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Abstract

The need of understanding and modelling the space-time variability of natural pro-
cesses in hydrological sciences produced a large body of literature over the last thirty
years. In this context, multifractal framework provides parsimonious models which can
be applied to a wide scale range of hydrological processes, and are based on the5

empirical detection of some patterns in observational data, i.e. a scale invariant mech-
anism repeating scale after scale. Hence, multifractal analyses heavily rely on available
data series and their statistical processing. In such analyses, high order moments are
often estimated and used in model identification and fitting as if they were reliable.
This paper warns practitioners for blind use in geophysical time series analyses of10

classical statistics, which is based upon independent samples typically following dis-
tributions of exponential type. Indeed, the study of natural processes reveals scaling
behaviours in state (departure from exponential distribution tails) and in time (depar-
ture from independence), thus implying dramatic increase of bias and uncertainty in
statistical estimation. Surprisingly, all these differences are commonly unaccounted for15

in most multifractal analyses of hydrological processes, which may result in inappropri-
ate modelling, wrong inferences and false claims about the properties of the processes
studied. Using theoretical reasoning and Monte Carlo simulations we find that the re-
liability of multifractal methods that use high order moments (> 3) is questionable. In
particular, we suggest to use the first two moments in all problems as they suffice to20

define the most important characteristics of the distribution.

1 Introduction

A simple way to understand the extreme variability of several geophysical processes
over a practically important range of scales is offered by the idea that the same type
of elementary process acts at each relevant scale. According to this idea, the part re-25

sembles the whole as quantified by so-called “scaling laws”. Scaling behaviours are
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typically represented as power laws of some statistical properties, and they are appli-
cable either on the entire domain of the variable of interest or asymptotically. If this
random variable represents the state of a system, then we have the scaling in state,
which refers to marginal distributional properties. This is to distinguish from another
type of scaling, which deals with time-related random variables: the scaling in time,5

which refers to the dependence structure of a process. Likewise, scaling in space is
derived by extending the scaling in time in higher dimensions and substituting space
for time (e.g. Koutsoyiannis et al., 2011).

The scaling behaviour widely observed in the natural world (e.g. Newman, 2005)
has often been interpreted as a tendency, driven by the dynamics of a physical system,10

to increase the inherent order of the system (self-organized criticality): this is often
triggered by random fluctuations that are amplified by positive feedback (Bak et al.,
1987). In another view, the power laws are a necessity implied by the asymptotic be-
haviour of either the survival and autocovariance function, describing, respectively, the
marginal and joint distributional properties of the stochastic process which models the15

physical system. The main question is whether the two functions decay following an
exponential (fast decay) or a power-type law (slow decay). We assume the latter to
hold in the form of scaling in state (heavy-tailed distributions) and in time (long-term
persistence), which have also been verified in geophysical time series (e.g. Markonis
and Koutsoyiannis, 2013; Papalexiou et al., 2013). According to this view, scaling be-20

haviours are just manifestations of enhanced uncertainty and are consistent with the
principle of maximum entropy (Koutsoyiannis, 2011). The connection of scaling with
maximum entropy constitutes also a connection of stochastic representations of natu-
ral processes with statistical physics. The emergence of scaling from maximum entropy
considerations may thus provide theoretical background in modelling complex natural25

processes by scaling laws.
In the literature, natural processes showing scaling behaviour are often classified as

multifractal systems (i.e. multiscaling) that generalize fractal models, in which a single
scaling exponent (the fractal dimension) is enough to describe the system dynamics.
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For a detailed review on the fundamentals of multifractals, the reader is referred to
Schertzer and Lovejoy (2011).

Multifractal models generally provide simple power-law relationships to link the sta-
tistical distribution of a stochastic process at different scales of aggregation. All power
laws with a particular scaling exponent are equivalent up to constant factors, since5

each is simply a scaled version of the others. Therefore, the multifractal framework pro-
vides parsimonious models to study the variability of several natural processes in geo-
sciences, such as rainfall. Rainfall models of multifractal type have, indeed, for a long
time been used to reproduce several statistical properties of actual rainfall fields, in-
cluding the power-law behaviour of the moments of different orders and spectral densi-10

ties, rainfall intermittency and extremes (see, e.g. Koutsoyiannis and Langousis (2011)
and references therein). However, published results vary widely, calling into question
whether rainfall indeed obeys scaling laws, what those laws are, and whether they have
some degree of universality (Nykanen and Harris, 2003; Veneziano et al., 2006; Molnar
and Burlando, 2008; Molini et al., 2009; Serinaldi, 2010; Verrier et al., 2010, 2011;15

Gires et al., 2012; Veneziano and Lepore, 2012; Papalexiou et al., 2013). In fact, sig-
nificant deviations of rainfall from multifractal scale invariance have also been pointed
out. These deviations include breaks in the power-law behaviour (scaling regimes) of
the spectral density (Fraedrich and Larnder, 1993; Olsson, 1995; Verrier et al., 2011;
Gires et al., 2012), lack of scaling of the non-rainy intervals in time series (Veneziano20

and Lepore, 2012; Mascaro et al., 2013), differences in scaling during the intense and
moderate phases of rainstorms (Venugopal et al., 2006), and more complex deviations
(Veneziano et al., 2006; Marani, 2003).

Multifractal signals generally obey a scale invariance that yields power law be-
haviours for multi-resolution quantities depending on their scale ∆. These multi-25

resolution quantities at discrete time steps (j = 1,2, . . .), denoted by x(∆)
j in the follow-

ing, are local time averages in boxes of size ∆ (notice that we use the so-called Dutch
convention according to which random variables are underlined (see Hemelrijk, 1996,
and the additional notational conventions in Koutsoyiannis, 2013).
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For multifractal processes, one usually observes a global power law scaling of the
form

E
[(

x(∆)
j

)q]
∝∆−K (q) (1)

where E [·] denotes expectation (ensemble average) and K (q) is the moment scaling
function, at least in some range of scales ∆ and for some range of orders q. Gen-5

erally, the multifractal behaviour of a physical system is directly characterized by the
multiscaling exponents K (q), whose estimation relies on the use of the sample q-order
moments at different scales ∆ and their linear regressions in log-log diagrams.

A fundamental problem in the multifractal analysis of datasets is to estimate the mo-
ment scaling function K (q) from data (Villarini et al., 2007; Veneziano and Furcolo,10

2009). The main reason for this, which is often neglected in the literature, is related to
the problematic estimation of moments for geophysical processes, because the statisti-
cal processing of geophysical data series is usually based upon classical statistics. The
classical statistical approaches rely on several simplifying assumptions, tacit or explicit,
such as independence in time and exponentially-decaying distribution tails, which are15

invalidated in natural processes thus causing bias and uncertainty in statistical estima-
tions. In many studies, it has been a common practice to neglect this problem, which is
introduced when the process exhibits dependence in time and is magnified when the
distribution function significantly departs from the Gaussian form, which itself is an ex-
ample of an exceptionally light-tailed distribution. In their pioneering work on statistical20

hydrology, Wallis et al. (1974) already provided some insight into the sampling prop-
erties of moment estimators when varying the marginal probability distribution function
of the underlying stochastic process. The main results of the paper agree well with
those found here, but its Monte Carlo experiments were carried out under a classical
statistical framework assuming independent samples.25

The purpose of this paper is to explore, at different timescales, the information con-
tent in estimates of raw moments of processes exhibiting temporal dependence (see
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Sect. 2). In order for the true moments to be fully known a priori, we use synthetic ex-
amples in a Monte Carlo simulation framework. We explore processes with both normal
and non-normal distributions including ones with heavy tails. We show (Sect. 3) that,
even in quantities whose estimates are in theory unbiased, the dependence and non-
normality affect significantly their statistical properties, and sample estimates based on5

classical statistics are characterized by high bias and uncertainty.

2 Local average process

Central to the development of robust multifractal models is the concept of “local av-
erage” of a stochastic process. Practical interest often revolves around local average
or aggregates (temporal or spatial) of random variables, because it is seldom useful10

or necessary to describe in detail the local point-to-point variation occurring on a mi-
croscale in time or space. Even if such information were desired, it may be impossible
to obtain: there is a basic trade-off between the accuracy of a measurement and the
(time or distance) interval within which the measurement is made (Vanmarke, 1983).
For example, rain gauges (owing to size, inertia, and so on) measure some kind of15

local average of rainfall depth over time. Moreover, through information processing,
“raw data” are often transformed into average or aggregate quantities such as, e.g.
sub-hourly averages or daily totals.

Mathematically, let x(t) be a stationary stochastic process in continuous time t with
mean µ = E [x], and autocovariance c(τ) =Cov[x(t), x(t+ τ)], where τ is the time lag.20

Consider now the random process x(∆)
j obtained by local averaging x(t) over the win-

dow ∆ at discrete time steps j (=1, 2, . . . ), defined as

x(∆)
j =

1
∆

j∆∫
(j−1)∆

x (t)dt j = 1,2, . . . ,n (2)
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where n = T /∆ is the number of the sample steps of x(∆)
j in the observation period To,

and T =
⌊
To/∆

⌋
∆ is the observation period rounded off to an integer multiple of ∆. The

relationship between the processes x(t) and x(∆)
j is illustrated in Fig. 1.

The mean of the process x(∆)
j is not affected by the averaging operation, i.e.

E
[
x(∆)
j

]
=

1
∆

j∆∫
(j−1)∆

E
[
x (t)
]
dt = µ. (3)5

Let us now investigate the climacogram of the process x(∆)
j , which is defined to be the

variance (or the standard deviation) of the time-averaged process x(∆)
j as a function

of the time scale of averaging ∆ (Koutsoyiannis, 2010). The climacogram of x(∆)
j can

be calculated from the autocovariance function c(τ) of the continuous-time process as
follows (see, e.g. Vanmarke, 1983, p. 186; Papoulis, 1991, p. 299)10

Var
[
x(∆)
j

]
= γ (∆) =

2

∆2

∆∫
0

(∆− τ)c (τ)dτ (4)

which shows that the climacogram γ(∆) generally decreases with ∆ and fully char-
acterizes the dependence structure of x(t). The climacogram γ(∆) and the c(τ) are
fully dependent on each other; thus, the latter can be obtained by the former from the
inverse transformation (see Koutsoyiannis (2013) for further details)15

c(τ) =
1
2

d2
(
τ2γ (τ)

)
dτ2

. (5)

Thus, the dependence structure of x(t) is represented either by the climacogram γ(∆)
or the autocovariance function c(τ). In addition, the Fourier transform of the latter, the
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spectral density function s(w), where w is the frequency, is of common use. Selec-
tion of an analytical model for c(τ) or s(w) is usually based on the quality of fit in
the range of observed (observable) values of τ and w which, for reasons mentioned
above, does not include the “microscale” (τ → 0 or w →∞) or in general the asymp-
totic behaviour (Vanmarke, 1983). However, asymptotic stochastic properties of the5

processes are crucial for the quantification of future uncertainty, as well as for planning
and design purposes (Montesarchio et al., 2009; Russo et al., 2006). Any model choice
does, of course, imply an assumption about the nature of random variation asymptot-
ically. Therefore, we may want this assumption (although fundamentally unverifiable)
to be theoretically supported. In this context, Koutsoyiannis (2011) connected sta-10

tistical physics (the extremal entropy production concept, in particular) with stochas-
tic representations of natural processes, which are otherwise solely data-driven. He
demonstrated that extremization of entropy production of stochastic representations of
natural systems, performed at asymptotic times (zero or infinity) results in the Hurst–
Kolmogorov process (HKp), else known as fractional Gaussian noise (Mandelbrot and15

Van Ness, 1968).
HKp can be defined in continuous time by the following autocovariance function

(Koutsoyiannis, 2013)

c (τ) = λ
(
α/τ
)2−2H

0.5 < H < 1 (6)

which shows that autocovariance is a power function of lag τ; consequently, it can be20

shown that the spectral density function s(w) is also a power law of the frequency w
with exponent 1−2H . The three nominal parameters of the HKp are λ, α and H : the
units of α and λ are [τ] and [x]2, respectively, while H , the so-called Hurst coefficient,
is dimensionless.

Substituting Eq. (6) in Eq. (4) we obtain the climacogram of the process x(∆)
j as25

γ (∆) =
λ
(
α/∆

)2−2H

H (2H −1)
. (7)
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Thus, the variance of x(∆)
j is a power law of the averaging time ∆ with exponent 2H−2,

precisely the same as that of c(τ).
The climacogram contains the same information as the autocovariance function c(τ)

or the power spectrum s(w), because they are transformations one another. It has
been observed that, when there is temporal dependence in the process of interest,5

the classical statistical estimation of the climacogram involves bias (Koutsoyiannis and
Montanari, 2007), which is obviously transferred to transformations thereof, e.g. c(τ)
or s(w). The bias in the climacogram estimation can be determined analytically and
included in the estimation itself (Koutsoyiannis, 2013). However, in the next section
we show how the problems of bias and uncertainty in statistical estimation may be10

extremely remarkable when using other uncontrollable quantities (e.g. high order mo-
ments) to calibrate stochastic models.

3 Multifractal analysis

Multifractal analysis has been used in several fields in science to characterize various
types of datasets, which have been investigated by means of mathematical basis of15

multifractal theory. This is the basis for a series of calculations that reveal and explore
the multiple scaling rules, if any, from datasets, in order to calibrate multifractal models.
From a practical perspective, multifractal analysis is usually based upon the following
steps (Lopes and Betrouni, 2009).

– Estimate the sample raw moments of different orders q over a range of aggrega-20

tion scales ∆.

– Plot the sample q-moments against the scale ∆ in a log-log diagram.

– Fit least-squares regression lines (one for each order q) through the data points.

– Estimate the multiscaling exponents K (q) as the slopes of regression lines (see
Eq. 1).25
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The classical estimator of the qth raw moment of the local average process x(∆)
j is

m(∆)
q =

1
n

n∑
j=1

(
x(∆)
j

)q
. (8)

High moments, i.e. q ≥ 3, mainly depend on the distribution tail of the process of inter-
est. If we assume, for reasons mentioned in Sect. 1, scaling in state, i.e. a power-type
(e.g. Pareto) tail, then raw moments are theoretically infinite beyond a certain order5

qmax. However, their numerical estimates from a time series by Eq. (8) are always fi-
nite, thus producing an infinite negative bias. Even below qmax, where it can be proved
that the estimates are unbiased, we show that the estimation of moments can be still
problematic. It is easily shown, indeed, that the expected value of the moment estimator
equals its theoretical value E [(x(∆)

j )q] = µ(∆)
q for any timescale ∆, i.e.10

E
[
m(∆)

q

]
=

1
n

n∑
j=1

E
[(

x(∆)
j

)q]
= µ(∆)

q (9)

which can be used to derive the variance of the moment estimator as follows

Var
[
m(∆)

q

]
= E
[(

m(∆)
q

)2
]
−E
[
m(∆)

q

]2
=

1

n2

n∑
i=1

n∑
j=1

E
[(

x(∆)
j

)q (
x(∆)
i

)q]
−
(
µ(∆)
q

)2
. (10)

This quantity can be assumed as a measure of uncertainty in the estimation of the qth
moment of the local average process x(∆)

j . Therefore, the estimator m(∆)
q is theoretically15

unbiased (because of Eq. 9) but involves uncertainty (quantified by Eq. 10), which is
expected to depend on statistical properties of the instantaneous process x(t) (i.e.
marginal and joint distributional properties), the averaging scale ∆, the sample size n,
and the moment order q.
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3.1 Estimation of the mean

The (unbiased) estimator of the common mean µ of the local average process x(∆)
j is

given by Eq. (8) for q = 1

m(∆)
1 =

1
n

n∑
j=1

x(∆)
j = x(T )

1 (11)

where T is the largest timescale of averaging multiple of ∆ in a given observation period5

To (Fig. 1).
As a consequence of Eqs. (4) and (11), the variance of the estimator above can be

expressed as follows

Var
[
m(∆)

1

]
= Var

[
x(T )

1

]
= γ (T ) =

2

T 2

T∫
0

(T − τ)c (τ)dτ. (12)

Therefore, the estimator m(∆)
1 is a function of the dependence structure of the10

continuous-time (instantaneous) process x(t), and the rounded observation period T .
Note that the uncertainty in the estimation of the sample mean is independent of the
timescale of averaging ∆ while it depends on the observation period T .

Considering now the HKp, the autocovariance function is given by Eq. (6). Hence,
the climacogram γ(T ) takes the form of Eq. (7). In Fig. 2, we show how the temporal15

dependence (governed by the Hurst coefficient H for the HKp) influences the reliability
of moment estimates. For simplicity and without loss of generality, we plot the ratio of
Var[m(∆)

1 ] to Var[x(∆)
j ] for ∆ = 1 against the scale T , which equals the sample size n for

∆ = 1. As a consequence of Eqs. (12) and (7), the ratio is given by

Var
[
m(∆=1)

1

]
Var
[
x(∆=1)
j

] =
γ (T )

γ (1)
= n2H−2. (13)20
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Notice that large values of H result in much higher ratio than in the iid case (which is
given by 1/n), and the convergence to the iid case is extremely slow (see Fig. 2). In
essence, it can be argued that the greater the dependence in time, the harder it is to
estimate the moment; in the sense that larger samples are required in order to obtain
estimates of similar quality.5

3.2 Estimation of higher moments

Let us now investigate the behaviour of estimators of higher order moments (q > 1)
when the underlying random process exhibits dependence in time and when changing
the process marginal distribution; this can be done by Monte Carlo simulation. Specifi-
cally, we use the Gaussian distribution and three one-sided distributions whose tails are10

sub-exponential, i.e. heavier than the former (as observed in several geophysical pro-
cesses). All synthetic time series are generated in a way to have similar dependence
structures based on the HKp, which are therefore governed by the Hurst coefficient H .

In this study, we estimate the performance of qth moment estimators for four dif-
ferent common tail types (ordered from heavier to lighter): the Pareto, the Lognormal,15

the Weibull and the Gaussian tails (see, e.g. El Adlouni et al., 2008; Papalexiou et al.,
2013). The Pareto is the only power-type distribution, while the rest three are of expo-
nential type with all their moments finite. Specifically, we use the Pareto type II distri-
bution, defined in [0, ∞), with survival function

F PII (x) = P
{
x > x

}
=
(

1+ κ
x
β

)−1/κ

(14)20

where β > 0 is the scale parameter, and κ ≥ 0 the shape parameter. The latter, also
known as the tail index, controls the asymptotic behaviour of the tail, which is given

by x−1/κ ; as the value of κ increases the tail becomes heavier and consequently ex-
treme values occur more frequently. Moreover, the shape parameter κ unequivocally
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defines the order qmax = 1/κ beyond which the qth moments are theoretically infinite,

i.e. E [(x(∆)
j )q] =∞ for q ≥ 1/κ; in our study we assume κ = 0.2, and thus qmax = 5.

The Lognormal distribution, also defined in [0,∞), is very commonly used in geo-
sciences and has the survival function

F LN (x) =
1
2

erfc

(
ln

((
x
β

) 1
κ
√

2

))
(15)5

where erfc(x) = 1−erf(x) = 2/
√
π
∫∞
x exp(−t2)dt is the complementary error function, β

is the scale parameter, and κ > 0 is the shape parameter that controls the behaviour
of the tail (notice some differences from the more typical notational convention in the
literature; see Forbes et al., 2011 p. 131, for further details). Despite all its moments are
theoretically finite, the Lognormal distribution is very similar in shape to a power-type10

distribution (Pareto), in the sense that the two distributions appear almost indistinguish-
able from each other for a large portion of their body (Mitzenmacher, 2004). Therefore,
Lognormal is regarded as a heavy-tailed distribution.

Another widely used distribution is the Weibull distribution, again defined in [0,∞). Its
survival function is a stretched exponential function (obtained by inserting a fractional15

power law into the exponential function), i.e.

F W (x) = exp
(
−
(
x
β

)κ)
(16)

where β > 0 is the scale parameter, and the stretching exponent 0 < κ < 1 (shape pa-
rameter) actually modifies the shape of the exponential distribution so as to obtain
a heavier tail. Consequently, the Weibull distribution can be regarded as a generaliza-20

tion of the exponential distribution, which is recovered with κ =1. The case with κ > 1
(compressed exponential function, i.e. a tail lighter than the exponential one) has less
practical importance, with the notable exception of κ = 2, which gives the Gaussian
distribution.
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3.2.1 Monte Carlo simulation

As the Lognormal model has been the most common in multifractal literature, we start
our study from this model. For the Monte Carlo simulation we use the model introduced
by Lombardo et al. (2012), which follows a disaggregation approach. In that respect it
resembles the discrete multifractal cascade models yet it is a fully consistent and fully5

controllable model, not affected by uncontrollable nonstationary issues that are typical
in multifractal cascades. The model starts the generation from the coarsest scale and
then disaggregates into finer scales applying a specific scale-dependent exponential
transformation to the HKp in a way to preserve part of its scaling properties. For the
Monte Carlo experiment we generate 30 000 time series with sample size n = 210 =10

1024, unit mean, standard deviation σ = 1.29 and H = 0.85. Later we will compare
with the other models in a different setting, i.e. aggregating rather than disaggregating,
using the same statistical properties (note that σ = 1.29 is the standard deviation of the
Pareto type II with unit mean and tail index κ = 0.2).

The results of the Monte Carlo simulation experiment are depicted in Figs. 3–6.15

Specifically, Fig. 3 shows the probability distribution of the natural logarithm of the ratio
of qth moment estimates to their expected values (i.e. the theoretical values, following
Eq. 9). It can be noticed that the information content of the sample moments strongly
decreases when increasing the order q (i.e. the distribution is less concentrated around
0): only low moments have reasonably low variation, all others vary within several or-20

ders of magnitude (notice that the horizontal axis is logarithmic and spans more than
10 orders of magnitude!). Despite the sample raw moment being an unbiased estimator
of the true (population) raw moment, the probability distribution of the statistical esti-
mator is very broad and skewed. This is particularly the case for high moments. Note
that the averaging scale ∆ has negligible influence on the statistical characteristics of25

low moment estimators, while it slightly regularizes the behaviour of higher moment
estimators.
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In addition, in Fig. 4 we show the empirical frequency distribution of the sample
5th moment estimated from Lognormal time series averaged locally over different
timescales ∆. Again here the bias is theoretically zero, but the most probable value
of the moment estimate (the mode) is very different from its expected value. For exam-
ple when ∆ =1 (upper-left panel of Fig. 4), the mode of the distribution of m(∆=1)

5 (green5

line) is almost two orders of magnitude less than the expected value (red line) and
the probability of calculating from a unique sample a value equal to the mode is much
greater (almost one order of magnitude) than the probability of obtaining the expected
value itself. Recall that the expected value of the sample moment equals the true value
of the moment, because of unbiasedness, but according to the distributions of Fig. 410

we can hardly expect the moment estimate from a unique sample to be close to this
expected value. Increasing the averaging scale ∆ reduces the difference between the
mean and the mode. Nonetheless, this difference is still remarkable at large scales
(see, e.g. lower-right panel of Fig. 4).

The large difference between the mode and the expected value of the moment es-15

timators is not the only problem. Another problem is the high estimation uncertainty.
In order to illustrate the uncertainty in the moment estimation, Fig. 5 shows semi-
logarithmic plots of the prediction intervals of the sample moments, calculated from
the Monte Carlo simulations, against the moment order, for various scales ∆. The log-
arithmic scale on the vertical axis highlights the huge variability of estimates when the20

order increases. Note that the mean of raw moments (i.e. the true expected value)
moves closer to the upper prediction limit for orders q > 3, thus making the use of high
moments unreliable.

Additionally, Fig. 6 depicts log-log diagrams of the prediction intervals of the sample
moments against the scale of averaging ∆, for various orders q. In addition to the ob-25

servations made with respect to Figs. 5 and 6 shows that the increase of the averaging
scale ∆ has little influence on the variability of the moments, meaning that the sample
size reduction is somewhat compensated by the time averaging.
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In the second part of the Monte Carlo simulation experiment we use a different ap-
proach, first generating at the finest scale and then aggregating into coarser scales. In
this case we generate 30 000 synthetic time series from the four distributions described
in Sect. 3.2 above (ordered from heavier to lighter tail type: Pareto, Lognormal, Weibull
with shape parameter smaller than 1 and Gaussian) with characteristics same as those5

in the previous experiment. In this case we investigate how the classical estimators of
raw moments behave when varying the tail type of the marginal distribution of the un-
derlying stochastic process. To this aim, in Fig. 7 we plot on a semi-logarithmic scale
the prediction intervals of the sample moments against the moment order (assuming
∆ = 1), for the four distributions. It can be seen that the tail type significantly influences10

the reliability of moment estimators. The heavier the distribution tail, the more uncertain
the sample moments are. This is especially the case for high moments, because they
depend enormously on the distribution tail and non-normality affects significantly their
statistical properties. Analogous considerations apply to aggregated series (i.e. ∆ > 1).

It is emphasized that the vertical axes in Fig. 7 span more than 10 orders of magni-15

tude yet the prediction limits do not necessarily bracket the true value of the moment.
Particularly for the Pareto distribution the true (population) values of the 5th and 6th
moments are infinite while their statistical estimates are finite and the entire graph
does not provide any hint that these high moments differ so essentially from the lower
ones. Another important conclusion drawn from Fig. 7 is that the prediction limits in the20

case of the Gaussian distribution are dramatically narrower than in all other cases. As
the Gaussian distribution has been dominating in classical statistical applications and
perhaps in statistical thinking, this fact may explain why the multifractal applications
were misled to neglect the huge uncertainty of high moment estimates and its impact
on modelling.25
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4 Conclusions

During recent decades, there has been a large raise of interest in multifractal analyses
especially in the study of hydrological processes, particularly in rainfall modelling. In
fact, the multifractal framework provides parsimonious models to study the variability
of several natural processes in geosciences, such as rainfall. Models following this5

approach require the scaling of the sample moments of different orders q, which is used
in model identification and fitting. A common problem with the application of multifractal
models, which in some cases may have led to incorrect results, is their disconnection
from stochastic methodology and reasoning, and the (unstated) naı̈ve consideration
that statistical estimates represent the true properties of a process.10

Using theoretical reasoning and Monte Carlo simulations we find that the reliability
of multifractal methods that use high order moments (> 3) is questionable. In particu-
lar, we highlight the problems in inference from time series of geophysical processes.
The classical statistical approaches, often used in geophysical modelling, are based
upon several simplifying assumptions, tacit or explicit, such as independence in time15

and exponential distribution tails, which are invalidated in natural processes. Indeed,
the study of natural processes reveals scaling behaviours in state (departure from ex-
ponential distribution tails) and in time (departure from independence). While the multi-
fractal models are based on these scaling behaviours per se, they failed to explore their
statistical consequences with respect to the implied dramatic increase of uncertainty.20

The following list briefly summarizes the main findings of our analyses.

– As natural processes are characterized by dependence in time, while classical
statistics typically assumes independence, much larger samples are required in
order to obtain estimates of similar reliability with classical statistics.

– Estimators of high moments whose distribution ranges over several orders of25

magnitude cannot support inference about a natural behaviour nor fitting of mod-
els.
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– The most probable value of sample high moments (the mode) can strongly differ
(by orders of magnitude) from its expected value (i.e. the true value), thus making
the statistical estimate problematic even in the case of unbiasedness.

– The calculation of numerical values of high order moments is misleading as the
theoretical moments may tend to infinity for high orders, while the sample esti-5

mates are always finite. Even smaller order moments can be very uncertain.

Hence, we have shown that distribution tails heavier than the exponential one and
temporal dependence result in enormous, even infinite, biases and/or enormously in-
creased uncertainty in raw moments. This paper warns practitioners for blind use in
geophysical time series analyses of classical statistical tools, which neglect depen-10

dence and heavy tails in distributions. Ignorance of increased uncertainty may result in
inappropriate modelling, wrong inferences and false claims about the properties of the
processes. It also warns for inattentive use of high order moments. Evidently, the first
two moments are necessary to use in all problems as they define the most important
characteristics of the distribution, marginal (the first two moments) and joint (the sec-15

ond moment). Even for these two lowest moments it is important to study always their
uncertainties and this only can be done in connection with a model fitted for the process
of interest (as it is not possible to define uncertainty without specifying a model for the
marginal distribution and dependence). The third moment is often useful as a measure
of skewness but we should always be aware of its uncertainty; however use of third20

moment is not the only way to identify and assess the skewness of a distribution. For
example in parameter estimation of three-parameter distributions, it is better to avoid
the method of moments and use other fitting methods such as maximum likelihood,
L-moments, etc. Moments of order > 3 should be avoided in model identification and
fitting because their estimation is problematic. If we have to use them, then it is imper-25

ative to specify their uncertainty and involve this uncertainty in any type of modelling
and inference.
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Fig. 1. Sketch of the local average process x(∆)
j obtained by averaging the continuous-time

process x(t) locally over a moving interval of size ∆.
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Fig. 2. Estimator variance of the mean of the local average process x(∆=1)
j standardized by the

process variance, i.e. Var[m(∆=1)
1 ]/Var[x(∆=1)

j ] = γ(T )/γ(1), plotted against the sample size n = T
for ∆ = 1.
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Fig. 3. Empirical cumulative distribution function (ecdf) of the natural logarithm of the ratio of
qth moment estimates to their expected values E [(x(∆)

j )q] = µ(∆)
q when varying ∆.
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Fig. 4. Empirical probability density function (epdf) of the sample 5th moment estimated from
Lognormal time series averaged locally over different timescales ∆.
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Fig. 5. Semi-logarithmic plots of the prediction intervals of the sample moments versus the
order q for various timescales ∆, where “Q” stands for quantile.
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Fig. 6. Log-log plots of the prediction intervals of the sample moments versus the scale ∆ for
various orders q, where “Q” stands for quantile.
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Fig. 7. Semi-logarithmic plots of the prediction intervals of the sample moments versus the
order q for various marginal probability distributions, assuming ∆ = 1.
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