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Premature death, premeditated murder or misinformation? 



The consensus on the death of stationarity 
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• 1130 papers say: 
“Stationarity is dead” 

• 2 papers query: 
“Is stationarity dead?” 

• Not any paper says:  
“Stationarity is not dead” 

• Only 1 paper says  
“Stationarity is alive” 



Is the world nonstationary? 
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• 547 papers speak about 
“Nonstationarity world” 

• 451 papers speak about: 
“Nonstationary climate” 

• 9 papers speak about  
“Nonstationary catchment” 

• 13 700 papers speak about 
“Nonstationary data” 



Plato’s metaphysical theory 
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• The real world: A world of ideal 
or perfect forms (archetypes, 
αρχέτυπα) 

• It is unchanging and unseen  

• It can only be perceived by 
reason (νοούμενα, nooumena) 

• The physical world: an imperfect  
image of the world of archetypes 

• Physical objects and events are 
“shadows” of their ideal forms and are 
subject to change 

• They can be perceived by senses 
(φαινόμενα, phenomena) 
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An upside-down turn of Plato’s theory 
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• Abstract representations or 
models of the real world are 
imperfect  

• But can be useful to describe 
the real world 

• The physical world is the real world  

• It is perfect  

• It is perpetually changing  



Merging lessons from Plato and Heraclitus 
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It is important to make the distinctions:  

Physical world ≠ models,  

Phenomena ≠ nooumena 

It is important to recognize that in the physical world:  

Πάντα ῥεῖ (Panta rhei, Everything flows)  
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Where do stationarity and nonstationarity 
belong? 

Abstract representation 

Model  
(Stochastic process) 

Ensemble (Gibbs’s idea): mental 
copies of natural system  

Time series  
(simulated) 

Real world 

Physical 
system 

Unique 
evolution 

Time series 
(observed) 

Many different models 
can be constructed 

Mental copies depend 
on model constructed 

Both stationarity and 
nonstationarity apply here 

(not in the real world) 

Perpetual 
change 

The observed time 
series is unique; the 
simulated can be 
arbitrarily many 

An important consequence: 

Stationarity is immortal 
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Back to Plato: Seeking invariant properties 
within change—simple systems 
 Newton’s first law: Position changes but velocity is constant (in 

absence of an external force) 

 u = dx/dt = constant  
Huge departure from the Aristotelian view that bodies tend to 
rest 

 Newton’s second law: In presence of a constant force, the velocity 
changes but the acceleration is constant  

 a = du/dt = F/m = constant 

 For the weight W of a body a = g = W/m = constant 

 Newton’s law of gravitation: The weight W (the attractive force 
exerted by a mass M) is not constant but inversely proportional to 
the square of distance; thus other constants emerge, i.e., 

 a r 2 = – G M = constant 



𝑑𝜃

𝑑𝑡
r 2 = constant (angular momentum per unit mass; θ = angle) 
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The stationarity concept: Seeking invariant 
properties in complex systems  
 Complex natural systems are impossible to describe in full detail and to 

predict their future evolution with precision 

 The great scientific achievement is the invention of macroscopic 
descriptions that need not model the details  

 Essentially this is done using probability theory (laws of large numbers, 
central limit theorem, principle of maximum entropy) 
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Example 1: 
50 terms of a synthetic 
time series (to be 
discussed later) 

 Related concepts 
are: stochastic 
processes, statistical 
parameters, 
stationarity, 
ergodicity 
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What is stationarity and nonstationarity? 

 Definitions copied from Papoulis (1991). 

 Note 1: Definition of stationarity applies to a stochastic process 

 Note 2: Processes that are not stationary are called nonstationary; some 
of their statistical properties are deterministic functions of time 
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Does this example suggest stationarity or 
nonstationarity? 

Mean m (red line) of time series (blue line) is: 

m = 1.8 for i < 70  

m = 3.5 for i ≥ 70  

Example 1 
extended up to 
time 100 

See details of this example in Koutsoyiannis (2011) 
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Reformulation of question: 
Does the red line reflect a deterministic function? 

 If the red line is a deterministic function of time:  
→ nonstationarity 

 If the red line is a random function (realization of a stationary 
stochastic process) → stationarity 

Example 1 
extended up to 
time 100 
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Answer of the last question: the red line is a 
realization of a stochastic process 

 The time series was constructed by superposition of: 

 A stochastic process with values mj ~ N(2, 0.5) each lasting a period τj 
exponentially distributed with E [τj] = 50 (red line) 

 White noise N(0, 0.2) 

 Nothing in the model is nonstationary 

 The process of our example is stationary 

Example 1 
extended up to 
time 1000 
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Unexplained variance 
(differences between 
blue and red line): 0.22 = 
0.04  
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The big difference 
of nonstationarity 
and stationarity  
(1) 

A mental copy 
generated by a 
nonstationary 
model (assuming 
the red line is a 
deterministic 
function) 

The initial time 
series 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900 1000

Time, i

Time series

Local average



D. Koutsoyiannis, In defence of stationarity 16 

The big difference 
of nonstationarity 
and stationarity 
(2) 

Unexplained variance 
(the “undecomposed” 
time series): 0.38 (~10 
times greater) 
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A mental copy 
generated by a 
stationary model 
(assuming the red 
line is a stationary 
stochastic process) 

The initial time 
series 
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Caution in using the term “nonstationarity” 
 Stationary is not synonymous to static 

 Nonstationary is not synonymous to changing 

 In a nonstationary process, the change is described by a deterministic 
function 

 A deterministic description should be constructed: 

 by deduction (the Aristotelian apodeixis),  

 not by induction (the Aristotelian epagoge),  
which makes direct use use of the data 

 To claim nonstationarity, we must : 

1. Establish a causative relationship 

2. Construct a quantitative model describing the  
change as a deterministic function of time 

3. Ensure applicability of the deterministic model  
in future time 

 Nonstationarity reduces uncertainty!!! (it explains part of variability) 

 Unjustified/inappropriate claim of nonstationarity results in 
underestimation of variability, uncertainty and risk!!! 



A note on aleatory and epistemic uncertainty 

 We often read that epistemic uncertainty is inconsistent with 
stationarity or even not describable in probabilistic terms 

 The separation of uncertainty into aleatory and epistemic is 
subjective (arbitrary) and unnecessary (misleading) 

 In macroscopic descriptions/models there are no demons of 
randomness producing aleatory uncertainty: all uncertainty 
is epistemic, yet not subject to elimination (see clarifications 
in Koutsoyiannis 2010) 

 From a probabilistic point of view classification of 
uncertainty into aleatory or epistemic is indifferent; the obey 
the same probabilistic laws 
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Important note: A random variable is not a variable infected by 
the virus of randomness; it is a variable that is not precisely 
known or cannot be precisely predicted 



Justified use of nonstationary descriptions: 
Models for the past   

 Changes in catchments happen all the time, including in 
quantifiable characteristics of catchments and conceptual 
parameters of models  

 If we know the evolution of these characteristics and 
parameters (e.g. we have information about how the percent 
of urban area changed in time; see poster paper by 
Efstratiadis et al. tomorrow), then we build a nonstationary 
model 

 Information → Reduced uncertainty → Nonstationarity 

 If we do not have this quantitative information, then:  

 We treat catchment characteristics and parameters as 
random variables 

 We build stationary models entailing larger uncertainty 
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Justified uses of nonstationary descriptions: 
Models for the future 
 It is important to distinguish explanation of observed phenomena 

in the past from modelling that is made for the future 

 Except for trivial cases the future is not easy to predict in 
deterministic terms  

 If changes in the recent past are foreseen to endure in the future 
(e.g. urbanization, hydraulic infrastructures), then the model of the 
future should be adapted to the most recent past 

 This may imply a stationary model of the future that is different 
from that of the distant past (prior to the change) 

 It may also require “stationarizing” of the past observations, i.e. 
adapting them to represent the future conditions 

 In the case of planned and controllable future changes (e.g. 
catchment modification by hydraulic infrastructures, water 
abstractions), which indeed allow prediction in deterministic 
terms, nonstationary models are justified 
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Conditional nonstationarity arising from 
stationarity models 
 If the prediction 

horizon is long, 
then in 
modelling we 
will use the 
global average 
and the global 
variance  
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 If the prediction  
horizon is short,  
then we will use  
the local average at the present time and a reduced variance  

 This is not called nonstationarity; it is dependence in time 

 When there is dependence (i.e. always) observing the present 
state and conditioning on it looks like local nonstationarity 
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Concluding remarks 

 Πάντα ῥεῖ (or: Change is Nature’s style)  

 Change occurs at all time scales 

 Change is not nonstationarity 

 Stationarity and nonstationarity apply to models, not to the 
real world, and are defined within stochastics 

 Nonstationarity should not be confused with dependence  

 Nonstationary descriptions are justified only if the future can 
be predicted in deterministic terms and are associated with 
reduction of uncertainty 

 In absence of credible predictions of the future, admitting 
stationarity (and larger uncertainty) is the way to go 

 

 Long live stationarity!!! 
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