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We appreciate the discussion comment by S. Lovejoy, D. Schertzer and I. Tchigirinskaya 

(hereinafter Lovejoy et al. 2013) on our paper (Lombardo et al., 2013a). Comparing the 

terminology, notation, semantics and mathematical content in Lombardo et al. (2013a), on the 

one hand, and Lovejoy et al. (2013), on the other hand, one may notice big differences, which 

make communication difficult. Therefore, we wish to commend the discussers for their 

comment, which hopefully helps to remove the communication gap due, perhaps, to the different 

scientific origins of the two groups of authors. In response to their comment, we will try to make 

our points clearer, although we must warn from the outset that we adhere to the language of 

stochastics, as exemplified in Papoulis’s (1991) book. 

A note about terminology 

We appreciate the discussers’ comments about our re-baptizing of certain things and we wish to 

give a couple of clarifications. To start with, what we call the Hurst-Kolmogorov process is not 

exactly the fractional Brownian motion as the discussers state, but the so-called fractional 

Gaussian noise (for the former we would use the term cumulative Hurst-Kolmogorov process). 

The reasons we avoid using the term fractional Gaussian noise are three. First, we dislike the 

term fractional, which may be popular (and suggestive of the other popular term, fractal) but in 

our view is also misleading (see the last paragraph of the next section, related to the difference 

between fractal and long-term stochastic properties). Second, while we recognize that Gaussian 

is accurate for the original formulation of that process, we think that it overemphasizes the 

Gaussian aspect, while non-Gaussian transformations are possible—and actually we use a 

lognormal version of it. Third, we strongly disagree to call noise a stochastic process which is 

used to describe natural processes. Generally, noise is used (e.g. in electronics, information and 

communication) in contrast to signal. The distinction implies that there is some signal that 

contains information, which is contaminated by a (random) noise. Noise should be identified and 

removed from the signal to recover the maximum of information. Such a distinction may not 

have a meaning in geophysics as Nature’s signs are signals in their entirety even though they 

may look like noise. 

Furthermore, the reason we prefer the term Hurst-Kolmogorov process is simple. We wish to 

associate the process on the one hand to Hurst, who was the first to observe and analyse the 

behaviour signified by this process in Nature, and on the other hand, to Kolmogorov, who was 

the first to point out the existence of this mathematical process. 

In addition, we wish to clarify that we do not use the term climactogram as the discussers say 

but the term climacogram. The latter term was introduced and justified etymologically by 

Koutsoyiannis (2010). We do not know whether the authors want to contribute in re-baptizing 

by adding a ‘t’ (we would not agree, though, as this would not be etymologically justifiable) , they 

want to indicate the way they read our paper, or they just want to make the tone whimsical.  
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On “limitations” of the climacogram 

According to Lovejoy et al. (2013):  

“the ‘climactogram’ is only related to the autocorrelation and the spectrum for a 

narrow range of scaling exponents 0< Hclim <1 (the authors’ exponent ‘H’ that we denote 

‘Hclim’ […]). For scaling, Gaussian processes (e.g. in 1-D, a Gaussian white noise filtered 

by ω−β/2 where ω is the frequency), when for −1 < β < 1 this corresponds to spectral 

exponent β = 2Hclim − 1. When β is outside this range, then the relationship between β 

and Hclim breaks down.” 

We are afraid that we have to disagree with this statement and we have strong reasons for this 

disagreement: 

1. The climacogram and the power spectrum are fully equivalent to each other, as well as 

to the autocorrelation function. Each of these three functions is theoretically derived by 

any of the other two (see Koutsoyiannis, 2010, for the relationships for discrete time 

processes and Koutsoyiannis, 2013a, for those for the continuous time processes; see 

also equations (1)-(3) below). Therefore, a property in the spectral representation 

should have a one-to-one correspondence with a property in the climacogram 

representation. Thus, it is not meaningful, to speak about “break down” of 

relationships.  

2. Exponents in the spectral representation, even those out of the interval (−1, 1), will be 

captured by a climacogram representation too. For low frequencies these can be 

captured by the climacogram per se, while for high frequencies this may require simple 

algebraic transformations of the climacogram, such as the climacogram-based 

pseudospectrum (CBPS) shown in Koutsoyiannis (2013b). Thus, in the example 8 of 

Koutsoyiannis (2013b) the slope of the spectral density for high frequencies equals 2 

and this is fully (and much better than in the spectral representation) captured in the 

climacogram representation (the CBPS). 

3. However, we stress that, according to our calculations (see below), an exponent in the 

spectral representation out of the range −1 < β < 1, in particular an exponent β > 1, even 

though, as stated in point 2, it can appear for high and intermediate frequencies, is not a 

valid one for low frequencies (tending to 0). We are aware of several publications 

showing slopes violating this (e.g. Lovejoy et al., 2012 and Lovejoy and Schertzer, 2013, 

report a slope β = 1.4 for low frequencies), but we believe these are spurious and 

theoretically inconsistent.* In our opinion they just manifest estimation errors due to 

                                                             

* For the completeness of this discussion, it is footnoted that the discussion has started within a guest post 
by Shaun Lovejoy entitled “Macroweather, not climate, is what you expect” (21 January 2013) in Judith 
Curry’s blog, judithcurry.com/2013/01/21/macroweather-not-climate-is-what-you-expect/. In reply to a 
blogger’s comment, Lovejoy diagnosed the “key limitation” of the climacogram reiterated in the present 
discussion. Koutsoyiannis then intervened and his replies included the following statement 
(judithcurry.com/2013/01/21/macroweather-not-climate-is-what-you-expect/#comment-288742).  

“Meanwhile, if you can give me a rigorous example to include in my study, which you believe supports 
your claim, I will try to include it. I do not mean an algorithmic procedure (do this, do that). I mean, give 
me the analytical equation of a power spectrum (covering all frequency domain, from zero to infinity) or, 
if you prefer, the autocorrelation function (covering lags from zero to infinity) that supports your claim.”  

Unfortunately, no such (counter)example is contained in the discussion (Lovejoy et al., 2013) or was 
otherwise provided to us. 

http://judithcurry.com/2013/01/21/macroweather-not-climate-is-what-you-expect/
http://judithcurry.com/2013/01/21/macroweather-not-climate-is-what-you-expect/#comment-288742
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inappropriate algorithms, allowed by the fact that the empirical power spectrum has a 

rough shape; Koutsoyiannis (2013b) and Lombardo et al. (2013b) have proposed an 

alternative estimation based on the climacogram (the CBPS) to avoid such spurious 

results.  

The proof for our claim in point 3 and several other details can be found in Koutsoyiannis 

(2013a). However, for the completeness of our reply we re-derive here one of the results 

indicating the inconsistency of the case β > 1. We start the proof recalling that the power 

spectrum (or spectral density) s(w) of a continuous-time stochastic process is: 

 ( )   ∫  ( )    (    )   

 

 

 (1) 

where w stands for frequency and c(τ) is the autocovariance function of the process for time lag 

τ. The inverse transformation is: 

 ( )  ∫  ( )    (    )   

 

 

 (2) 

At the same time, the climacogram (i.e. the variance γ(Δ) for time scale Δ) is: 
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 (3) 

As both the climacogram and the power spectrum are transformations of the autocovariance 

function, the two are also related to each other by simple transformations. Specifically, 

combining (3) and (2) we find: 

 ( )   ∫(   )∫  ( )    (     )   
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 (4) 

After algebraic manipulations, we obtain the following equation giving directly the climacogram 

from the power spectrum: 

 ( )  ∫  ( ) 
    (   )

(   ) 
   

 

 

 (5) 

Let us denote   ( ) the slope of the power spectrum s(w) plotted on logarithmic axis vs. the 

logarithm of the frequency w , i.e.,  

  ( )  
 (   ( ))

  (   ) 
 

     ( )

  ( )
 (6) 

where s΄(w) is the derivative of s(w).  

Now, let us assume that for a frequency range 0 ≤ w ≤ ε, with ε however small, the logarithmic 

slope of the power spectrum is   ( )    , or else s(w) = αw–β where α and β are constants, 

with    . We notice in (5) that the fraction within the integral takes significant values only for 

w < 1/Δ (cf. Papoulis, 1991, p. 433). Hence, assuming a scale Δ ≫ 1/ε, and with reference to (5) 

we may write: 
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 (7) 

On the other hand, it is easy to verify that, for 0 < w < 1/Δ, 

   (   )

   
        (8) 

and since ε ≫ 1/Δ, while the function in the integral (7) is nonnegative, 

 ( )  ∫     
    (   )
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 (9) 

Substituting ξ = wΔ in (9), we find: 

  ( )       ∫    (   )    
  

 
  (10) 

To evaluate the integral in (10) we take the limit for q → 0 of the integral: 

 ( )  ∫   (   )    

  

 

  
      

   
  

      

   
 

      

   
 (11) 

Clearly, for β > 1 the first term of the latter integral diverges for q → 0, i.e., B(0) = ∞, and thus, by 

virtue of the inequality (10), γ(Δ)= ∞. Therefore, the process is non-ergodic (see Papoulis, 1991, 

p. 429).* This analysis generalizes a result by Papoulis (1991, p. 434) who shows that an impulse 

at w = 0 corresponds to a non-ergodic process.  

In a non-ergodic process there is no possibility to infer statistical properties from the samples 

(as temporal averages do not represent true statistical properties). In any statistical analysis 

based on time series, ergodicity is necessary for the analysis to be valid. Otherwise the analysis 

is in vain and hence empirical results of this type are not meaningful because they contradict the 

basic condition on which they are based. Actually, such contradiction, when emerging from 

processing of data, does not suggest that a process is non-ergodic. Usually it only suggests that 

the algorithm used is inconsistent.  

Therefore, we believe that the above comment by Lovejoy et al. (2013) is not valid and perhaps 

is affected by an older trend in the literature (e.g., Harris et al., 2001, Fig. 4) to mix up the fractal 

dimension (or a transformation thereof) of a process with the Hurst coefficient. In fact the two 

are distinct concepts, generally independent to each other. Fractal dimension is a local property 

applying to small time scales or high frequencies, whereas the Hurst coefficient (and the implied 

long-range dependence) is a global characteristic applying to large scales or low frequencies. 

This has been made clear by Gneiting and Schlather (2004). 

                                                             

* It is interesting to note that, if |β| < 1, the integral in  (7) can be evaluated to give: 

 ( )   ∫     
    (   )
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Clearly, for Δ → ∞, the last expression gives γ(Δ) → 0 and thus for |β| < 1 the process is mean ergodic. 
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On alternative tools 

According to Lovejoy et al. (2013):  

“In [Lovejoy and Schertzer, 2012] it was pointed out that a single tool – the Haar 

fluctuation – conveniently covers the whole range −1 < H < 1 yet remains simple to 

calculate and interpret: 

 

i.e (∆X(t, ∆t))Haar is simply the difference between the means of the first and second 

halves of the interval ∆t.” 

We thank the discussers for pointing out this tool, which we may explore in future studies. On 

the other hand, we wish to stress that we cannot believe without proof that it “remains simple to 

calculate and interpret”, while we believe that expressions like “is simply the difference between 

the means” may be misleading. For, the definition provided (copied above) merely defines a 

stochastic process (assuming that X(t) is also a stochastic process) and does not provide any 

information on the statistical behaviour of that process. In stochastics, it is always important to 

study the statistical properties of a random variable or of a stochastic process. Whether or not a 

tool is “simple to calculate”, etc., does not depend on its definition per se, but on the ease of the 

calculation of its statistical properties as well as on whether or not the latter have specific 

desirable characteristics, like unbiasedness, well-behaved distribution function with small 

variance, etc.  

To clarify better what we mean, we will use an example from our paper in discussion (Lombardo 

et al., 2013a). Given a random variable x, the fifth moment is quite easy to define as the expected 

value of x5, i.e. E[x5]. However, it is not this that matters. Before we try to use it, we should have 

in mind a few fundamental things of statistics. Assuming that we have available a time series xi (i 

=1, …, n) of x, first, we need to distinguish between the following totally dissimilar quantities: 

(a) x5, which is a random variable;  

(b)  [   ], the true expected value (defined as  [   ]  ∫    ( )  
 

  
, where f(x) is the 

probability density function of x) , which is a regular (not random) variable; 

(c) ∑   
  

     , the sample average of   
 , which is a number, known as the estimate of 

 [   ]; and 

(d) ∑   
  

     , which is a random variable known as the estimator of  [   ]; this is like a 

temporally averaged stochastic process. 

Next, we should try to study the statistical properties of the estimator ∑   
  

     . In this respect, 

as shown in our paper (Lombardo et al., 2013a) and, in particular, illustrated in its Figures 3 and 

4, even though the estimator has the property of unbiasedness, i.e.,  [∑   
   

      ]   [   ], 

unfortunately its density function extends (takes non-negligible values) over more than four 

orders of magnitude and its mode is two orders of magnitude lower than its expected value. For 

these reasons, it is not advisable to use it at all—and that is what our paper (Lombardo et al., 

2013a) is about in simple words. 

Now, we have not studied the respective properties of the Haar fluctuation (but we may do this 

in future studies). On the other hand, those of the climacogram have been studied 
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(Koutsoyiannis, 2003, 2011, 2013a,b; Koutsoyiannis and Montanari, 2007; Koutsoyiannis et al., 

2011; Tyralis and Koutsoyiannis, 2011) and suggest its appropriateness to use it safely in 

statistical analyses of geophysical processes—and that is the reason why we use it. 

Conclusion 

We believe that the comment by Lovejoy et al. (2013) is extremely useful to clarify several issues 

and facilitate the communication between groups so far using different languages, but it does 

not imply that our manuscript Lombardo et al. (2013a) needs any correction or change.  
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