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A first illustration

e As a first example, we 1000 -
consider the stochastic £ 2Pe PR0) <y
. 23 100 ~—<=T(0) <
process with known 2 e a2 < _,
. . = 5 —Ue6
theoretical properties, 28 10 4 I
. . . . - 3 Vv
including its theoretical w3 -
55 1
(]
power SpeCtrum’ as a § Power spectrum, theoretical S/? Sles 4
ShOWIl on the graph. 0.1 Power spectrum,-empirical {é. (o {
. Power spectrum| empirical smoothed ' Nl
i The process 1S 001 J==~ Pseudospectrum, theoretical l | I||'| [90) 4,
Characterized by two ' Pseudospectrum, adapted for bias o |'| m '|>| ~o
. . +  Pseudospectrum, empirical | |
different scaling laws, 0.001 - |
shown in its theoretical 0.001 0.01 01 !

Frequency, w

power spectrum as
asymptotic slopes for frequencies w - 0 and w — co.
e The slopes can be deduced if the stochastic properties of the process are
known. But can they be estimated from data?
e Here a time series of 1024 values has been generated from the known process.
e The graph, in addition to theoretical (true) and empirical (estimated) power
spectra, shows theoretical and empirical pseudospectra (explained below).
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Problems in estimation of the power spectrum

e [f estimated from data (the 1000
Fourier transform of the
data series or its empirical
autocorrelation function),
the power spectrum is too
rough.

e Even after smoothing (here

rage slope —1.5

=
o
o

[EY

Spectral density, s(w);
Pseudospectrum ¢ (w)
RN
o

Power spectrum), theoretical

by averaging from 8 0.1 Power spectrum emp?r?ca! i (Oo)

. . Power spectrum, empirical smoothed l [ ,%&#
segments) It remains too 001 ==~ = Pseudospectrum, theoretical I 1A f?o Al
rough and inappropriate to " |==— Pseudospectrum, adapted for bias r |'I m |.\| ~>
estimate either asymptotic 0001 | Fseudospectrum, empirical 7 |
slopes or statistically 0.001 0.01 0.1 1

. . Frequency, w
significant peaks.

e The bias and uncertainty in estimation are uncontrollable.

¢ Finite sample and time discretization also cause problems in the estimation of
theoretical spectrum; for example at the Nyquist frequency (1/2D) the calculated
slope is precisely 0 (s#(%2) = 0) and not equal to the actual asymptotic slope.

e Due to these problems, erroneous results are often reported in the literature, e.g. too
steep slopes, s#(0) < -1 (infeasible; see Koutsoyiannis 2013), and false periodicities.

The new concept of the climacogram-based pseudospectrum can overcome such problems.
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The empirical climacogram

¢ As an example, we consider the synthetic time series of the earlier illustration,

_ )2 V2. _%)2
X1, X2, vy X1024 ?(1) = G~ 07+ (X 3162)2; +(X10247%) (1)
where y(1) is the sample variance whereas the argument (1) indicates time
scale 1 and x := (x; + x5, + -+ X1924)/1024 is the sample average.

e We form a time series at time scale 2 and find its variance:

(2) _x1tx2 _(2) . X3tX4 (2) . X1023% X1024 ~
xl L 2 ) xz o= 2 ) vnny x331 o= ﬁ ]/(2) (2)

e We proceed forming a time series at time scale 3 and finding its variance:

x£3) — x1+3;2+x3 . x?(jl)l .— X1021+ x1;22+x1023 - 7(3) (3)
e We repeat the same procedure up to scale 102 = 1/10 of the sample size
(Koutsoyiannis 2003; for larger scales the estimation is too unreliable):

x(loz) — X1+:+X102 x(102) . X919+ +X1020 N ?(102) (4)

1 102 > 10 102

e The empirical climacogram (Koutsoyiannis, 2010) is the logarithmic plot of
the variance y(4) versus the time scale 4 (or that of the standard deviation

a(4) = /7(4) vs. 4; a contraction of the former logarithmic plot by 2).
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The theoretical climacogram

e For a stochastic process x(t)
at continuous time ¢, the
averaged process on time
scale 4 at discrete time i is

(@ =2 [ x()dE (5)

e The theoretlcal
climacogram is the variance

V(A) _Var[ (A)] (6) . C|?maCOgram,empiric.a|I

- - -~ Climacogram, theoretical
Climacogram, adapted for bias

4

Variance, y(4)

¢ [n our example, 0.1
_ A
)/(A) - (1+A/CZ)2_2H (7)

where a =1 [time], A =1 [x]? and H = 0.8 [-] (Hurst parameter).
e The empirical climacogram y(4) is an estimate of the theoretical one y(4), but
not an unbiased one. The bias is calculated from the model properties:
- 1-y(T)/y(4
E[7(4)] = n(4, T)y (4) where n(4, T) = =02 8)

where T:=nD, n the sample size and D the spacing (Koutsoyiannis, 2011).

1 10 Time scale, A 100
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Relationships of climacogram, autocovariance and power spectrum

e The climacogram, the autocovariance function and the power spectrum of a

process are transformations one another.
(4)

e The climacogram y(4) = Var |x; ] and the autocovariance function

c(t) == Cov[x(t), x(t + )] of a continuous time process are interrelated as
follows:
1 d%(z2y (D)

y(4) =2 (1 - OcENdE & c(x) =- (9

2 dz?

e The power spectrum s(w) and the autocovariance function c(t) of a
continuous time process are interrelated as follows:

s(w) =4 fooo c(7) cos(2mwr) dt © (1) = fooos(w) cos(2twt) dw (10)
e The slope of the logarithmic plot of power spectrum, which is of particular
interest in identifying scaling properties, is defined as:

" __d(dnsw)) _ ws'(w)
s"(w) = dnw) _ sw) (11)

See details in Koutsoyiannis (2013).
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The climacogram-based pseudospectrum (CBPS)

¢ A substitute of the power spectrum which has similarities in its properties, is
the climacogram-based pseudospectrum (CBPS) defined as

2 V(l/W) _y(@/w)
P(w) = (1-E52) (12)
e In processes with infinite variance (y(0) = c(0) = oo) the CBPS simplifies to
P(w) = 2L (13)

e The CBPS value of at w = 0 equals that of the power spectrum (indeed from
(9) and (10) we obtain ¥ (0) = s(0) =4y (4|40 = 4 fooo c(t)dr).

e Furthermore, the asymptotic slopes ¥*(w) of CBPS at frequencies (or
resolutions) w — 0 and o follow those of the power spectrum s (w) and in
most processes the asymptotic slopes are precisely equal to each other.

¢ At frequencies where the power spectrum has peaks, the CBPS has troughs
(negative peaks).

e In contrast to the empirical periodogram, the empirical y(w) is pretty smooth.

See details in Koutsoyiannis (2013).
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Example 1: The Markov process
Variance of instantane- |y =y(0) =c(0) =4 1 ﬁ

ous process

Variance at scale 4 () = 22 (1 _ 1—e“‘/“) o1 \\'\\
(Climacogram) Ala ala \
Autocovariance function |c(t) = le~%/¢ c \
forlag t % oot
Power spectrum s(w) = —24 \
for frequency w 1+(2maw)? 0001
Asymptotic slopes P*(0) =s*(0) =0 —— autocovariance \
1/1:(00) = s#goo) = —2 0.0001 T climecogrem
y* () = 20%(0) = —1 1 10 100 1000
r*(0) = 0*(0) = 0
Parameter values used |A=1,a=10,and the 100
spacing is D = 1, resulting in
p =0.905. .
e The theoretical power spectra of derived R
discrete-time processes (discretized either by £ .
averaging at a time scale D or by sampling at B . _
spacing D) fail to capture the slopes for w > :zz:z:z: :32:;2;2“;22:r°cess N
1 /10D, while for w=1 /2D they give a slope 0-1 T - pectrum, sampled process s:\‘ N
which is precisely Zero. e pseudospectrum, cont. time & averaged AN
e The pseudospectrum performs better in 0oL | — Pseudospectum, sampled
identifying the asymptotic slopes. 0.001 0.01 0.1 1

w
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Example 2: The Hurst-Kolmogorov (HK) process

Variance of instantane-
OuS process

y =v(0) =c(0) =

Variance at scale 4

2 A 2—-2H
y(a) = AT

(Climacogram) H(2H-1)
Autocovariance function |c(t) = A(a/1)?7?!
forlagt (0.5HKK)

Power spectrum
for frequency w

4aAT(2H-1)sin(nH)
(2maw)2H-1

s(w) =

Asymptotic slopes

Y*¥(w) =s*(w)=1-2H
v*(4) = 206%(A) = 2H — 2

Parameter values used

A=1,a=10, H=0.8; the
spacingis D = 1.

e The model parameters are in essence two, i.e.
H and (A a?-2H). Here the formulation has
three nominal parameters for dimensional
consistency: the units of @ and A are [t] and
[x]?2, respectively, while H is dimensionless.

e For 0.5 < H <1 the process is called a

persistent process; it has often been used with

0 < H < 0.5, being called an antipersistent
process, but this is inconsistent with physics
(A proper antipersistent process is discussed

in Example 4).
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Example 3: A modified finite-variance HK process

Variance of instantane-
OuS process

y=v(0)=c(0) =4

Variance at scale 4 (4) = AMa/4)
- 4 H(2H-1
(Climacogram) (2H-1)
(5(1 o 2H>
4 4 4
Autocovariance A

function for lag t

c(r) =

(1+t/a)2—2H

Power spectrum
for frequency w

s(w): closed expression too
complex

Asymptotic slopes

Y*(0) =s*(0) =1-2H
P#(00) = s#(00) = -2
y#(0) = 20%(0) = 2H — 2
y*(0) =c*(0) =0

Parameter values used

A=1,a=10, H=0.8; the
spacingis D = 1.

e The asymptotic slopes of the power spectrum
are both nonzero and different in the cases
w— 0 and w— . The slopes of the
pseudospectrum are identical with those of

the spectrum.

s(w), Y(w)
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Example 4: A simple antipersistent process

Variance of instanta-
neous process

y=v(0)=c(0) =4

function for lag T

Variance at scale 4 22 (1—e7A%

A) = —e 4/
(Climacogram) r(4) A/a( A/a )
Autocovariance c(®) =21 —t/a)e /@

Power spectrum 2maw  \?
for freqlfency w s(w) = 84a (1+(21Taw)2)
Asymptotic slopes  |p#(0) = 1; s#(0) = 2
P (e0) = 5% (e0) = =2
y*(o0) = 20%(0) = -2
y*(0) =0*(0) =0
Parameter values A =1, a=10; the spacing is
used D=1.

e The condition making the process antipersistent
is that 4f0°° c(t)dt = ¢¥(0) = s(0) = 0 (while of

course c(0) =y(0) =

A>0).

e For 1 > a, the autocovariance is consistently
negative—but for small 7 it is positive.

e Antipersistence is manifested in the positive
slopes in power spectrum and pseudospectrum.
Clearly, these slopes are positive only for low w.
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Example 5: A periodic process with white noise

Variance of instantane-
OuS process

y =v(0) =¢(0) = o

Variance at scale 4

A :
y(4) = ﬁ + A,sinc? (g)

(Climacogram)

Autocovariance c(t) =1,6(t/a) +
function for lag T A, cos(2mt/a)
Power spectrum s(w) =

for frequency w

20ia + AL,ad(aw — 1)

Asymptotic slopes for
A1>0 [and for A1 = 0;
but not valid for s#( )]

$*(0) = s*(0) = 0 [+1]
P*(0) = 5*(e0) = 0 [3]
y*(c0) = 20%(e0) = ~1[—2]
y*(0) = 6*(0) = —1[0]

Parameter values used

A1=0.0512=1, =100

e 0(x) is the Dirac delta function while

sinc(x) = sin(mx) /mx.

Strictly speaking, the periodic componentis a
deterministic rather than a stochastic process.
In this respect, the process should be better
modelled as a cyclostationary one. However,
the fact that the autocorrelation is a function
of the lag T only, allows the process to be
treated as a typical stationary stochastic
process.
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Example 6: A process with Cauchy-type climacogram

Variance of instan-
taneous process

y =v(0) =c(0) =4

function for lag T

Variance at scale 4 y(4) = A n—
(Climacogram) A+(4/)%)
Autocovariance c(1): expression too complex

Power spectrum
for frequency w

s(w): expression too complex

Asymptotic slopes

Y*(0) =s*(0)=1-2H
Pp#(00) = s%(0) = = — 1
y#(0) = 20%(0) = -2 + 2H
y*(0) =c*(0) =0

Parameter values
used

A=1,a=10,H=08,k=1.8

e The process was derived by modifying one
proposed by Gneiting and Schlather (2004).

e The important feature of this process is that it
allows control of both asymptotic slopes.

e The asymptotic slopes of the pseudospectrum
are identical with those of the spectrum.

e An intermediate steep slope that appears in
the power spectrum is artificial and does not
indicate a scaling behaviour.

o
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s [imacog ram
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Example 7: A composite long-range and short-range dependence

Variance of instan-
taneous process

Yy =y(0) =c(0) = A1+ 42

Variance at scale 4
(Climacogram)

y(4): expression too complex
(sum from examples 1 and 2)

Autocovariance
function for lag T

— A -7/
c(r) = REEymrETR Aye

Power spectrum
for frequency w

s(w): expression too complex

Asymptotic slopes

Y#(0) =s*(0) =1-2H
P#(0) = s#(0) = -2
y#(0) = 20%(w0) = -2+ 2H
y*(0) =0*(0) =0

Parameter values
used

A=1,A2=20,a=10,H=0.85

e Again the asymptotic slopes of the
pseudospectrum are identical with those of

the spectrum.

e Asin the previous example, an intermediate
slope appears in the power spectrum (in this
case a mild one). Again this is artificial, here
imposed by the Markov process, and does not
indicate a scaling behaviour.
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Example 8: The initial example: process defined by (7)

e Examples 1-7 have

been focused on the 1000S1pe ¢#
theoretical power T3 ~ (O) = s#(o) ;
spectrum and % S 100
> £
pseudospectrum and £ 3
have shown that: g 5 10
C o
' T 0
(a) the asymptotlc £
behaviours of the ¢ @ Sy
two are similar: na = POWer spectrum, theoretical
’ 0.1 Power spectrum, empirical s
(b) the Power spectrum, empirical smoothed .
pseudospectrum 001 ==~ Pseudospectrum, theoretical l I _
is less affected by ' e Pseudospectrum, adapted for bias I b |'| " il |
discretization. ¢  Pseudospectrum, empirical
0.001 |
e Example 8 adds 0.001 0.01 0.1 1
information from Frequency, w
data.

¢ [t shows that when the power spectrum and pseudospectrum are estimated from data,
the latter is much smoother and its bias is a priori known, thus enabling a more direct
and accurate estimation of slopes and fitting on a model.
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Conclusions

e The power spectrum is very powerful in identifying strong periodicities in
time series. However, it has some problems in identifying scaling laws and
weak periodicities, as:

o Discretization and finite length of data alter asymptotic slopes;

o The rough shape of the periodogram may result in:
* misleading, inaccurate or even incorrect slopes (e.g. slope > -1 for
frequency — 0, which is infeasible);
= false periodicities;
o Biases and uncertainties are uncontrollable, particularly when the
periodogram is smoothed,;
o False detection of artificially induced scaling areas is likely.

e The climacogram-based pseudospectrum has an asymptotic behaviour
similar to that of the power spectrum and offers some advantages such as:

o Its calculation is very easy: it only uses the concept of variance and does
not involve integral transformations (like the Fourier transform);

o Itis smooth;
o Its biases and uncertainties are smaller and easy to determine;
o Its asymptotic slopes are determined more accurately from data.
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