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Abstract Recent publications have provided evidence that hydrological processes exhibit a 6 

scaling behaviour, also known as the Hurst phenomenon. An appropriate way to model this 7 

behaviour is to use the Hurst-Kolmogorov stochastic process. The Hurst-Kolmogorov process 8 

entails high autocorrelations even for large lags, as well as high variability even at climatic 9 

scales. A problem that, thus, arises is how to incorporate the observed past hydroclimatic data 10 

in deriving the predictive distribution of hydroclimatic processes at climatic time scales. Here 11 

with the use of Bayesian techniques we create a framework to solve the aforementioned 12 

problem. We assume that there is no prior information for the parameters of the process and 13 

use a non-informative prior distribution. We apply this method with real-world data to derive 14 

the posterior distribution of the parameters and the posterior predictive distribution of various 15 

30-year moving average climatic variables. The marginal distributions we examine are the 16 

normal and the truncated normal (for nonnegative variables). We also compare the results 17 

with two alternative models, one that assumes independence in time and one with Markovian 18 

dependence, and the results are dramatically different. The conclusion is that this framework 19 

is appropriate for the prediction of future hydroclimatic variables conditional on the 20 

observations. 21 
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process; hydrological statistics. 23 
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1 Introduction 24 

A lot of work has been done in predicting the future of hydroclimatic processes using 25 

Bayesian statistics. Berliner et al. (2000) applied a Markov model to a low-order dynamical 26 

system of tropical Pacific SST, using a hierarchical Bayesian dynamical modelling, which led 27 

to realistic error bounds on forecasts. Duan et al. (2007) illustrated how the Bayesian model 28 

averaging (BMA) scheme can be used to generate probabilistic hydrologic predictions from 29 

several competing individual predictions. Kumar and Maity (2008) used two different 30 

Bayesian dynamic modelling approaches, namely a constant model and a dynamic regression 31 

model (DRM) to forecast the volume of the Devil’s lake. Maity and Kumar (2006) used a 32 

Bayesian dynamic linear model to predict the monthly Indian summer monsoon rainfall. 33 

Bakker and Hurk (2012) used a Bayesian model to predict multi-year geostrophic winds. 34 

On the other hand, climate models (i.e. general circulation models—GCMs) give 35 

deterministic projections of future hydroclimatic processes for some hypothesized scenarios 36 

e.g. for the increase of CO2 concentration, etc. However, the uncertainty of these projections 37 

whose sources may be attributed to insufficient current understanding of climatic 38 

mechanisms, to inevitable weaknesses of numerical climatic and hydrologic models to 39 

represent processes and scales of interest, to complexity of processes and to unpredictability 40 

of causes (Koutsoyiannis et al. 2007),  is not estimated by these models. Consequently, it is 41 

impossible to estimate whether any observed changes reflect the natural variability of the 42 

climatic processes or should be attributed to external forcings. Additionally, using 43 

deterministic projections and thus neglecting the uncertainty in future hydroclimatic 44 

conditions, may result in underestimation of possible range of the future hydroclimatic 45 

variation. 46 

Koutsoyiannis et al. (2007) have done some work on the uncertainty assessment of future 47 

hydroclimatic predictions. They propose a stochastic framework for future climatic 48 
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uncertainty, where climate is expressed by the 30-year time average of a natural process 49 

exhibiting a scaling behaviour, also known as the Hurst phenomenon or Hurst-Kolmogorov 50 

(HK) behaviour (Hurst 1951; Koutsoyiannis et al. 2008). To this end, they combine analytical 51 

and Monte Carlo methods to determine uncertainty limits and they apply the framework 52 

developed to temperature, rainfall and runoff data from a catchment in Greece, for which 53 

measurements are available for about a century.  54 

In the study by Koutsoyiannis et al. (2007), the climatic variability and the influence of 55 

parameter uncertainty are studied separately. As a result, a hydroclimatic prediction needs two 56 

confidence coefficients to be defined, one referring to the uncertainty of the climatic evolution 57 

and one to the uncertainty of model parameters. In this paper we unify the study of the two 58 

uncertainties so that a climatic prediction needs only one confidence coefficient to be defined. 59 

To this end, we solve the problem of climatic predictions of natural processes using Bayesian 60 

statistics, instead of the stochastic framework developed by Koutsoyiannis et al. (2007). For 61 

physical consistency with natural processes such as rainfall and runoff, whose values are 62 

nonnegative, we also examine the case where truncation of the negative part of the 63 

distributions is applied. No prior information for the parameters of processes is assumed, so 64 

that the prior distribution is non-informative. The posterior joint distribution is derived from a 65 

mixture for the case where truncation is not applied and a Gibbs sampler for the case where 66 

truncation is applied. We derive the posterior predictive distribution (Gelman et al. 2004, p.8) 67 

of the process in closed form given the posterior distribution of the parameters. We simulate a 68 

sample from the posterior predictive distribution and use it to make inference about the future 69 

evolution of the averaged process. We apply this procedure using the same data as in 70 

Koutsoyiannis et al. (2007), and specifically runoff (Case 1 or C1), rainfall (C2) and 71 

temperature (C3) data from catchments in Greece and temperature data from Berlin (C4, C6 72 

with the last 90 years excluded from the dataset); in addition we used temperature data from 73 



4 

 4
 

Vienna (C5, C7 with the last 90 years excluded from the dataset). For the rainfall and runoff 74 

data we use truncated distributions. 75 

As per the temporal dependence of the processes, three alternative assumptions are made: 76 

(a) independence in time; (b) Markovian dependence modelled by first-order autoregressive 77 

(AR(1)) process; and (c) HK dependence (see Markonis and Koutsoyiannis 2013, for a 78 

justification of the latter). In the last section we compare the results of the three models. 79 

Additional results such as the posterior distributions of the parameters and the asymptotic 80 

behaviour of the predictive distribution are also given. 81 

While this paper uses the same case studies as those in Koutsoyiannis et al. (2007), the 82 

results of the two papers are not directly comparable to each other. Here we give posterior 83 

predictive distributions of the climatic variables, whereas Koutsoyiannis et al. (2007) give 84 

confidence limits for specified quantiles of climatic variables. The posterior predictive 85 

distribution of the variables given here is exactly what we call climatic prediction, whereas we 86 

could say that the confidence limits of the quantiles, given by Koutsoyiannis et al. (2007), are 87 

intermediate or indirect results. The Bayesian methodology applied here aims at (stochastic) 88 

prediction (Robert 2007, p.7) and is direct, while its disadvantage compared to Koutsoyiannis 89 

et al. (2007) framework is the much heavier computational burden. 90 

2 Definition of AR(1) and HK process 91 

We use the Dutch convention for notation, according to which random variables and 92 

stochastic processes are underlined (Hemelrijk 1966). We assume that {xt}, t = 1, 2, … is a 93 

normal stationary stochastic process with mean μ := E[xt], standard deviation σ := Var[xt], 94 

autocovariance function γk := Cov[xt, xt + k] and autocorrelation function (ACF) ρk := Corr[xt, xt 95 

+ k] = γk / γ0 (k = 0, 1, 2, …) and that there is a record of n observations xn = (x1 … xn)
T
. 96 

Each observation xt represents a realization of a random variable xt, so that xn is a realization 97 
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of the vector of random variables xn = (x1 … xn)
T
.  98 

 We assume that {at} is a zero mean normal white noise process (WN), i.e. a sequence of 99 

independent random variables from a normal distribution with mean E[at] = 0 and variance 100 

Var[at] = σ
2

a. In the following discussion {at} is always referred to as WN. The following 101 

equation defines the first-order autoregressive process AR(1). 102 

 xt − μ = φ1(xt−1 − μ) + at, |φ1| < 1 (1) 103 

The ACF of the AR(1) is (Wei 2006, p.34) 104 

 ρk = φ
k

1, k = 0, 1,… (2) 105 

Let κ be a positive integer that represents a timescale larger than 1, the original time scale 106 

of the process xt. The averaged stochastic process on that timescale is denoted as 107 

 x
(κ)

t  := (1/κ) 
l = (t – 1) κ + 1

t κ

 xl (3) 108 

The notation implies that a superscript (1) could be omitted, i.e. x
(1)

t  ≡ xt. Now we consider 109 

the following equation that defines the Hurst-Kolmogorov stochastic process (HKp). 110 

(Koutsoyiannis 2003) 111 

 (x
(κ)

i  − μ) =
d

 








 
κ

 λ 

H−1

 (x
(λ)

j  − μ), 0 < H < 1,  i, j = 1, 2, …  and κ, λ  1 (4) 112 

where H is the Hurst parameter. 113 

The ACF of the HKp is (Koutsoyiannis 2003) 114 

 ρk = |k + 1|
2H

 / 2 + |k − 1|
2H

 / 2 − |k|
2H

, k = 0, 1,… (5) 115 

and does not depend on averaging time scale κ. 116 
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3 Posterior distribution of the parameters of a stationary normal stochastic 117 

process 118 

The distribution of the variable xn = (x1 … xn)
T
 is 119 

 f(xn|θ) = (2π)
−n/2

 |σ
2
 Rn|

 −1/2
 exp[(−1/2σ

2
) (xn − μ en)

Τ
 R

−1

n  (xn − μ en)] (6) 120 

where Rn is the autocorrelation matrix with elements rij = ρ|i−j|, i,j = 1,2, …,n and en = (1 1 … 121 

1)
T
 is a vector with n elements. Details on the distributions used thereafter are given in  122 

Appendix 1. The autocorrelation ρ|i−j| is assumed to be function of a parameter (scalar or 123 

vector) φ, so that θ := (μ, σ
2
, φ) is the parameter vector of the process. We note that if xn is 124 

white noise then ρ0 = 1 and ρk = 0, k = 1, 2, …; if it is AR(1) then ρk is given by (2) if it is 125 

HKp then ρk is given by (5). 126 

We assume that φ is uniformly distributed a priori. We set as prior distribution for θ the 127 

non-informative distribution (see also Robert 2007, example 3.5.6) 128 

 π(θ)  1/σ
2
 (7) 129 

(notice that we generally use the symbol π for probability density functions of parameters).  130 

 The posterior distribution of the parameters does not have a closed form. However it can 131 

be calculated from a mixture based on conditional distributions. Specifically, it is shown (see 132 

Appendix 2) that 133 

 μ|σ
2
, φ, xn  N[(x

T

n R
−1

n  en)/(e
T

n R
−1

n  en), σ
2
/(e

T

n R
−1

n  en)] (8) 134 

 σ
2
|φ, xn  Inv-gamma{(n−1)/2, [e

T

n R
−1

n  en x
T

n R
−1

n  xn − (x
T

n R
−1

n  en)
2
]/(2 e

T

n R
−1

n  en)} (9) 135 

 π(φxn)  |Rn|
 −1/2

 [e
T

n R
−1

n  en x
T

n R
−1

n  xn − (x
T

n R
−1

n  en)
2
]

 −(n−1)/2
 (e

T

n R
−1

n  en)
n/2 − 1

 (10) 136 

As real world problems often impose upper or lower bounds on the variables xt, we assume 137 

that the distribution of xn is two-sided truncated by bounds a and b, i.e., 138 
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 f(xn|θ)  exp[(−1/2σ
2
) (xn − μ en)

Τ
 R

−1

n  (xn − μ en)] I[a,b]n(x1, …, xn) (11) 139 

where I denotes the indicator function, so that I[a,b]n(x1, …, xn) = 1 if xn  [a,b]
n
 and 0 140 

otherwise.  141 

We assume that the truncation set of μ is [a,b], a,b  R{−,}. The following Gibbs 142 

sampler is used to obtain a posterior sample from θ = (μ, σ
2
, φ) (see Appendix 2). 143 

 π(μ|σ
2
, φ, xn)  exp{−[μ− (x

T

n R
−1

n  en)/(e
T

n R
−1

n  en)]
2
/(2σ

2
/e

T

n R
−1

n  en)} I[a,b](μ) (12) 144 

 σ
2
|μ, φ, xn  Inv-gamma{n/2, (xn − μ en)

T
 R

−1

n  (xn − μ en)/2} (13) 145 

 π(φ μ, σ
2
, xn)  |Rn|

 −1/2
 exp[− (xn − μ en)

T
 R

−1

n  (xn − μ en)/2σ
2
] (14) 146 

4 Posterior predictive distributions 147 

 As we stated in the Introduction, we seek to make an inference about the future evolution 148 

of a process given observations of its past. To this end, in this section we derive the posterior 149 

predictive distributions of xn+1,n+m |xn for the cases of the white noise, the AR(1) and the HKp,  150 

where xn+1,n+m := (xn+1,…,xn+m)
T
. 151 

4.1 White noise 152 

We assume that xt, t = 1, 2, … is white noise, with f(xt|μ,σ
2
) = (2πσ

2
)
−1/2

 exp[−(xt−μ)
2
/(2σ

2
)]. A 153 

non-informative prior distribution for θ = (μ,σ
2
) is π(θ)  1/σ

2
. The posterior distributions of 154 

the parameters are given by (Gelman et al. 2004, p.75-77) 155 

 μ|xn  tn−1(x
_

n, s
2

n /(n − 1)) (15) 156 

 σ
2
|xn  Inv-gamma((n − 1)/2,n s

2

n / 2) (16) 157 

Notice that (15) and (16) are derived from (8),(9),(10) for Rn = In (the former after integrating 158 
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out σ
2
). The posterior predictive distribution is 159 

 xt|xn  tn−1(x
_

n,((n + 1)/(n − 1))s
2

n), t = n+1, n+2, … (17) 160 

where xn+1, xn+2,… are mutually independent, 161 

 x
_

n := 
i = 1

n

 xi/n (18) 162 

 s
2

n := 
i = 1

n

 (xi−x
_

n)
2
/n (19) 163 

are the maximum likelihood estimates of μ and σ
2
 respectively and tv(μ,σ

2
) is the Student’s 164 

distribution with v degrees of freedom. 165 

4.2 AR(1) and HKp 166 

When there is dependence among the elements of xn+m, the posterior predictive distribution of 167 

xn+1,n+m given θ and xn is (Eaton 1983, p.116,117) 168 

 f(xn+1,n+m|θ,xn) = (2πσ
2
)
–m/2 

Rmn
–1/2

 exp[(−1/2σ
2
) (xn+1,n+m − μmn)

T
 R

−1

mn (xn+1,n+m − μmn)] (20) 169 

where μmn and Rmn are given by: 170 

 μmn = μem + R[(n+1):(n+m)] [1:n] R
−1

 n  (xn − μen) (21) 171 

 Rmn = R[(n+1):(n+m)] [(n+1):(n+m)] − R
T

 [1:n] [(n+1):(n+m)] R
−1

 n  R[1:n] [(n+1):(n+m)] (22) 172 

where R[k:l] [m:n] is the submatrix of R which contains the elements rij, k  i  l, m  j  n, 173 

whereas the notation R[1:n] [1:n] with identical subscripts [1:n] can be simplified to Rn as 174 

defined above. The elements of the correlation matrices Rn and Rm+n are obtained from (2) for 175 

the case of the AR(1) and from (5) for the case of HKp. In the implementation of the AR(1) 176 

model we assume that all three parameters μ, σ, φ1 are unknown. For the HKp we examine 177 
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two cases: (a) all three parameters μ, σ, H, are unknown, and (b) μ, σ, are unknown but H is 178 

considered to be known and equal to its maximum likelihood estimate (Tyralis and 179 

Koutsoyiannis 2011). 180 

 In the case that all three parameters of the AR(1) or HKp are unknown, we obtain a 181 

simulated sample of θ from (8),(9),(10) and use this sample to simulate μmn and Rmn from 182 

(21) and (22) and generate a sample of xn+1,n+m from (20). In the case where H is considered as 183 

known,  we obtain a simulated sample of θ = (μ, σ
2
) from (8),(9) and use this sample to 184 

simulate μmn and Rmn from (21) and (22) and generate a sample of xn+1,n+m from (20). 185 

4.3 Asymptotic behaviour of AR(1) and HKp 186 

In most applications, it is useful to know the ultimate confidence regions as prediction 187 

horizon tends to infinity. This is expressed by the distribution of xn+m+1,n+m+l := 188 

(xn+m+1,…,xn+m+l) as m → , conditional on xn. For given θ this distribution is: 189 

f(xn+m+1,n+m+l|θ,xn) = (2πσ
2
)
–l/2

Rln
–1/2

exp[(−1/2σ
2
)(xn+m+1,n+m+l − μln)

T
R

−1

ln(xn+m+1,n+m+l − μln)](23) 190 

where μln and Rln are given by: 191 

 μln = μel + R[(n+m+1):(n+m+l)] [1:n] R
−1

 n  (xn − μen) (24) 192 

 Rln = R[(n+m+1):(n+m+l)] [(n+m+1):( n+m+l)] − R
T

 [1:n] [(n+m+1):(n+m+l)] R
−1

 n  R[1:n] [(n+m+1):(n+m+l)] (25) 193 

We observe that, as m → , R[1:n] [(n+m+1):(n+m+l)] and R[(n+m+1):(n+m+l)] [1:n] become zero matrices 194 

and R[(n+m+1):(n+m+l)] [(n+m+1):( n+m+l)] = Rl. This implies that: 195 

 μln = μel (26) 196 

 Rln = Rl (27) 197 

where Rl is again obtained from (2) for the case of the AR(1) and from (5) for the case of 198 

HKp. 199 

 Accordingly, the application can proceed as follows. We obtain a simulated sample of θ 200 
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from (8),(9),(10) and use this sample to simulate μln and Rln from (26) and (27) and generate 201 

a sample of xn+m+1,n+m+l from (23) for a large m. 202 

4.4 Truncated white noise, AR(1) and HKp 203 

To examine real world problems which often impose upper or lower bounds on the variables 204 

xt, we assume that the distribution of xn is two-sided truncated, and is given by (11). We 205 

obtain a posterior sample of θ using the Gibbs sampler defined by (12), (13), (14). When φ is 206 

known, we obtain a posterior sample of (μ,σ
2
) using the Gibbs sampler defined by (12) and 207 

(13). Then xm|θ follows a truncated normal multivariate distribution and according to Horrace 208 

(2005) the conditional multivariate distributions of xn+1,n+m|θ,xn are again truncated normal. 209 

As a result (20) still holds after slight modifications and (21), (22) are valid. The posterior 210 

predictive distribution of xn+1,n+m|θ,xn is then a multivariate truncated normal distribution: 211 

 f(xn+1,n+m|θ,xn)  exp[(−1/2σ
2
) (xn+1,n+m − μmn)

T
 R

−1

mn (xn+1,n+m − μmn)] I[a,b]m(xn+1,n+m) (28) 212 

Now for the case of white noise, (15), (16) and (17) are not valid. But from (21), (22) and 213 

for ρ0 = 1 and ρk = 0, k = 1, 2, …, we obtain that μmn = μem and Rmn = Rm. 214 

When looking for the asymptotic behaviour of the process, (23) still holds after slight 215 

modifications, according to Horrace (2005). As a result, the distribution of xn+m+1,n+m+l|θ,xn is 216 

truncated multivariate normal, while (26) and (27) remain valid: 217 

 f(xn+m+1,n+m+l|θ,xn)   218 

   exp[(−1/2σ
2
)(xn+m+1,n+m+l − μln)

T
R

−1

ln(xn+m+1,n+m+l − μln)] I[a,b]l(xn+m+1,n+m+l) (29) 219 

4.5 Asymptotic convergence of MCMC 220 

To simulate from (10) we use a random walk Metropolis-Hastings algorithm with a normal 221 

instrumental (or proposal) distribution (Robert and Casella 2004, p.271). We implement the 222 

algorithm using the function MCMCmetrop1R of the R package ‘MCMCpack’ (Martin et al., 223 
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2011). The variable ‘burnin’ in this package is given the value 0, whereas the other variables 224 

keep their default values. 225 

 There are a lot of methods to decide whether convergence can be assumed to hold for the 226 

generated sample (see Gamerman and Lopes 2006, p.157-169; Robert and Casella 2004, 227 

p.272-276). We use the methods of Heidelberger and Welch (1983) and Raftery and Lewis 228 

(1992). These methods are described by Smith (2007), whose notation we use here. We use 229 

the R package ‘coda’ (Plummer et al. 2011) to implement these methods. We assume that we 230 

have obtained a sample ψ1, ψ2,... of a scalar variable φ using the MCMC algorithm. 231 

 The diagnostic of Heidelberger's method provides an estimate of the number of samples 232 

that should be discarded as a burn-in sequence and a formal test for non-convergence. The 233 

null hypothesis of convergence to a stationary chain is based on Brownian bridge theory and 234 

uses the Cramer-von-Mises test statistic 
0

1

 Bn(t)
2
dt, where 235 

 Bn(t) = (
 nt
T  –  nt  ψ

_
 )/ nS(0) (30) 236 

 Tk =
j = 1

k

 ψj, k = 1, 2,… and T0 = 0 (31) 237 

where  x  denotes the floor of x (the greatest integer not greater than x) and S(0) is the 238 

spectral density evaluated at frequency zero. In calculating the test statistic, the spectral 239 

density is estimated from the second half of the original chain. If the null hypothesis is 240 

rejected, then the first 0.1n of the samples are discarded and the test is reapplied to the 241 

resulting chain. This process is repeated until the test is either non-significant or 50% of the 242 

samples have been discarded, at which point the chain is declared to be non-stationary.  For 243 

more details see Smith (2007). 244 

 The methods of Raftery and Lewis are designed to estimate the number of MCMC samples 245 
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needed when quantiles are the posterior summaries of interest. Their diagnostic is applicable 246 

for the univariate analysis of a single parameter and chain. For instance, let us consider the 247 

estimation of the following posterior probability of a model parameter θ: 248 

 P(f(θ) < a  x) = q (32) 249 

where x denotes the observed data. Raftery and Lewis sought to determine the number of 250 

MCMC samples to generate and the number of samples to discard in order to estimate q to 251 

within ±r with probability s. In practice, users specify the values of q, r and s to be used in 252 

applying the diagnostic (For more details see Smith, 2007). 253 

To simulate from (14) we use an accept-reject algorithm (Robert and Casella 2004, p.51-254 

53) with a uniform instrumental density. Simulation from (12) and (13) is trivial. We assess 255 

the convergence of the chain simulated from (12), (13), (14) using the method of Gelman and 256 

Rubin (1992; see also Gelman 1996; Gamerman and Lopes 2006, p.166-168). An indicator of 257 

convergence is formed by the estimator of a potential scale reduction (PSR) that is always 258 

larger than 1. Convergence can be evaluated by the proximity of PSR to 1. Gelman (1996) 259 

suggested accepting convergence when the value of PSR is below 1.2. 260 

5 Case studies 261 

In this section we apply the methodology developed in the previous sections to five historical 262 

datasets; three of them obtained from the Boeoticos Kephisos River basin, one from Berlin 263 

and one from Vienna. The choice of these datasets was dictated by the fact that they have 264 

been also studied in other works with similar objectives, i.e. Koutsoyiannis et al. (2007) and 265 

Koutsoyiannis (2011), so that the interested reader can make some comparisons. We present 266 

the results of the application of the methodology to the aforementioned datasets. 267 

5.1 Historical datasets 268 

The first case study is performed on an important catchment in Greece, which is part of the 269 
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water supply system of Athens and has a history, as regards hydraulic infrastructure and 270 

management that extends backward at least 3500 years. This is the closed (i.e. without outlet 271 

to the sea) basin of the Boeoticos Kephisos River (Figure 1), with an area of 1955.6 km
2
, 272 

mostly formed over a karstic subsurface. Owing to its importance for irrigation and water 273 

supply, data availability for the catchment extends for about 100 years (the longest dataset in 274 

Greece) and modelling attempts with good performance have already been carried out on the 275 

hydrosystem (Rozos et al. 2004). 276 

 The long-term dataset for the basin extends from 1908 to 2003 and comprises a flow 277 

record at the river outlet at the Karditsa station (C1), rainfall observations in the raingage 278 

Aliartos (C2) and a temperature record at the same station (C3); the station locations are 279 

shown in Figure 1. Further details on the construction of these datasets are given by 280 

Koutsoyiannis et al. (2007). The relatively long records have already made it possible to 281 

identify the scaling behaviour of rainfall and runoff in this basin (Koutsoyiannis 2003), and 282 

make the catchment ideal for a case study of uncertainty assessment. 283 

 The two other datasets which we use are the mean annual temperature record of 284 

Berlin/Templehof and Vienna, two of the longest series of instrumental meteorological 285 

observations. For further details on the Berlin mean annual temperature dataset see 286 

Koutsoyiannis et al. (2007) and for the Vienna mean annual temperature dataset see 287 

Koutsoyiannis (2011). We examine two cases. In the first case we assume that the update of 288 

the prior information is done (C4, C5), using the whole dataset. In the second case the update 289 

is done excluding the last 90 years of the datasets (C6, C7). 290 

5.2 Application of the method 291 

We classified the data into three classes, the first containing the data from the Boeoticos 292 

Kephisos River basin (C1-C3), the second containing the data from Berlin and Vienna (C4, 293 

C6) and the third containing again the data from Berlin and Vienna (C5, C7) but excluding 294 
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the last 90 years. In the third case the posterior results were compared to the actual 90 last 295 

years. 296 

 First we calculated the maximum likelihood estimates of the parameters for all the 297 

examined cases (WN, AR(1), HKp). The results are given in Tables 1a and 1b. Truncated 298 

models were used for C1 and C2 datasets due to the relatively high estimated σ which 299 

otherwise would result in negative values. Instead, when we examined the temperature 300 

datasets (C3-C7), simulated values near the absolute zero never appeared, indicating a good 301 

behaviour of the non-truncated model. 302 

The procedure for the temperature datasets is described below. We used (15) and (16) to 303 

generate a posterior sample from μ and σ
2
 for the WN case. To simulate from (10) for the φ1 304 

and H posterior distribution of the AR(1) and HK cases correspondingly, we used a random 305 

walk Metropolis-Hastings algorithm. We simulated a single chain with 3 000 000 MCMC 306 

samples. The Metropolis acceptance rates are given in Table 2. To decide whether 307 

convergence has been achieved, we used the Heidelberger and Welch method (1983). We 308 

tested four cases, the first case containing all the 3 000 000 samples, the second containing the 309 

last 2 000 000 samples and so forth. The results are presented in Tables 3a and 3b, from 310 

where we conclude that stationary chain hypothesis holds in every case. We also used the 311 

methods of Raftery and Lewis (1992), to estimate the number of MCMC samples needed 312 

when quantiles are the posterior summaries of interest. The minimum number of samples and 313 

the burn-in period for the simulation is given in Tables 4a and 4b, where q = 0.025, 0.500, 314 

0.975 are the quantiles to be estimated, r = 0.005 is the desired margin of error of the estimate 315 

and s = 0.95 is the probability of obtaining an estimate in the interval (q−r, q+r). We decided 316 

to use the last 2 000 000 samples of the chains, to obtain the histograms of the posterior 317 

distributions of the parameters φ1 and H. The simulation of μ, σ
2
 from (8) and (9) is then 318 

trivial. Summarized results for the parameters of the AR(1) and HK cases respectively are 319 
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shown in Tables 5a and 5b. 320 

 From the simulated samples we obtained the posterior probability plots of μ, σ, Η, φ1 for 321 

the AR(1) and HK cases (Figures 2 and 3). The last 100 000 simulated samples of the 322 

parameters, described in the previous paragraph were used to obtain samples from the 323 

required posterior predictive probabilities. The samples from the posterior predictive 324 

probability of xt|xn, t = n+1, n+2,..., n+90 were used to obtain samples for the variable of 325 

interest x
(30)

t  given by (33). 326 

 x
(30)

t  := (1/30)( 
l = t – 29

n

 xl+ 
l = n + 1

t

 xl), t =n+1, …, n+29 and x
(30)

t  :=(1/30) 
l = t − 29

t

 xl, t=n+30, n+31, …(33) 327 

We examined the cases of WN, AR(1), asymptotic behaviour of AR(1), HK where H is 328 

considered to be known and has the value of the maximum likelihood estimate, HK when H is 329 

not known, and its asymptotic behaviour. Figures 4, 5a, 5b show the 0.025, 0.500 and 0.975 330 

quantiles of the posterior predictive distributions of x
(30)

t |xn, t = n+1, n+2,..., n+90. 331 

The procedure for C1 and C2 is described below. We simulated from (12), (13) and (14) to 332 

obtain a posterior sample from μ, σ
2
 and φ for all cases. We simulated 10 chains with each one 333 

having 300 000 MCMC samples. To decide whether convergence has been achieved, we used 334 

the Gelman and Rubin (1992) rule. In all cases PSR ≈ 1 which shows that the chains 335 

converged to the target distribution. We decided to use the last 200 000 samples of each 336 

chain, to obtain the histograms of the posterior distributions of the parameters φ1 and H. 337 

Summarized results for the parameters of the AR(1) and HK cases respectively are shown in 338 

Table 5a. 339 

 From the simulated samples we obtained the posterior probability plots of μ, σ, Η, φ1 for 340 

the AR(1) and HK cases (Figure 2a, 2b). The last 10 000 simulated samples of the parameters 341 

of each chain, described in the previous paragraph are used to obtain samples from the 342 

required posterior predictive probabilities. The samples from the posterior predictive 343 
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probability of xt|xn, t = n+1, n+2,..., n+90 are used to obtain samples for the variable of 344 

interest x
(30)

t  given by (33). We examined the cases of WN, AR(1), asymptotic behaviour of 345 

AR(1), HK where H is considered to be known and has the value of the maximum likelihood 346 

estimate, HK with unknown H and its asymptotic behaviour. Figure 4 shows the 0.025, 0.500 347 

and 0.975 quantiles of the posterior predictive distributions of x
(30)

t |xn, t = n+1, n+2,..., n+90. 348 

5.3 Results 349 

A first important result of the proposed framework is that it provides good estimates of the 350 

model parameters without introducing any assumptions (i.e., using non-informative priors).  351 

While common statistical methods give point estimates of parameters, the Bayesian 352 

framework provides also interval estimates based on their posterior distributions. The 353 

estimated values of μ are given in Table 6. It turns out that irrespective of the method used 354 

(MLE or posterior medians) they are almost equal. When examining temperatures, HKp 355 

resulted in the largest μ̂ and AR(1) in the second largest. In C4 and C6, μ̂ was larger than in 356 

C5 and C7 respectively. From the density diagrams of the posterior distributions (Figures 2-3) 357 

it seems that the posterior distribution of μ is wider when HKp is used. The posterior 358 

distribution of σ is also wider on the right (see the values of the 0.975 quantiles in Tables 359 

5a,5b) for the HKp. However the estimated values of σ are almost equal for the three used 360 

models (Tables 1a and 1b). The estimated φ1 and H are given in Tables 1a and 1b. Their 361 

estimated values for C5 are considerably higher compared to C7, but their posterior 362 

distributions are narrower (Table 5b), probably because of the bigger sample size in the 363 

former case. Their posterior distributions are also narrower for C4 compared to C6. 364 

The second result of the framework is the predictive distribution of the future evolution of 365 

the process of interest. The posterior predictive 0.95-confidence regions for the 30-year 366 

moving averages are given in Figures 4, 5a and 5b. For C1 the confidence region is not 367 

symmetric with respect to the estimated mean, owing to the lower truncation bound alongside 368 



17 

 

1
7
 

with the relatively big σ̂. In contrast, there is a symmetry for C2 owing to the relatively small 369 

σ̂, which justifies our decision to use models without truncation in those cases where σ̂ is even 370 

smaller (compared to mean). For all cases, the widest confidence regions correspond to the 371 

HKp (due to the existence of persistence), followed by the AR(1), while the narrowest 372 

confidence regions appear for the WN. Of course the confidence regions for unknown H are 373 

wider than in the case where H was considered to be known and equal to its maximum 374 

likelihood estimate. In C5 and C7 the HKp seems to be the best model, because it captures 375 

better than the others the observed values of the climate variable for the last 90 years based on 376 

the observed values of the previous years. In C7 it seems that the HKp did not capture the 377 

increase of temperature in last decades. But when we examine the full dataset (C5), the 378 

behaviour in last 90 years does not appear extraordinary. For the asymptotic values in the 379 

HKp, the 0.95-confidence region ranges at intervals of the order of 150 mm (C1), 220 mm 380 

(C2), 1.6°C (C3), 1.9°C (C4), 1.4°C (C5) for the 30-year moving average. The corresponding 381 

values for the case of the WN of the order of 50 mm (C1), 75 mm (C2), 0.5°C (C3), 0.6°C 382 

(C4), 0.6°C (C5) are considerably smaller compared to the case of the HKp. 383 

6 Summary 384 

We developed a Bayesian statistical methodology to make hydroclimatic prognosis in terms 385 

of estimating future confidence regions on the basis of a stationary normal stochastic process. 386 

We applied this methodology to five cases, namely the runoff (C1), the rainfall (C2) and the 387 

temperature (C3) at Boeoticos Kephisos river basin in Greece, as well as the temperature at 388 

Berlin (C4, C6) and the temperature at Vienna (C5, C7). The Bayesian statistical model 389 

consisted of a stationary normal process (or truncated stationary normal process for the runoff 390 

and rainfall cases) with a non-informative prior distribution. Three kinds of stationary normal 391 

processes were examined, namely WN, AR(1) and HKp. We derived the posterior 392 
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distributions of the parameters of the models, the posterior predictive distributions of the 393 

variables of the process and the posterior predictive distribution of the 30-year moving 394 

average which was the climatic variable of interest. The methodology can also be applied to 395 

other structures of the ACF. 396 

 A first important conclusion is that for all the examined cases and for all the examined 397 

processes their estimated means are almost equal as expected. However the posterior 398 

distributions of the means are wider when using the HKp, due to the persistence of the 399 

process, and even wider when all parameters of the process are assumed to be unknown. This 400 

results in wider confidence regions for future climatic variables of the processes. Moreover 401 

the confidence regions of truncated future variables are asymmetric. This asymmetry depends 402 

on the variance of the examined process. However the posterior distributions of the means of 403 

all processes were less asymmetric. 404 

 Another important conclusion is that the use of short-range dependence stochastic 405 

processes is not suitable to model geophysical processes, because they underestimate 406 

uncertainty. However stationary persistent stochastic processes are suitable to achieve this 407 

purpose. In the examined cases they performed well and were able to explain the fluctuations 408 

of the process. 409 

 One may claim that, when climate is to be predicted, an assumption of stationarity is not an 410 

appropriate one as currently several climate models project a changing future climate. 411 

Nonetheless, an assessment of future climate variability and uncertainty based on the 412 

stationarity hypothesis is a necessary step in establishing a stochastic method, whose 413 

generalization at a second step would enable incorporating nonstationary components. In 414 

addition, without knowing the variability under stationary conditions, it would not be possible 415 

to quantify the credibility of climate models and even their usefulness. Work on the 416 

generalization of the methodology to incorporate deterministic predictions by climate models 417 
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is under way and its results will be reported in due course. 418 

Appendix 1: Standard probability distributions 419 

For easy reference, the details of the distribution functions used in this paper are summarized 420 

in Table 7. 421 

 422 

Table 7. Distributions used in the Bayesian framework 423 

Distribution Notation Parameters Density function 

Normal x  N(μ,σ2) location μ 

scale σ > 0 
fΝ(xμ,σ2) = (2πσ2)−1/2 exp[(−1/2σ2) (x − μ)2] 

Truncated normal x  TN(μ,σ2,a,b) location μ 

scale σ > 0 

a minimum value 

b maximum value 

fΤΝ(xμ,σ2,a,b) = [fN((b − μ)/σ) − fΝ ((a − μ)/σ)]−1(1/σ) fΝ ((x − μ)/σ) 

x  [a,b], fΝ(x) := fΝ(x0,12) 

Multivariate normal x  N(μ,Σ) 

(implicit dimension n) 

location μ 

symmetric, pos. definite 

n x n variance matrix Σ 

fΜΝ(xμ,Σ) = (2π)−n/2 |Σ| −1/2 exp[(−1/2) (x − μ)Τ Σ−1 (x − μ)] 

Inverse-gamma x  Inv-gamma(α,β) shape α > 0 

scale β > 0 
fIG(xα,β) = βα [Γ(α)]−1 x−(α+1) exp(−β/x), x > 0 

Student-t x  tn(μ,σ2) degrees of freedom n 

location μ 

scale σ > 0 

Not needed in the manuscript 

Appendix 2: Mathematical proofs 424 

In Appendix 2 the proofs of (8),(9),(10),(12),(13),(14) are given. It is easily shown that 425 

 (xn − μ en)
T
 R

−1

n  (xn − μ en) = e
T

n R
−1

n  en μ
2
 − 2 x

T

n R
−1

n  en μ + x
T

n R
−1

n  xn (34) 426 

 After completing the squares the above expression becomes: 427 

e
T

n R
−1

n  en μ
2
 − 2 x

T

n R
−1

n  en μ + x
T

n R
−1

n  xn = e
T

n R
−1

n  en [μ − (x
T

n R
−1

n  en) / (e
T

n R
−1

n  en)]
2
 + [e

T

n R
−1

n  en 428 

x
T

n R
−1

n  xn − (x
T

n R
−1

n  en)
2
] / (e

T

n R
−1

n  en) (35) 429 

 From (6) and (7) we obtain the following: 430 

 π(θ) f(xn|θ)  σ
−(n+2)

 Rn 
−1/2

 exp[(−1/2σ
2
) (xn − μ en)

T
 R

−1

n  (xn − μ en)] (36) 431 

From (34),(35) and (36) we obtain (8). After integration of (36) we obtain (37) which proves 432 

(9): 433 
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 π(σ
2
|φ,xn)  (σ

2
)
−(n+1)/2

 Rn 
−1/2

 exp[(−1/2σ
2
)[e

T

nR
−1

n enx
T

nR
−1

n xn−(x
T

nR
−1

n en)
2
]/(e

T

nR
−1

n en)] (37) 434 

After integration of (36) we obtain (38), which proves (10) after integration: 435 

 π(φ|xn)  σ
−(n+2)

 Rn 
−1/2

 exp[(−1/2σ
2
) (xn − μ en)

T
 R

−1

n  (xn − μ en)] dμ dσ
2
 (38) 436 

See also Falconer and Fernadez (2007) for some results. 437 

 Now for the case where truncation is applied we obtain from (7) and (11): 438 

 π(θ) f(xn|θ)  σ
−(n+2)

 Rn 
−1/2

 exp[(−1/2σ
2
) (xn − μ en)

T
 R

−1

n  (xn − μ en)] I[a,b]n(x1, …, xn) (39) 439 

Conditional on μ  [a,b], a,b  R{−,}the derivation of (12), (13) and (14) from (39) is 440 

then trivial. 441 
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 522 

Table 1a. Summarized results and maximum likelihood estimates for the cases of WN, AR(1) 523 

and HKp at Boeoticos Kephisos River basin. 524 

 Boeoticos basin 

 Runoff (mm) Rainfall (mm) Temperature (°C) 

Start year 1908 1908 1898 

End year 2003 2003 2003 

Size, n 96 96 106 

WN    

μ
^
 197.63 658.36 16.96 

σ
^
 81.25 155.82 0.69 

AR(1)    

μ
^
 197.65 658.22 16.96 

σ
^
 81.22 155.81 0.69 

φ1
^

 
0.34 0.10 0.31 

HK    

μ
^
 195.11 657.38 16.97 

σ
^
 80.47 155.00 0.70 

H
^

 0.71 0.60 0.71 

Table 1b. Summarized results and maximum likelihood estimates for the cases of WN, AR(1) 525 

and HKp at Berlin and Vienna. 526 

 Berlin Vienna Berlin Vienna 

 Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C) 

Start year 1756 1775 1756 1775 

End year 2009 2009 1919 1919 

Size, n 254 235 164 145 

WN     

μ
^
 9.17 9.58 9.04 9.36 

σ
^
 0.91 0.87 0.92 0.84 

AR(1)     

μ
^
 9.18 9.58 9.05 9.36 

σ
^
 0.92 0.87 0.92 0.84 

φ1
^

 
0.37 0.30 0.30 0.11 

HK     

μ
^
 9.27 9.64 9.10 9.37 

σ
^
 0.91 0.86 0.92 0.84 

H
^

 0.73 0.70 0.70 0.59 

Table 2. Metropolis acceptance rate for the MCMC simulation of φ1 and H, respectively, at 527 

Boeoticos Kephisos River basin. 528 

 
Aliartos temperature Berlin temperature 

(1756-2009) 

Vienna temperature 

(1775-2009) 

Berlin temperature 

(1756-1919) 

Vienna temperature 

(1775-1919) 

φ1 0.70731 0.70603 0.70612 0.70649 0.70654 

H 0.706037 0.70551 0.70599 0.70601 0.70638 
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Table 3a. Heidelberger and Welch test, for significance level 0.05, at Boeoticos Kephisos 529 

River basin.  530 

 Aliartos temperature 

Parameter φ1    H    

Stationarity test passed passed passed passed passed passed passed passed 

Start iteration 1 1 1 1 1 1 1 1 

p-value 0.427 0.745 0.46 0242 0.869 0.567 0.338 0.618 

Table 3b. Heidelberger and Welch test, for significance level 0.05, at Berlin and Vienna.  531 

 Berlin temperature (1756-2009) Vienna temperature (1775-2009) 

Data start 1 1000000 2000000 2900000 1 1000000 2000000 2900000 

Parameter φ1    φ1    

Stationarity test passed passed passed passed passed passed passed passed 

Start iteration 1 1 1 1 1 1 1 1 

p-value 0.943 0.738 0.342 0.448 0.928 0.696 0.366 0.0761 

Parameter H    H    

Stationarity test passed passed passed passed passed passed passed passed 

Start iteration 1 1 1 1 1 1 1 1 

p-value 0.837 0.466 0.279 0.691 0.789 0.501 0.296 0.84 

         

 Berlin temperature (1756-1919) Vienna temperature (1775-1919) 

Parameter φ1    φ1    

Stationarity test passed passed passed passed passed passed passed passed 

Start iteration 1 1 1 1 1 1 1 1 

p-value 0.94 0.589 0.376 0.425 0.777 0.55 0.308 0.592 

Parameter H    H    

Stationarity test passed passed passed passed passed passed passed passed 

Start iteration 1 1 1 1 1 1 1 1 

p-value 0.833 0.606 0.339 0.923 0.885 0.83 0.373 0.323 

Table 4a. Raftery and Lewis test for the case of Boeoticos Kephisos River basin. 532 

  Aliartos temperature 

 q Burn-

in 

Total Lower 

bound 

Dependence 

factor 

 Burn-

in 

Total Lower 

bound 

Dependence 

factor 

φ1 0.025 21 31794 3746 8.49 Η 18 35784 4899 7.3 

0.500 24 356752 38415 9.29  24 464024 50239 9.24 

0.975 28 32298 3746 8.62  28 42161 4899 8.61 

Note: q is the quantile to be estimated,  r = 0.005 is the desired margin of error of the 533 

estimate, s = 0.95 the probability of obtaining an estimate in the interval (q−r, q+r), eps = 534 

0.001 is the precision required for estimating time to convergence. 535 
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Table 4b. Raftery and Lewis test for the cases of Berlin and Vienna. 536 

  Berlin temperature (1756-2009) Vienna temperature (1775-2009) 

 q Burn-in Total Lower bound Dependence factor Burn-in Total Lower bound Dependence factor 

φ1 0.025 21 31416 3746 8.39 21 31612 3746 8.44 

0.500 24 356512 38415 9.28 21 322441 38415 8.39 

0.975 21 31731 3746 8.47 21 31745 3746 8.47 

Η 0.025 18 27288 3746 7.28 18 35670 4899 7.28 

0.500 21 322777 38415 8.4 21 422975 50239 8.42 

0.975 28 32732 3746 8.74 28 42882 4899 8.75 

          

  Berlin temperature (1756-1919) Vienna temperature (1775-1919) 

φ1 0.025 21 31780 3746 8.48 21 31780 3746 8.48 

 0.500 24 356656 38415 9.28 21 323631 38415 8.42 

 0.975 21 32193 3746 8.59 21 32137 3746 8.58 

Η 0.025 18 27330 3746 7.3 18 27072 3746 7.23 

 0.500 21 323330 38415 8.42 21 324177 38415 8.44 

 0.975 18 32991 3746 8.81 27 39690 3746 10.6 

Note: q is the quantile to be estimated,  r = 0.005 is the desired margin of error of the 537 

estimate, s = 0.95 the probability of obtaining an estimate in the interval (q−r, q+r), eps = 538 

0.001 is the precision required for estimating time to convergence. 539 

Table 5a. Summary results for the parameters of the AR(1) and HK cases at Boeoticos 540 

Kephisos River basin. 541 

   Quantiles 

Case Mean Standard 

Deviation 

2.5% 25% 50% 75% 97.5% 

Boeoticos runoff      

AR(1)        

μ 197.7 12.69 172.5 189.4 197.7 205.9 222.8 

σ 83.93 7.41 71.50 78.78 83.23 88.29 100.45 

φ1 0.35 0.10 0.16 0.28 0.35 0.42 0.55 

HK        

μ 194.85 31.30 132 178.1 195 211.6 256.1 

σ 86.51 12.35 71.19 79.15 84.40 91.06 114.22 

H 0.74 0.07 0.62 0.69 0.74 0.78 0.88 

Aliartos rainfall      

AR(1)        

μ 658.18 18.57 621.5 646 658.2 670.4 694.7 

σ 159.9 12.24 138.3 151.3 159.1 167.5 186.2 

φ1 0.11 0.10 −0.09 0.04 0.11 0.18 0.32 

HK        

μ 657.09 31.98 592.5 638.4 657.3 676.1 720.4 

σ 160.7 13.45 137.9 151.4 159.5 168.6 190.3 

H 0.62 0.06 0.51 0.58 0.62 0.66 0.75 

Aliartos temperature      

AR(1)        

μ 16.96 0.10 16.76 16.89 16.96 17.02 17.15 

σ 0.71 0.06 0.61 0.67 0.70 0.74 0.84 

φ1 0.33 0.10 0.14 0.26 0.33 0.39 0.52 

HK        

μ 16.97 0.29 16.44 16.83 16.97 17.11 17.52 

σ 0.75 0.13 0.62 0.68 0.73 0.79 0.99 

H 0.74 0.07 0.61 0.69 0.74 0.79 0.88 
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Table 5b. Summary results for the parameters of the AR(1) and HK cases respectively at 542 

Berlin and Vienna. 543 

   Quantiles 

Case Mean Standard 

Deviation 

2.5% 25% 50% 75% 97.5% 

Berlin temperature (1756-2009)      

AR(1)        

μ 9.18 0.09 9.01 9.12 9.18 9.24 9.35 

σ 0.93 0.05 0.84 0.89 0.92 0.96 1.03 

φ1 0.38 0.06 0.26 0.34 0.38 0.42 0.49 

HK        

μ 9.28 0.25 8.80 9.13 9.27 9.43 9.79 

σ 0.94 0.06 0.83 0.89 0.93 0.97 1.08 

H 0.75 0.03 0.67 0.72 0.75 0.77 0.83 

Vienna temperature (1775-2009)      

AR(1)        

μ 9.58 0.08 9.42 9.53 9.58 9.63 9.74 

σ 0.88 0.05 0.80 0.85 0.88 0.91 0.98 

φ1 0.31 0.06 0.19 0.27 0.31 0.35 0.43 

HK        

μ 9.64 0.19 9.27 9.52 9.64 9.76 10.03 

σ 0.88 0.05 0.79 0.84 0.87 0.91 0.99 

H 0.71 0.04 0.64 0.68 0.71 0.73 0.79 

Berlin temperature (1756-1919)      

AR(1)        

μ 9.05 0.10 8.85 8.98 9.05 9.12 9.25 

σ 0.94 0.06 0.83 0.89 0.93 0.97 1.06 

φ1 0.31 0.08 0.16 0.26 0.31 0.37 0.46 

HK        

μ 9.11 0.26 8.60 8.95 9.10 9.26 9.64 

σ 0.96 0.08 0.83 0.90 0.95 1.00 1.14 

H 0.72 0.05 0.63 0.69 0.72 0.76 0.83 

Vienna temperature (1775-1919)      

AR(1)        

μ 9.36 0.08 9.20 9.31 9.36 9.42 9.52 

σ 0.86 0.05 0.76 0.82 0.85 0.89 0.97 

φ1 0.12 0.08 −0.04 0.06 0.12 0.18 0.29 

HK        

μ 9.37 0.13 9.10 9.29 9.37 9.45 9.63 

σ 0.86 0.06 0.76 0.82 0.86 0.89 0.98 

H 0.61 0.05 0.51 0.57 0.61 0.64 0.72 

 544 

Table 6. Estimates of μ using various methods. 545 

 Maximum likelihood estimate 50% quantile 

Examined case WN AR(1) HKp AR(1) HK 

Boeoticos runoff 197.63 197.65 195.11 197.7 195 

Aliartos rainfall 658.36 658.22 657.38 658.2 657.3 

Aliartos temperature 16.96 16.96 16.97 16.96 16.97 

Berlin temperature (1756-2009) 9.17 9.18 9.27 9.18 9.28 

Vienna temperature (1775-2009) 9.58 9.58 9.64 9.58 9.64 

Berlin temperature (1756-1919) 9.04 9.05 9.10 9.05 9.11 

Vienna temperature (1775-1919) 9.36 9.36 9.37 9.36 9.37 

 546 
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Karditsa

Aliartos

 547 

Figure 1. The Boeoticos Kephisos River basin. 548 

 549 
Figure 2a. Posterior probability distributions of μ, σ, Η, φ1 for the cases of AR(1) and HK 550 

processes, for the runoff of Boeoticos Kephisos. 551 
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 552 
Figure 2b. Posterior probability distributions of μ, σ, Η, φ1 for the cases of AR(1) and HK 553 

processes, for the rainfall at Aliartos. 554 

 555 
Figure 2c. Posterior probability distributions of μ, σ, Η, φ1 for the cases of AR(1) and HK 556 

processes, for the temperature at Aliartos. 557 
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 558 
Figure 3a. Posterior probability distributions of μ, σ, Η, φ1 for the cases of AR(1) and HK 559 

processes, for the temperature at Berlin/Tempelhof. In this case the parameters are estimated 560 

from years 1756-2009. 561 

 562 
Figure 3b. Posterior probability distributions of μ, σ, Η, φ1 for the cases of AR(1) and HK 563 

processes, for the temperature at Vienna. In this case the parameters are estimated from years 564 

1775-2009. 565 
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 566 
 567 

Figure 3c. Posterior probability distributions of μ, σ, Η, φ1 for the cases of AR(1) and HK 568 

processes, for the temperature at Berlin/Tempelhof. In this case the parameters are estimated 569 

from years 1756-1919. 570 

 571 
Figure 3d. Posterior probability distributions of μ, σ, Η, φ1 for the cases of AR(1) and HK 572 

processes, for the temperature at Vienna. In this case the parameters are estimated from years 573 

1775-1919. 574 

 575 

 576 

 577 

 578 

 579 
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 580 

 581 

 582 
Figure 4. Historical climate and confidence regions of future climate (for 1 − a = 0.95 and 583 

climatic time scale of 30 years) for (upper) runoff of Boeoticos Kephisos, (middle) rainfall at 584 

Aliartos, and (lower) temperature at Aliartos. 585 
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 586 

 587 
Figure 5a. Historical climate and confidence regions of future climate (for 1 − a = 0.95 and 588 

climatic time scale of 30 years) for (upper) temperature at Berlin, and (lower) temperature at 589 

Vienna. 590 
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 591 

 592 
Figure 5b. Historical climate and confidence regions of climate (for 1 − a = 0.95 and climatic 593 

time scale of 30 years) for (upper) temperature at Berlin/Tempelhof after the year 1920 and 594 

(lower) temperature at Vienna after the year 1920. 595 
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