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1. Abstract

Water resource problems are characterized by the presence of multiple
sources of uncertainty. The implementation of Monte Carlo
simulation techniques within powerful optimization methods are
required, in order to handle such uncertainties. We investigate a
modified version of the evolutionary annealing-simplex method in
global optimization applications, where uncertainty is explicitly
considered in terms of stochastic objective functions. We evaluate the
algorithm against several benchmark functions, as well as in the
stochastic calibration of a lumped rainfall-runoff model (Zygos). In
this context, we investigate different calibration criteria and different
sources of uncertainty, in order to assess not only the robustness of the
derived parameters but also the predictive capacity of the models.

2. Optimization under uncertainty

Uncertainty appears in most of real-world
optimization problems, including hydrological.
Typical sources are: (a) data uncertainty, due to
observation and processing errors; (b) model
uncertainty, due to simplified representation of

significantly complex systems; (c) parameter
uncertainty, due to statistically inconsistent
fitting criteria and inefficient calibrations.

Fig. 1: Response surface
of noisy sphere function
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The optimization problem under uncertainty can be formulated as:

min f(x) = min F(x, w),a<x<b
where x is a vector of n control variables, f(x) is the fitness function, w is
a noise component and F(x, w) a random estimate at x. In the case of
simulation models, where the system performance f is inferred either
from historical or synthetic data samples, w represents the sampling
uncertainty. Uncertainty makes the response surface of the function
even rougher, by randomly creating local minima and maxima (Fig. 1).

4. Mathematical applications

We tested six benchmark functions of
ranging complexity in deterministic and
stochastic setting, assuming three levels
of Gaussian noise, N(0.0, 0.75), N(0.0, 1.0) o e
and N(0.0, 1.25). In all cases the global ~ Fig: 4 Number of simplex moves

ng lies in th - . in optimizing the deterministic
minimum lies in the origin (x" = 0). and the noisy sphere function.

For each test function we carried out 100

independent runs of EAS, for n =2 and n = 10 variables, as well as three
population sizes (n+1, 2n+1, 8n+1). The results are summarized in Fig. 3.
As shown in Fig. 4, the presence of uncertainty changes radically the
optimization strategy, by favouring transitions that decrease the size of
the simplex, which provides flexibility in highly non-convex spaces.
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Fig. 3: Box plots with optimization results, derived from 100 runs for each problem.

3. The modified evolutionary annealing-simplex
(EAS) method for stochastic objective functions

EAS is a heuristic global optimization technique coupling the strength

of simulated annealing in rough search spaces with the efficiency of the

downhill simplex method (Nelder & Mead, 1965) in smoother spaces

(Efstratiadis & Koutsoyiannis, 2002). Key features are:

= an adaptive annealing cooling schedule determines the degree of
randomness through the search procedure;

= all transitions are probabilistic, since a stochastic term is added to the
objective function, relative to temperature, thus g(x) = f(x) + u T;

* new points are generated via simplex transformations or mutations;

= all simplex configurations employ quasi-stochastic scale factors;

= multiple expansions and uphill transitions are allowed, in order to
accelerate the search and escape from local minima, respectively.

The original version of EAS was modified to handle uncertain

functions and avoid early convergence to local minima, due to the

dominance of noise. These modifications include:

X
* Dynamic adjustment of shrinkage ?
coefficient, based on T, which Nelder- Ad;lpﬁve
protects from an early degeneration Mead shrinkage
of the simplex (Fig. 2). shrinkage

* Re-evaluation of the current best
point in the population after n
subsequent transformations that
reduce the simplex size; this ensures
that search will be not guided by a
point, in which was assigned an
erroneously low value, due to noise.

= Re-annealing of the system when T
becomes lower than a threshold, to
enhance the search procedure with
sufficient randomness.

The new version of EAS is available in R (itia.ntua.gr/en/softinfo/29).
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Fig. 2: Shrinkage of the simplex
around the current best vertex x;
according to the Nelder-Mead
formula, i.e. x;= 0.5 (x;+ x;) and
the dynamic adjustment formula,
given by x’; =0 x;+ (1 - 9) x,,
where 6=1-0.5 (T - T)), T'is the
current temperature and 7 is the
initial temperature.

5. Stochastic calibration of hydrological models

It is well-known that the parameters of conceptual hydrological models
may vary substantially across different calibration periods. This
questions model transposability in time, which is key requirement for
ensuring a satisfactory predictive capacity (Gharari et al., 2013).

Achaloos Basin

In this context, we propose a stochastic
calibration procedure, in which the fitting
criterion (e.g. Nash-Sutcliffe efficiency, NSE)
is estimated from randomly changing
samples that are determined by means of
(typically short) moving windows across
the full series of the observed responses.
The above strategy was tested in three large- Aakronas Basin
scale river basins of Greece (Acheloos, _

Aliakmon, Boeoticos Kephisos) that exhibit CO
different hydrological behaviour, where we 2 4 .
fitted the conceptual model Zygos against i

the observed runoff. The software supports _ '
various parameterizations, according to the She s
complexity of each basin and the available
data; its full structure uses nine parameters
(http://itia.ntua.gr/en/softinfo/22).

We applied the EAS algorithm to provide
100 independent stochastic calibrations at
each basin, with different moving windows.
As shown in Fig. 5, even when using very
short windows (i.e. from 1 to 5 years), the
NSE values are close to the ones estimated
from the full sample of observed runoff.
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Fig. 5: Box plots of NSE at
the three study basins, for
different moving windows.
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