an ensemble of realizations xD(i), that are regarded as an 
observed sample of XD. In the latter case the time ordering of xD(i) does not matter at all.  

4.2.4 A numerical investigation of the limits of the independence assumption 
We assume that, based on observational data of river discharge, we have concluded that the 
probability of the event of annual runoff volume smaller than 500 hm3* is very small, equal to 
10−2. What is the probability that this event occurs for five consecutive years? 
 Assuming stationarity, ergodicity and independence, this probability is simply  = 

10

52)10( −

−10. This is an extremely low probability: it means that we have to wait on the average 1010 
or 10 billion years to see this event happen (by the way, the age of earth is much smaller than 
this duration). However, such events (successive occurrences of extreme events for multiyear 
periods) have been observed in several historical samples (see section 4.5.3). This indicates 
that the independence assumption is not a justified assumption and yields erroneous results. 
Thus we should avoid such an assumption if our target is to estimate probabilities for 
multiyear periods. Methodologies admitting dependence, i.e. based on the theory of stochastic 

 
* We remind that the unit hm3 represents cubic hectometers (1 hm3 = (100 m)3 = 1 000 000 m3). 
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processes, are more appropriate for such problems and will result in probabilities much 
greater than 10−10; these however are out of the scope of this text.  
 Now let us assume that for four successive years our extreme event has already occurred, 
i.e. that the runoff volume was smaller than 500 hm3 in all four years. What is the probability 
that this event will also occur in the fifth year? 
 Many people, based on an unrefined intuition, may answer that the occurrence of the event 
already for four years will decrease the probability of another consecutive occurrence, and 
would be inclined to give an answer in between 10−2 and 10−10. This is totally incorrect. If we 
assume independence, then the correct answer is precisely 10−2; the past does not influence 
the future. If we assume positive dependence, which is a more correct assumption for natural 
processes, then the desired probability becomes higher than 10−2; it becomes more likely that 
a dry year will be followed by another dry year.  

4.3 The concept of the return period  

For a specific event A, which is a subset of some certain event Ω, we define the return period, 
T, as the mean time between consecutive occurrences of the event A. This is a standard term 
in engineering applications (in engineering hydrology in particular) but needs some 
clarification to avoid common misuses and frequent confusion. Under stationarity, if p is the 
probability of the event, then the return period T is related to p by 

 
p∆

T 1
=  ( 9) 4.

4.

4.

where ∆ is the time interval on which the certain event Ω is defined or, for events defined on 
varying time frame, the mean interarrival time of the event Ω. For instance in panel (2) of Fig. 
4.2, ∆ = D/4, whereas in panels (3)-(8) ∆ = D, as by construction all these cases involve one 
event Ω per year (either one exactly or one on the average). In particular, in panel (8), as 
discussed above, we have chosen the threshold c that defines our event Ω so that each year 
includes on the average one event. Had we chosen a smaller threshold, so that each year 
include two events on the average, the mean interarrival time of Ω would be ∆ = D/2. 
 Apart from stationarity, no other conditions are needed for ( 9) to hold. To show this, we 
give the following general proof that is based on the simple identity P(CA) = P(C) – P(CB), 
valid for any events A and C, with B denoting the opposite event of A. We assume a stationary 
process in discrete time with time interval ∆. At time i, we denote as Ai the occurrence of the 
event A and as Bi the non occurrence. Because of stationarity P(A1) = P(A2) =… = P(A) = p 
(also P(B1) = P(B2) =… = P(B) = 1 – p). The time between consecutive occurrences of the 
event A is a random variable, say N, whose mean is the return period, T. Assuming that the 
event A has happened at time 0, if its next occurrence is at time n, we can be easily see that  

 P{N = n} = P(B1, B2, … Bn-1, An|A0) = P(A0, B1, B2, … Bn-1, An) / P(A0) ( 10) 
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or 

 P{N = n} = (1/p) P(A0, B1, B2, … Bn-1, An) ( 11) 4.

4.

4.

Obviously, T = E[N] ∆, where the expected value of N is (by definition) 

 E[N] = 1 P(N = 1) + 2 P(N = 2) + …  (4.12) 

Combining the last two equations we obtain 

 p E[N] = 1 P(A0, A1) + 2 P(A0, B1, A2) + 3 P(A0, B1, B2, A3) + … (4.13) 

and using the above mentioned identity,  

 p E[N] = 1 [P(A0) – P(A0, B1)] + 2 [P(A0, B1) – P(A0, B1, B2)] +  
  + 3 [P(A0, B1, B2) – P(A0, B1, B2, B3)] + … (4.14) 

or 

 p E[N] = P(A0) + P(A0, B1) + P(A0, B1, B2) + … (4.15) 

Using once more the same identity, we find 

 p E[N] = [1 – P(B0)] + [P(B1) – P(B0, B1)] + [P(B1, B2) – P(B0, B1, B2)] + … (4.16) 

and observing that, because of stationarity, P(B0) = P(B1), P(B0, B1) = P(B1, B2), etc., we 
conclude that 

 p E[N] = 1 ( 17) 

which proves (4.9). From this general proof we conclude that (4.9) holds true either if the 
process is time independent or dependent, whatever the dependence is. (In most hydrological 
and engineering texts, e.g. Kottegoda, 1980, p. 213; Kottegoda and Rosso, 1998, p. 190; 
Koutsoyiannis, 1998, p. 96, independence has been put as a necessary condition for ( 9) to be 
valid). All this analysis is valid for processes in discrete time; as the time interval ∆, on which 
the event A is defined, tends to zero, the return period will tend to zero too, provided that the 
probability of A is finite. 
 Extreme events that are of interest in geophysics (and hydrology) are usually of two types, 
highs (floods) or lows (droughts). In the former case the event we are interested is the 
exceedence of a certain value x, i.e. {X > x}, which is characterized by the probability of 
exceedence, ( )xFxXPxFp XX −=>== 1}{)(* . In the latter case the event we are interested is 

the non exceedence of a certain value x, i.e. {X ≤ x}, which is characterized by the probability 
of non exceedence, . As the processes that we deal with here are 

defined on the annual scale (∆ = D), for an exceedence event (high flow) we have  

}{)( xXPxFp X ≤==

 ( )xFxFxXPD
T

XX −
==

>
=

1
1

)(
1

}{
1

*  ( 18) 4.

whereas for a non exceedence event (drought) we have 
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≤

=  ( 19) 4.

Sometimes we write the above relationships omitting D = 1 year, as it is very common to 
express the return period in years (essentially identifying T with E[N]). However, the correct 
(dimensionally consistent) forms are those written in equations (4.18)-(4.19). Sometimes 
(4.18) has been used as a definition of the return period, saying that the return period is the 
reciprocal of the exceedence probability. This again is not dimensionally consistent (given 
that return period should have dimensions of time) nor general enough (it does not cover the 
case of low flows). 
 The term return period should not trap us to imply that there is any periodic behaviour in 
consecutive occurrences of events such as in exceedence or nonexceedences of threshold 
values in nature. In a stochastic process the time between consecutive occurrences of the 
event is a random variable, N, whose mean is the return period, T. For example, if the value 
500 m3/s of the annual maximum discharge in a river has a return period of 50 years, this does 
not mean that this value would be exceeded periodically once every 50 years. Rather it means 
that the average time between consecutive exceedences will be 50 years. An alternative term 
that has been used to avoid “period” is recurrence interval. However, sometimes (e.g. in 
Chow et al., 1988) this term has been given the meaning of the random variable N and not its 
mean T. Typical values used in engineering design of flood protection works are given in 
Table 4.1. 

Table 4.1 Return periods most commonly used in hydrological design for high flows and 
corresponding exceedence and nonexceedence probabilities.  

Return period T 
(years) 

Exceedence 
probability F* (%)

Nonexceedence 
probability F (%) 

2 50 50 
5 20 80 

10 10 90 
20 5 95 
50 2 98 

100 1 99 
500 0.2 99.8 

1000 0.1 99.9 
5 000 0.02 99.98 

10 000 0.001 99.99 
Note: To adapt the table for low flow events we must interchange 

the columns exceedence probability and nonexceedence 

probability.  
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4.4 The concept of risk 

Depending on the context, risk can be defined to be either a probability of failure or the 
product of probability of failure times the losses per failure. Here we use the former 
definition. A failure is an event that usually occurs when the load L, exceeds the capacity C of 
a construction. In the design phase, the design capacity is larger than the design load, so as to 
assure a certain safety margin 

 LC −=:SM  > 0 (4.20) 

or a certain safety factor  

 
L
C

=:SF  > 1 (4.21) 

In engineering hydrology, L could be, for instance, the design flood discharge of a dam 
spillway whereas C is the discharge capacity of the spillway, that is the discharge that can be 
routed through the spillway without overtopping of the dam. 
 In most empirical engineering methodologies both L and C are treated in a deterministic 
manner regarding them as fixed quantities. However, engineers are aware of the intrinsic 
natural uncertainty and therefore are not satisfied with a safety factor as low as, say, 1.01, 
even though in a deterministic approach this would suffice to avoid a failure. Rather, they 
may adopt a safety factor as high as 2, 3 or more, depending on empirical criteria about the 
specific type of structure. However, the empirical deterministic approach is more or less 
arbitrary, subjective and inconsistent. The probability theory can quantify the uncertainty and 
the risk and provide more design criteria. According to a probabilistic approach SM and SF 
are regarded as random variables and the risk is defined to be: 

 R := P{SF < 1} = P{SM < 0} (4.22) 

and its complement, 1 – R is known as reliability.  
 In the most typical problems of engineering hydrology, the design capacity (e.g. discharge 
capacity or storage capacity) could be specified with certainty (C = c), and is not regarded as a 
random variable. However, the load L should be taken as a random variable because of the 
intrinsic uncertainty of natural processes. In this case, the risk is  

 }{1}{ cLPcLPR ≤−=>=  ( 23) 4.

 The probability P{L ≤ c} (the reliability) depends on the variability of the natural process 
(e.g. the river discharge, the fixed quantity c, and the life time of the project n D (n years). 
With the notation of section 4.2.2, assuming an appropriate time window ∆ for the 
phenomenon studied, the event {L ≤ c} (which refers to the n year period) is equivalent to the 
event {Z∆(1) ≤ c, …, Z∆(n) ≤ c}. Assuming independence of Z∆(i) trough years, it is concluded 
that  
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 ( ) n

Ζ
n

∆ cFcZPR
∆

][1}]{[1 −=≤−=  ( 24) 4.

4.

where  is the distribution function of the annual flood. Expressing it in terms of the 

return period T from ( 18), we obtain the following relationship that relates the three basic 
quantities of engineering design, the risk R, the return period T and the life time n years: 

( )
∆Ζ

F

 
n

T
DR ⎟
⎠
⎞

⎜
⎝
⎛ −−= 11  ( 25) 4.

4.

4.

Graphical depiction of (4.25) is given in Fig. 4.3 for characteristic return periods. Given that 
, the following approximation of ( 25), with 

error < 1% for T ≥ 50, is obtained:  

( ) ( ) ( ) nxxxnxnx n −≈−−−=−=− L2/1ln1ln 2

  ( 26) TnDeR /1 −−≈
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Fig. 4.3 Graphical depiction of the interrelationship of the characteristic quantities of 
engineering design (equation 4.25). 

 Solving (4.25) for T we obtain the following relationship that gives the required return 
period for given design risk and design life time: 

 
( ) nR

DT /111 −−
=  ( 27) 4.

All equations (4.24)-(4.27) are based on the assumption of independence and are not valid in 
case of dependence. To get an idea of the effect of dependence, let us examine the limiting 
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case of complete dependence, in which the occurrence of a single event Z∆(1) ≤ c entails that 
all Z∆(i) ≤ c. It is easy to see that in this case we should substitute 1 for n in all equations. 
Thus, (4.27) becomes T = D/R so that it will yield a return period smaller than that estimated 
by (4.27) if the risk is specified. In other words, if we use (4.27) we are on the safe side in the 
case that there is dependence in the process.  

4.4.1 Numerical examples 
a. We assume that a diversion tunnel is planned to operate during the construction period of a 
dam, which has been estimated to be 5 years. What is the return period so that the risk be 
lower than an acceptable 10%? 
 From (4.27) we obtain 

( ) ( )
years 9.47

1.011
1

11
1

5/1/1 =
−−

=
−−

= nR
T

 

We round off the return period to 50 years.  
 b. What is the risk in a project, for which the return period was assumed equal to its design 
life time?  
 If the life time of the project is long enough (≥ 50 years), then from (4.26) we obtain R = 
1 − e−1 = 0.632 = 63.2%. Otherwise from (4.25), we obtain 

n

n
R ⎟

⎠
⎞

⎜
⎝
⎛ −−=

111  

which for values n = 5, 10 and 20 years results in R = 67.2%, 65.1% and 64.2%, respectively. 

4.5 An introduction to dependence, persistence and antipersistence 

4.5.1 Definitions and basic tools  
Common random series like those observed for example in games of chance (dice, roulette, 
etc.) are obtained by repetitive experiments, each of which is independent of all other. In 
contrast, geophysical time series are not outcomes of separate experiments. The entire length 
of a geophysical time series could be thought of as equivalent to a single never ending 
experiment. It is like observing the whole trajectory of a die throughout its entire movement, 
assumed to be endless, rather than waiting to observe the outcome when the die goes to rest. 
While independence is well justified in a series of outcomes of separate experiments, it is 
totally unjustified when we are interested in the continuous trajectory of the die. Obviously, 
the state (position, momentum) of the die at time t + ∆t depends on the state at time t. The two 
states tend to be identical as ∆t tends to zero.  
 Likewise, in all physical systems that evolve in continuous time, the autocorrelation 
coefficient for lag tending to zero tends to 1 (complete dependence). As lag increases, the 
autocorrelation decreases, generally tending to zero for lag tending to infinity. The positive 
autocorrelation is also termed persistence, as already discussed in section 4.1. The persistence 
is characterized as short-term persistence when the autocorrelation tends to zero as an 
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exponential function of lag time and as log-term persistence when the autocorrelation tends to 
zero as a power-law function of lag time. The latter case corresponds to stronger or longer tail 
of the autocorrelation function. Sometimes, for intermediate lags negative autocorrelations 
may appear. The general behaviour corresponding to this case is known as antipersistence. 
 An easier means to explain antipersistence and persistence, short- or long-term, is provided 
by studying the variation of the standard deviation with time scale. To avoid the effect of 
seasonality, here we consider time scales ∆ that are integer multiples of the annual time scale, 
i.e., 
 ∆ = k D,  k = 1, 2, … (4.28) 

By virtue of (4.1), which holds for any ∆ (also for ∆ > D), we easily obtain that the process at 
scale ∆ is related to that at scale D by 

 XkD(i) = [XD(ik – k + 1) + … + XD(ik)]/k ( 29) 

( 29)

4.

4.

This is nothing other than the time average of a number k of consecutive random variables. 
We can define similar time average processes for over-annual scales also for the other cases 
(Y and Z) that we discussed in section 4.2. For k sufficiently large (typically 30, even though 
sometimes k = 10 has been also used), such processes represent what we call climate; ∆ = 30 
years is the typical climatic time scale. However, here we will regard ∆ as varying and we will 
study the variation of the standard deviation of X∆(i) with ∆ = kD.  
 Let σ∆ ≡ σkD denote the standard deviation at scale ∆ = kD, i.e. σkD := StD[XkD(i)]. 
According to  XkD(i) is the average of k random variables. If these variables are 
independent, then we know from chapter 3 that  

 
k
σ

σ D
kD =  or 

∆
Dσσ D∆ =  ( 30) 4.

where σD is the standard deviation at scale 1. This provides a means to test whether or not the 
process at hand is independent in time. If it is independent, then the double logarithmic plot of 
σ∆ vs. ∆ will be a straight line with slope –0.5. Milder negative slopes (>–0.5) indicate 
persistence and steeper slopes (<–0.5) indicate antipersistence. Short-term persistence is 
manifested in the plot as a curve with mild slope for small k, which asymptotically tends to 
-0.5 for large k. In long-term persistence the slope remains milder than –0.5 even for large k. 
A more generalized law that asymptotically (for large k) holds in cases of long-term 
persistence and antipersistence is given by 

 H
D

kD k
σσ −∝ 1  or 

H

D∆ ∆
Dσσ

−

⎟
⎠
⎞

⎜
⎝
⎛∝

1

 ( 31) 4.

The coefficient H is termed the Hurst coefficient, after Hurst (1951) who discovered the 
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long-term persistence in geophysical time series*. Clearly, H = 1 + d, where d is the slope of 
the plot of σ∆ vs. ∆. Generally, for stationary processes, 0 < H < 1 (Mandelbrot and van Ness, 
1968). For independent processes, H = 0.5; for persistent processes, 0.5 < H < 1 and for 
antipersistent processes, 0 < H < 0.5. For persistent processes it is possible that the law  
holds as an equality for any k. Mathematically, this is also possible for antipersistent 
processes (H < 0.5) but physically it is not realistic. To see the reason why this happens, we 
assume that the law  holds as an equality for any k; in this case it defines a stochastic 
process termed a simple scaling stochastic (SSS) process. It can be shown (e.g. 
Koutsoyiannis, 2002) that the autocorrelation X

( 31)

( 31)

4.

4.

4.

kD(i) of the process for scale kD and lag j, i.e. 

the quantity ρkD(j) := Cov[XkD(i), XkD(i + j)] / Var[X(k)
i ]), is given by 

 ρkD(j) = ρ(j) = (1/2) (|j + 1|2H + |j – 1|2H) – |j|2H ( 32) 

This shows that the autocorrelation is independent of scale. Inspection shows that if H > 0.5 
the autocorrelation for any lag is positive (persistence), whereas if H < 0.5 the autocorrelation 
for any lag is negative (antipersistence). In the latter case it takes the most negative values at 
lag j = 1, which is ρkD(1) = ρ(1) = 22H –1 – 1. However, physical realism demands that for 
small scales and lags, the autocorrelation should be positive.  
 Given a time series of sufficient length n at time scale D, we can test in a simple way 
whether the law (4.30) is fulfilled or not, and if not, we can see whether the time series 
implies persistence or antipersistence. To this aim, we can estimate from the time series the 
standard deviation σkD for several values of k. Assuming k = 1, we estimate σD from the n data 
values available. For k = 2 (and assuming for simplicity that the series length n is even) we 
can construct a size (n/2) sample X2D(1) = [XD(1) + XD(2)]/2, X2D(2) = [XD(3) + XD(4)]/2, …, 
X2D(n/2) = [XD(n – 1) + XD(n)]/2. From these we can estimate σ2D. Proceeding this way (e.g. 
X3D(1) = [XD(1) + XD(2) + XD(3)]/3, etc.) we can estimate σkD for k up to, say, n/10 (in order to 
have 10 sample values for the estimation of standard deviation). Constructing a logarithmic 
plot of the estimate of standard deviation σkD versus k we can test graphically the validity of 
the statistical law (4.30) and estimate the coefficient H of law (4.31). 

4.5.2 Synthetic examples 
Now we will demonstrate the above concepts with the help of a few examples. We will start 
with the synthetic example that was already studied in chapter 1. Although this example is 
referred to a fully deterministic system, it is useful in understanding the behaviours discussed; 
besides, the statistical analyses outlined above can be applied also in time series that result 
from deterministic systems. It is reminded that the working example of chapter 1 examines a 
hypothetical plain with water stored in the soil, which sustains some vegetation. Each year a 

 
* Hurst used a different formulation of this behaviour, based on the so-called rescaled range. The formulation in 
terms of standard deviation at the time scale kD, as in equation (4.31), is much simpler yet equivalent to Hurst’s 
(see theoretical discussion by Beran, 1994, p. 83, and practical demonstration by Koutsoyiannis, 2002, 2003). 
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constant amount of water enters the soil and the potential evapotranspiration is also constant, 
but the actual evapotranspiration varies following the variation of the vegetation cover f. The 
vegetation cover and the soil water storage s are the two state variables of the system that vary 
in time i; the system dynamics are expressed by very simple equations.  
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Fig. 4.4 Graphical depiction of the evolution of the system storage si (in mm) of the working 
example in chapter 1 for time up to 1000. 
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Fig. 4.5 Graphical depiction of a series of random numbers in the interval (-800, 800) having 
mean and standard deviation equal to those of the series in Fig. 4.4. 

 In chapter 1, Fig. 1.3, we have seen a graphical depiction of the system evolution for 
certain initial conditions that we called the “true” conditions. Now in Fig. 4.4 we depict the 
continuation of this evolution of the storage s(i) (or si) for time up to 1000. In addition, we 
have given in Fig. 4.4 a plot of the 30-year moving average* of si, which shows that this 

                                                 
*  The moving average is the average of k random variables consecutive in time, as in (4.29). However, for better 
illustration, here we used a slightly different definition, i.e., X30D(i) = [XD(i – 15) + … + XD(i + 14)]/30. 
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moving average is almost a horizontal straight line at s = 0. The experienced eye may 
recognize from this, without the need of further tools, a strongly antipersistent behaviour.  
 For comparison we have derived a random series* with mean and standard deviation equal 
to those of the original series, and we plotted it in Fig. 4.5. Comparing the plots of moving 
averages in Fig. 4.4 and Fig. 4.5 we see a clear difference. In the former case (antipersistence) 
the plot is virtually a horizontal straight line, whereas in the latter case (pure randomness) it is 
a curly line, which however does not depart very much from the line s = 0.  
 Sometimes antipersistence has been confused with periodicity or cyclic behaviour. 
However, periodicity would imply that the time between consecutive peaks in the time series 
would be constant, equal to the period of the phenomenon. To distinguish the two behaviours, 
we have calculated a series of times between peaks, τ, from the time series of our example, 
which for better accuracy we extended up to 10 000 items by the same algorithm. From this 
series we constructed an histogram of times between peaks, which is shown in Fig. 4.6. We 
see that the time between peaks varies from 4 to 22 years, with a mode of 6 years. Clearly, 
this behaviour is totally different from a periodic phenomenon, and is better described by the 
term antipersistence.  
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Fig. 4.6 Relative frequency ν of the time τ between consecutive peaks, estimated from a series 
of 10 000 items of a series of si of the example system.  

                                                 
* This series has been produced as follows: First, we derive a series of integer random numbers qi by the 
recursive relationship qi = κ qi – 1 mod λ, where κ = 75, λ = 231 – 1, q0 = 78910785 and mod is the modulo operator 
that finds the remainder of an integer division. Then, we derive a series of real numbers in the interval [0, 1) as ri 
= qi / λ. We obtain the final series si by si = c(2qi – 1), where c = 600.  
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 The same example system helps us to acquire an idea of persistence. To this aim we have 
constructed and plotted in  1000 terms of the time series of the peaks pFig. 4.7 j of the time 
series si. Now we see in Fig. 4.7 that the moving average of 30 values exhibits large and long 
excursions from the overall mean, which is about 800 (not plotted). These excursions are the 
obvious manifestation of persistence. 
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Fig. 4.7 Graphical depiction of a series of peaks pj (in mm) of the soil storage si; here j does 
not denote time but the rank of each peak in time order. 

 However, a better depiction and quantification of the persistence and antipersistence is 
provided by the plot of standard deviation σ∆ vs. time scale ∆, as described in section 4.5.1. 

 gives such plots for the series of storage shown in Fig. 4.4 (but for 10 000 items) and 
for the random series of Fig. 4.5 (also for 10 000 items). Clearly, the plot of the random series 
shows a straight line arrangement with slope –0.5, which corresponds to a Hurst coefficient H 
= 1 – 0.5 = 0.5 (as expected). The plot of the storage time series is more interesting. For low 
scales (∆ ≤ 4) the slope in the arrangement of the points is very low, indicating a positive 
dependence at small lags. However, for large scales (∆ ≥ 20), a straight line arrangement of 
points appears, which has large slope, equal to –0.98. This corresponds to a Hurst coefficient 
H = 1 – 0.98 = 0.02, which indicates very strong antipersistence.  

Fig. 4.8

Fig. 4.8

 Likewise,  gives a similar plot for the series of peaks shown in Fig. 4.7, also in 
comparison with that of the random series. The plot of the series of peaks shows a straight 
line arrangement of points for low and high ∆, which has very low slope, equal to –0.02. This 
corresponds to a Hurst coefficient H = 1 – 0.02 = 0.98, which indicates very strong 
persistence. 

Fig. 4.9

 We can observe in  that for scale ∆ = 1 the standard deviation of the series of 
storage is significantly greater than that of the random series, despite the fact that the latter 
was constructed so as to have the same mean and standard deviation with the former. This is 
because, after the expansion of the two series from 1000 to 10 000 items, σD of the storage 
series increased significantly whereas σD of the random series remained in the same level. The 
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large persistence in the peaks results in high fluctuations of standard deviation and this was 
the reason for the increased σD of the storage time series. 
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Fig. 4.8 Standard deviation σ∆ (in mm) vs. time scale ∆ plot of the series of storage shown in 
Fig. 4.4 (but for 10 000 items) in comparison with that of the random series of Fig. 4.5 (also 
for 10 000 items).  
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Fig. 4.9 Standard deviation σ∆ (in mm) vs. scale ∆ plot of the series of peaks shown in Fig. 4.7 
in comparison with that of the random series of Fig. 4.5 (also shown in Fig. 4.8).  
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4.5.3 Real world examples 
It is not easy to find real world examples with antipersistent behaviour. However, there are a 
few phenomena with such behaviour which are commonly called “oscillations”. The most 
widely known is the El Niño Southern Oscillation (ENSO), a fluctuation of air pressure and 
water temperature between the southeastern and southwestern Pacific. Typically it is 
quantified by the so-called Southern Oscillation Index (SOI), which expresses the difference 
in the air pressure between Tahiti (an island in French Polynesia) and Darwin (North 
Australia); this difference is typically standardized in monthly scale by monthly mean and 
standard deviation. Here, instead of SOI, we have used the raw time series of the air pressure 
in Tahiti*, to avoid the artificial effects of taking differences and standardizing, and we have 
averaged the monthly time series on annual basis to discard the effect of the annual cycle.  
 The annual series has been plotted in , where the antipersistent behaviour becomes 
apparent from the 30-year moving average, which is virtually an horizontal straight line. The 
same behaviour is also apparent in Fig. 4.11, which shows the plot of standard deviation σ

Fig. 4.10

∆ 
vs. time scale ∆. For large scales (∆ ≥ 2 years), a straight line arrangement of points appears, 
which has high slope, equal to –0.8. This corresponds to a Hurst coefficient H = 1 – 0.8 = 0.2, 
which indicates strong antipersistence. The figure also shows a series of points that were 
derived from the monthly time series. For large scales, the monthly plot is virtually the same 
with the annual plot. For low time scales, the monthly plot clearly shows a low slope, which 
manifests the combined effect of the annual cycle and positive autocorrelation for small lags 
at the monthly scale (even for the annual scale, the lag one autocorrelation is positive, 0.18). 
Generally, the figure resembles Fig. 4.8.  
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Fig. 4.10 Graphical depiction of the mean annual air pressure in Tahiti (in hPa), which is one 
of the two variables used to define the Southern Oscillation Index (SOI). 

 
* The series is available online at  ftp://ftp.bom.gov.au/anon/home/ncc/www/sco/soi/tahitimslp.html on a 
monthly scale. 
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Fig. 4.11 Plot of standard deviation σ∆ (in hPa) vs. scale ∆ (in years) for the series of air 
pressure in Tahiti shown in Fig. 4.10.  

 While antipersistence is very rarely seen in nature, persistence is a very common 
behaviour, which however requires long time series to be observed. Long-term persistence 
has been found to be omnipresent in several long time series such as meteorological and 
climatological (temperature at a point, regional or global basis, wind power, proxy series such 
as tree ring widths or isotope concentrations) and hydrological (particularly river flows), but it 
has been also reported in diverse scientific fields such as biology, physiology, psychology, 
economics, politics and Internet computing (Koutsoyiannis and Montanari, 2007). Thus, it 
seems that in real world processes this behaviour is the rule rather than the exception. The 
omnipresence can be explained based either on dynamical systems with changing parameters 
(Koutsoyiannis, 2006b) or on the principle of maximum entropy applied to stochastic 
processes at all time scales simultaneously (Koutsoyiannis, 2005).  
 The example we study here is the most common one and refers to the longest available 
instrumental data series. This is the annual minimum water level of the Nile river for the years 
622 to 1284 AD (663 observations), measured at the Roda Nilometer near Cairo (Beran, 
1994)*. The time series is plotted in Fig. 4.12, where the long excursions of the 30-year 
moving average from the overall mean are apparent. As discussed above, the large 
fluctuations at large scales distinguishes the time series from random noise and is the 
signature of long-term persistence.  

                                                 
* The data are available from http://lib.stat.cmu.edu/S/beran. 
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Fig. 4.12 Graphical depiction of the time series of the minimum annual water level at the 
Roda Nilometer (in cm) for the years 622 to 1284 AD (663 years). 

 The persistence is also apparent in Fig. 4.13, which shows the plot of standard deviation σ∆ 
vs. time scale ∆. Here, the straight line arrangement of points appears on all scales, which 
makes the law (4.31) valid virtually on all scales. The slope equals –0.14 and it corresponds to 
a Hurst coefficient H = 1 – 0.14 = 0.86, which indicates strong persistence.  

Slope -0.14

Slope -0.5

10

100

1 10
∆

σ∆

100

Nilometer
Model for independent series

 

Fig. 4.13 Plot of standard deviation σ∆ (in cm) vs. scale ∆ (in years) for the Nilometer 
minimum annual water lever time series shown in Fig. 4.12.  
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