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Abstract
Two common stochastic tools, the spectrum and the climacogram are compared. Using time series from (a) a couple of simple harmonic functions, 
(b) synthetic data generated using a complex stochastic model, (c) a large-scale paleoclimatic reconstructions and (d) laboratory-scale 
measurements of turbulent velocity, we  estimate the spectra (using fast Fourier transform) and climacograms. Both original and smooth versions 

4. Energy spectrum estimation
• The Es(w) of a temporal stationary process is the FT of its R(s) and that it can also be expressed 

in terms of its FT, F(w):

7. Laboratory-scale measurements
Timeseries shown here is from an open access 
dataset (http://www.me.jhu.edu/meneveau/ 
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measurements of turbulent velocity, we  estimate the spectra (using fast Fourier transform) and climacograms. Both original and smooth versions 
of the spectra are used. The spectrum and the climacogram tools are compared to each other giving emphasis to each advantages and 
disadvantages and also, some questions regarding the interpretation and inference from the above methods, are discussed.

1. Climacogram definition
The Climacogram (Cg) comes from the Greek word climax (which means scale) and is a plot of • The Energy spectrum (ES) is useful for detecting frequencies with high energy and energy 

in terms of its FT, F(w):
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dataset (http://www.me.jhu.edu/meneveau/ 
datasets /datamap.html), provided by the Johns 
Hopkins University, that consists of nearly 
isotropic and homogeneous turbulent wind 
streamwise velocity data, measured by X-wire 11
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The Climacogram (Cg) comes from the Greek word climax (which means scale) and is a plot of 
the standard deviation SD(k) of the mean-aggregated series of the random variable Z versus the 
aggregated scale k (Koutsoyiannis, 2010):
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• The Energy spectrum (ES) is useful for detecting frequencies with high energy and energy 
dissipation patterns. Usually a series of observations has high fluctuations. This ‘noise’ is 
always transferred to its ES, as the FT and its inverse are bidirectional relationships. To smooth 
out noise, mathematical tools such as the following are used:

(a) Trend-lines, where the ES of data is fitted with a least-
5.E-03

streamwise velocity data, measured by X-wire 
probes downstream of an active grid (Kang et 
al., 2002). A large range of scales is analyzed 
due to the fact that this dataset consists of 
900000 records.
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 and  are the random field of interest and the mean aggregated field and
 is the vector index of the field indicating location in the field (lag).
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The Cg is useful for detecting the long term change (or else dependence, persistence, clustering) 
of a process. This can be quantified through the Hurst coefficient (H = 1 – slope of the Cg in a log-

(a) Trend-lines, where the ES of data is fitted with a least-
squares curve.

(b) Averaging methods (e.g. Welch’s), where the signal is 
divided into segments (with or without overlapping), 
sometimes also applying a window-function (e.g. 
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of a process. This can be quantified through the Hurst coefficient (H = 1 – slope of the Cg in a log-
log plot as scale tends to infinity). For 0<H<0.5 the process is anticorrelated, for 0.5<H<1 the 
process is correlated (most common case in geophysical processes) and for H=0.5 the process is 
purely random (zero autocorrelation, thus white noise behaviour). Long-term persistence in 
natural processes was first discovered by Hurst (1951) while Kolmogorov (1940) mathematically 
described it, working on self-similar processes in studying turbulence (Koutsoyiannis, 2011). This 

sometimes also applying a window-function (e.g. 
Bartlett’s) and estimating the ES for each segment; the 
average of all segments’ ES is then calculated.

(c) Methods of wavelet analysis, where the data are 
decomposed onto frequency spaces and then 
reconstructed using translated and scaled versions of a 
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described it, working on self-similar processes in studying turbulence (Koutsoyiannis, 2011). This 
behaviour is also known as the Hurst phenomenon or Hurst-Kolmogorov (HK) behaviour. A 
stochastic process with HK behaviour is known as a Hurst-Kolmogorov process (HKp) or 
Fractional Gaussian noise (fGn).

reconstructed using translated and scaled versions of a 
mother wavelet (filter).

Figure 1: Energy spectrum of velocity data 
with different smoothing methods of type (b).
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5. Simple deterministic harmonic function 8. Synthetic data generated using a stochastic model (HKp)2. Climacogram estimation
In an HKp the standard statistical estimator of variance is negatively biased. Below, the fGn is A harmonic function f(t) that combines cosine 

and sine components is presented (series T1):

f(t) = sin(2πt/1.2) + cos(2πt/1.2) 0.5
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Here, synthetic series are produced through 
the HKp, with H=0.95 (series T1), 0.68 (series 
T2) and 0.52 (series T3). The length of the 
series is only 1000 records as the purpose of 
this analysis is to observe how well can the Cg 
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In an HKp the standard statistical estimator of variance is negatively biased. Below, the fGn is 
introduced and a method to estimate the H having assumed that the process has an HK 
behaviour (Tyralis & Koutsoyiannis, 2010) . The estimation of H can is done via the minimization 
of the square error (SEH) of the empirical (γ(k)) and true (γ(k)) variance over scale k. 
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The total length of observation is 1200 units 
and the time step Δt is 0.1.
Moreover, random noise is added to T1 
obtaining series T2, in order to see how the Cg 
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this analysis is to observe how well can the Cg 
and ES represent the long-term persistence. 
The  chosen range of the H corresponds to 
positively correlated processes (which is the 
most common case in geophysical processes).
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0.0 1.0 2.0 3.0 4.0 5.0

1.E+01 1.E+00

most common case in geophysical processes).

1.0

-4.0

0 200 400 600 800 1,000

T3 T2 T1

1.E-01

 denotes equality in distribution function and

=(1- ) is the power law exponent.
d

A H

=

{ }
k' 2

p( ) ( )

Tyralis and Koutsoyiannis (2010) method for estimating both  and :
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3. Energy spectrum definition
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6. Large-scale paleoclimatic reconstructions
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9. Conclusions3. Energy spectrum definition
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• The Fourier transform (FT) F(w) (where w is usually called frequency) of a function f(r) and its 
inverse are defined as:

6. Large-scale paleoclimatic reconstructions
Large-scale paleoclimatic reconstruction 
(series T1) of global temperature is analyzed. 
The data are based on sediment proxy data 0.5
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9. Conclusions
1) There are many differences between ES calculated through smoothing techniques and original 

ES (e.g. figure 1) due to loss of information (during the smoothing process).
2) From the analysis of section 5, it can be concluded that the frequency which contains most of ( ) ( ) ( )
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• The energy spectrum (ES) Es(w) can be linked to the derivative of a system’s power Ek(s), with 
units that of R(s), over frequency w:
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The data are based on sediment proxy data 
(δ18O) from different locations at the Atlantic 
Ocean, with time resolution 1 thousand years 
and total length of 2.5 million years (Huybers, 
2007). Also, the Huybers’ reconstruction, after 
the harmonics corresponding to Milankovitch
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) 2) From the analysis of section 5, it can be concluded that the frequency which contains most of 
the energy, is apparent in the ES. Nevertheless, energy residuals in other frequencies still 
remain due to the numerical methods used. This may give the wrong impression of an energy 
dissipation rate. On the other hand, the Cg can give some information about the period of the 
harmonic function without any numerical residuals.

3) As the number of segments increases (e.g. section 7) the range of available frequencies 
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• The autocovariance function R(t,s) of a random variable x(t) is defined below and has the same 
units as the x(t)2:

the harmonics corresponding to Milankovitch
cycles have been removed (Markonis and 
Koutsoyiannis, 2010) is analyzed (series T2). 
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3) As the number of segments increases (e.g. section 7) the range of available frequencies 
decreases, thus information is being lost.

4) The long term change is different between T1 and T2 series of section 6. This result can be 
easily derived from the Cg but difficult to observe in the ES. Moreover, the ES fails to detect 
some changes in the long-term persistence, between the low and high correlated T1 and T3 
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Note that the Cg is related to the autocovariance function R(s) of a stationary process, through 
a second derivative (Koutsoyiannis 2010):
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only 8 segments are 
considered due to the 
small number of data.
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