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A first illustration 

 As a first example, we 
consider the stochastic 
process with known 
theoretical properties, 
including its theoretical 
power spectrum, as 
shown on the graph. 

 The process is 
characterized by two 
different scaling laws, 
shown in its theoretical 
power spectrum as 
asymptotic slopes for frequencies w → 0 and w → ∞.   

 The slopes can be deduced if the stochastic properties of the process are 
known. But can they be estimated from data?  

 Here a time series of 1024 values has been generated from the known process. 
 The graph, in addition to theoretical (true) and empirical (estimated) power 

spectra, shows theoretical and empirical pseudospectra (explained below). 
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Problems in estimation of the power spectrum 
 If estimated from data (the 

Fourier transform of the 
data series or its empirical 
autocorrelation function), 
the power spectrum is too 
rough. 

 Even after smoothing (here 
by averaging from 8 
segments) it remains too 
rough and inappropriate to 
estimate either asymptotic 
slopes or statistically 
significant peaks.  

 The bias and uncertainty in estimation are uncontrollable. 
 Finite sample and time discretization also cause problems in the estimation of 

theoretical spectrum; for example at the Nyquist frequency (1/2D) the calculated 
slope is precisely 0 (s#(½) = 0) and not equal to the actual asymptotic slope.  

 Due to these problems, erroneous results are often reported in the literature, e.g. too 
steep slopes, s#(0) < –1 (infeasible; see Koutsoyiannis 2013), and false periodicities.     
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The new concept of the climacogram-based pseudospectrum can overcome such problems.  
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The empirical climacogram 

 As an example, we consider the synthetic time series of the earlier illustration, 

               ̂(1)  
(    ̅)  (    ̅)    (       ̅) 

    
  (1) 

where   ̂(1) is the sample variance whereas the argument (1) indicates time 
scale 1 and  ̅  (               ) 1   ⁄  is the sample average.  

 We form a time series at time scale 2 and find its variance:  

  
( )  
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 We proceed forming a time series at time scale 3 and finding its variance:  

  
( )  

         

 
       

( )  
                  

 
  ̂( )  (3) 

 We repeat the same procedure up to scale 102 = 1/10 of the sample size 
(Koutsoyiannis 2003; for larger scales the estimation is too unreliable): 

  
(   )  

         

   
      

(   )  
            

   
  ̂(1  )   (4) 

 The empirical climacogram (Koutsoyiannis, 2010) is the logarithmic plot of 
the variance  ̂( ) versus the time scale Δ (or that of the standard deviation 

 ̂( )   √ ̂( ) vs. Δ; a contraction of the former logarithmic plot by 2).  
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The theoretical climacogram 

 For a stochastic process x(t) 
at continuous time t, the 
averaged process on time 
scale Δ at discrete time i is 

   
( )   

 

 
∫  ( )  
  

(   ) 
 (5) 

 The theoretical 
climacogram is the variance 

 ( )     [  
( )]           (6) 

 In our example, 

 ( )  
 

(     )         (7) 

where α = 1 [time], λ = 1 [x]2 and H = 0.8 [-] (Hurst parameter). 
 The empirical climacogram  ̂( ) is an estimate of the theoretical one γ(Δ), but 

not an unbiased one. The bias is calculated from the model properties: 

  [ ̂( ) ]   (   ) ( ) where  (   )  
   ( )  ( )⁄

    ⁄
 (8) 

where T ≔ nD, n the sample size and D the spacing (Koutsoyiannis, 2011). 
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Relationships of climacogram, autocovariance and power spectrum 

 The climacogram, the autocovariance function and the power spectrum of a 
process are transformations one another.  

 The climacogram  ( )     [  
( )] and the autocovariance function 

 ( )     [ ( )  (   )] of a continuous time process are interrelated as 

follows: 

 ( )   ∫ (1 −  ) (  )  
 

 
  ↔    ( )  

 

 
 
  (   ( ))

   
 (9) 

 The power spectrum s(w) and the autocovariance function c(τ) of a 
continuous time process are interrelated as follows: 

 ( )   ∫  ( )    (    )   
 

 
  ↔   ( )  ∫  ( )    (    )   

 

 
 (10) 

 The slope of the logarithmic plot of power spectrum, which is of particular 
interest in identifying scaling properties, is defined as: 

  ( )  
 (   ( ))

  (   ) 
 

     ( )

  ( )
  (11) 

 See details in Koutsoyiannis (2013).  
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The climacogram-based pseudospectrum (CBPS) 

 A substitute of the power spectrum which has similarities in its properties, is 
the climacogram-based pseudospectrum (CBPS) defined as  

 ( )   
   (  ⁄ )

 
(1 −

 (  ⁄ )

 ( )
)  (12) 

 In processes with infinite variance (γ(0)  = c(0) = ∞) the CBPS simplifies to 

 ( )  
   (  ⁄ )

 
  (13) 

 The CBPS value of at w = 0 equals that of the power spectrum (indeed from 

(9) and (10) we obtain  ( )   ( )     ( )       ∫  ( )  
 

 
).  

 Furthermore, the asymptotic slopes   ( ) of CBPS at frequencies (or 
resolutions) w → 0 and ∞ follow those of the power spectrum   ( ) and in 
most processes the asymptotic slopes are precisely equal to each other.  

 At frequencies where the power spectrum has peaks, the CBPS has troughs 
(negative peaks).  

 In contrast to the empirical periodogram, the empirical ψ(w) is pretty smooth. 

See details in Koutsoyiannis (2013).  
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Example 1: The Markov process 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
  

  ⁄
(1 −

      ⁄

  ⁄
)  

Autocovariance function 
for lag τ  

 ( )         

Power spectrum  
for frequency w 

s(w)  
   

  (    ) 
 

Asymptotic slopes   ( )    ( )     
  ( )    ( )  −    
  ( )     ( )  −1  
  ( )    ( )     

Parameter values used λ = 1, α = 10, and the 
spacing is D = 1, resulting in 
ρ = 0.905. 

 The theoretical power spectra of derived 
discrete-time processes (discretized either by 
averaging at a time scale D or by sampling at 
spacing D) fail to capture the slopes for w > 
1 / 10D, while for w = 1 / 2D they give a slope 
which is precisely zero. 

 The pseudospectrum performs better in 
identifying the asymptotic slopes. 
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Example 2: The Hurst-Kolmogorov (HK) process 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
 (  ⁄ )    

 (    )
  

Autocovariance function 
for lag τ  

 ( )   (  ⁄ )       
( .5    1)   

Power spectrum  
for frequency w 

s(w)  
     (    )    (  )

(    )     

Asymptotic slopes   ( )    ( )  1 −      
  ( )     ( )    −     

Parameter values used λ = 1, α = 10, H = 0.8; the 
spacing is D = 1. 

 The model parameters are in essence two, i.e. 
H and (λ α2 – 2H). Here the formulation has 
three nominal parameters for dimensional 
consistency: the units of α and λ are [τ] and 
[x]2, respectively, while H is dimensionless. 

 For 0.5 ≤ H < 1 the process is called a 
persistent process; it has often been used with 
0 < H < 0.5, being called an antipersistent 
process, but this is inconsistent with physics 
(A proper antipersistent process is discussed 
in Example 4). 
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Example 3: Α modified finite-variance HK process 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
 (  ⁄ )

 (    )
 

 (
 

 
(1  

 

 
)
  

−
 

 
−   )  

Autocovariance 
function for lag τ  

 ( )  
 

(    ⁄ )        

Power spectrum  
for frequency w  

s(w): closed expression too 
complex  

Asymptotic slopes   ( )    ( )  1 −      
  ( )    ( )  −    
  ( )     ( )    −    
  ( )    ( )     

Parameter values used λ = 1, α = 10, H = 0.8; the 
spacing is D = 1. 

 The asymptotic slopes of the power spectrum 
are both nonzero and different in the cases 
w → 0 and w → ∞. The slopes of the 
pseudospectrum are identical with those of 
the spectrum. 
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Example 4: A simple antipersistent process 
Variance of instanta-
neous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
  

  ⁄
(
      ⁄

  ⁄
−     ⁄ )  

Autocovariance 
function for lag τ  

 ( )   (1 −   ⁄ )      

Power spectrum  
for frequency w  

s(w)     (
    

  (    ) 
)
 

 

Asymptotic slopes   ( )  1    ( )     
  ( )    ( )  −    
  ( )     ( )  −   
  ( )    ( )     

Parameter values 
used 

λ = 1, α = 10; the spacing is 
D = 1. 

 The condition making the process antipersistent 

is that 4∫  ( )    ( )   ( )   
 

 
 (while of 

course c(0) = γ(0) = λ > 0).  
 For τ > α, the autocovariance is consistently 

negative—but for small τ it is positive. 
 Antipersistence is manifested in the positive 

slopes in power spectrum and pseudospectrum. 
Clearly, these slopes are positive only for low w. 
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Example 5: A periodic process with white noise 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
  

  ⁄
       

 (
 

 
)  

 
Autocovariance 
function for lag τ 

 ( )     (  ⁄ )  
     (    ⁄ )  

Power spectrum  
for frequency w  

 ( )    
          (  − 1)  

Asymptotic slopes for 
λ1 > 0 [and for λ1 = 0; 
but not valid for s#( )] 

  ( )    ( )    [ 1]   
  ( )    ( )    [− ]   
   ( )     ( )  −1[− ]   

  ( )    ( )  −1 [ ]  
Parameter values used λ1 = 0.05, λ2 = 1, α = 100 

 δ(x) is the Dirac delta function while 
sinc(x) ≔ sin(πx)/πx. 

 Strictly speaking, the periodic component is a 
deterministic rather than a stochastic process. 
In this respect, the process should be better 
modelled as a cyclostationary one. However, 
the fact that the autocorrelation is a function 
of the lag τ only, allows the process to be 
treated as a typical stationary stochastic 
process. 
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Example 6: A process with Cauchy-type climacogram 
Variance of instan-
taneous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
 

(  (  ⁄ ) )
    

 

    

Autocovariance 
function for lag τ  

 ( )                          

Power spectrum  
for frequency w  

s(w): expression too complex 

Asymptotic slopes   ( )    ( )  1 −    
  ( )    ( )  − − 1 
  ( )     ( )  −     
  ( )    ( )    

Parameter values 
used 

λ = 1, α = 10, H = 0.8, κ = 1.8 

 The process was derived by modifying one 
proposed by Gneiting and Schlather (2004). 

 The important feature of this process is that it 
allows control of both asymptotic slopes. 

 The asymptotic slopes of the pseudospectrum 
are identical with those of the spectrum. 

 An intermediate steep slope that appears in 
the power spectrum is artificial and does not 
indicate a scaling behaviour. 
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Example 7: A composite long-range and short-range dependence 
Variance of instan-
taneous process 

   ( )   ( )   1 +  2  

Variance at scale Δ 
(Climacogram) 

 ( ): expression too complex 
(sum from examples 1 and 2)  

Autocovariance 
function for lag τ  

 ( )  
  

(    ⁄ )        
      

Power spectrum  
for frequency w  

s(w): expression too complex  

Asymptotic slopes   ( )    ( )  1 −    
  ( )    ( )  −  
  ( )     ( )  −     
  ( )    ( )    

Parameter values 
used 

λ1 = 1, λ2 = 20, α = 10, H = 0.85 

 Again the asymptotic slopes of the 
pseudospectrum are identical with those of 
the spectrum. 

 As in the previous example, an intermediate 
slope appears in the power spectrum (in this 
case a mild one). Again this is artificial, here 
imposed by the Markov process, and does not 
indicate a scaling behaviour. 

  

 



  D. Koutsoyiannis,  Climacogram-based pseudospectrum  14 

Example 8: The initial example: process defined by (7)   
 Examples 1-7 have 

been focused on the 
theoretical power 
spectrum and 
pseudospectrum and 
have shown that: 

(a) the asymptotic 
behaviours of the 
two are similar; 

(b) the 
pseudospectrum 
is less affected by 
discretization. 

 Example 8 adds 
information from 
data.  

 It shows that when the power spectrum and pseudospectrum are estimated from data, 
the latter is much smoother and its bias is a priori known, thus enabling a more direct 
and accurate estimation of slopes and fitting on a model.  
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Conclusions 
 The power spectrum is very powerful in identifying strong periodicities in 

time series. However, it has some problems in identifying scaling laws and 
weak periodicities, as: 

o Discretization and finite length of data alter asymptotic slopes; 

o The rough shape of the periodogram may result in: 
 misleading, inaccurate or even incorrect slopes (e.g. slope > –1 for 

frequency → 0, which is infeasible);  
 false periodicities; 

o Biases and uncertainties are uncontrollable, particularly when the 
periodogram is smoothed; 

o False detection of artificially induced scaling areas is likely.  

 The climacogram-based pseudospectrum has an asymptotic behaviour 
similar to that of the power spectrum and offers some advantages such as: 

o Its calculation is very easy: it only uses the concept of variance and does 
not involve integral transformations (like the Fourier transform); 

o It is smooth; 

o Its biases and uncertainties are smaller and easy to determine; 

o Its asymptotic slopes are determined more accurately from data. 
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