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Abstract 

The current model for energy production, based on the intense use of fossil fuels, is both 

unsustainable and environmentally harmful and consequently, a shift is needed in the 

direction of integrating the renewable energy sources into the energy balance. However, these 

energy sources are unpredictable and uncontrollable as they strongly depend on time varying 

and uncertain hydrometeorological variables such as wind speed, sunshine duration and solar 

radiation. To study the design and management of renewable energy systems we investigate 

both the properties of marginal distributions and the dependence properties of these natural 

processes, including possible long-term persistence by estimating and analyzing the Hurst 

coefficient. To this aim we use time series of wind speed and sunshine duration retrieved from 

European databases of daily records. We also study  a stochastic simulation framework for 

both wind and solar systems using the software system Castalia, which performs multivariate 

and multi-time-scale stochastic simulation, in order to conduct simultaneous generation of 

synthetic time series of wind speed and sunshine duration, on yearly, monthly and daily scale.  

Keywords: wind speed, sunshine duration, long term-persistence, Hurst coefficient, 

marginal distributions, multivariate stochastic simulation 
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1. Introduction 

The drawbacks of conventional energy sources including their negative environmental 

impacts emphasize the need to integrate renewable energy sources, like wind and solar, into 

the energy balance. However these energy sources, unlike fossil fuels on which the past 

model was based on, are unpredictable, at both short and long run, and uncontrollable as they 

are associated with relevant hydrometeorological processes which are characterized by high 

variability and uncertainty [1]. As a result, the estimation of renewable energy sources 

requires analyzing hydrometeorological data, especially wind speed, sunshine duration and 

solar radiation time series. 

Such hydrometeorological time series are typically modelled as stationary stochastic 

processes. In this case their probability distribution does not change in time. It is thus 

necessary, in order to characterize uncertainty, to assume a theoretical distribution function 

that fits properly the data. Normal distribution is suitable for most hydrometeorological 

processes at an annual or higher time scale due to the Central Limit Theorem. However, 

variables of lower time scales, such as monthly or daily, are characterized by skewness and 

thus, non-normal distributions are more appropriate for their representation. In particular, the 

sunshine duration is represented as a random variable bounded from both below and above, 

and thus a theoretical distribution with these properties should be chosen for its 

representation. 

Various studies have been performed in order to examine theoretical distribution 

functions fitting properly wind speed and relative sunshine duration data. The Weibull and 

Gamma distributions have been found to be appropriate to represent wind speed data while 

the Beta distribution has been assumed to be suitable for the relative sunshine duration. Carta 

et al. [2] and Zhou et al. [3] proposed that both the Weibull and the Gamma distribution are 

suitable for hourly wind speed representation in the Canary Islands and in North Dakota 
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respectively. Garcia et al. [4] and Yilmaz and Celik [5] suggested that the Weibull 

distribution fits satisfactorily hourly wind speed data in Spain and Turkey. Darbandi et al. [6] 

noted that the Gamma distribution fits well the maximum annual wind speed data in Iran. 

Concerning the relative sunshine duration, Sulaiman et al. [7] and Bashahu and Nsabimana 

[8] examined the fit of the Beta distribution to daily data in Malaysia and Africa and 

concluded that it fitted satisfactorily the data in several cases. Chia and Hutchinson [9] 

examined the possibility of fitting the Beta distribution to daily relative cloud duration time 

series in Australia.  

In addition to the marginal distributional properties, the fact that climate is not static 

but exhibits fluctuations at all time scales should also be taken into consideration for the 

effective exploitation of renewable energy sources. In a stochastic framework, these 

fluctuations are quantified through the dependence of the processes in time [10]. While in 

several studies these processes have been regarded as independent identically distributed 

random variables, particularly at coarse time scales such as monthly or annual, other studies 

have verified the presence of dependence, sometimes long-range dependence, which has been 

also termed as long-term persistence (LTP), self-similar behaviour, or the Hurst-Kolmogorov 

dynamics. This long-range dependence expresses the tendency of similar physical events to 

cluster in time and its quantification is expressed through the Hurst coefficient, the 

mathematics of which is discussed later. The Hurst-Kolmogorov dynamics has been identified 

by several researchers in various environmental variables [11]. The British engineer Hurst 

[12] was the first to notice this behaviour while studying Nile’s runoff and, earlier, the 

Russian mathematician Kolmogorov [13] had proposed a mathematical model consistent with 

this behaviour when studying turbulence. Later, this behaviour was also observed in other 

variables such as river runoff [14,15,16,17,18,19,20], temperature [21,22,23,24,25,17,26,27], 
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climatic indices such as North Atlantic oscillation [28] and decadal Pacific oscillation [29] 

and atmospheric pressure fields [30].  

So far, the concept of LTP has been incorporated in the modelling of runoff time 

series applied to reservoir sizing design studies, where it has been found that neglect of LTP 

usually leads to undersizing of the reservoir storage [31-34]. However, the Hurst-Kolmogorov 

behaviour has been found to be omnipresent in the most natural processes [11]. Consequently, 

it will strongly affect the design variables of any engineering project related to the 

exploitation of natural phenomena, like a large scale hybrid renewable energy system 

comprising wind and solar energy [35], as it expresses a general natural variability, 

manifested by the aforementioned fluctuations in multiple time scales [36,10]. Such large 

scale renewable energy projects aim not only at maximizing the profit but also the reliability 

in satisfying energy demand or energy target via storage of the excess energy in each time 

step of the project’s operation, usually by means of pumped storage hydropower facilities.  

Therefore, neglect of this clustering of natural events at the design phase may lead to 

undersizing of the facilities for energy storage or overestimation of the reliability of produced 

energy. 

A prerequisite for the investigation of Hurst-Kolmogorov dynamics is the analysis of 

time series having long time period records so that their fluctuations on multiple time scales 

can be detected. For this reason a sufficient time length (which is generally regarded 100 

years or more and no less than 70-80 years) is required. However, hydrometeorological data 

records, relevant to wind and sun, started in the beginning of the previous century or later and 

as a consequence time series of such a length are not often available. 

 Once the marginal distribution and the dependence structure of the wind speed and 

sunshine duration processes are identified, another relevant issue is to construct a simulation 

model that can simulate such processes for arbitrarily long times, respecting the identified 
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stochastic properties of each process, as well as the cross-correlation between the two 

processes. This issue is not trivial as typical stochastic generators may not be able to generate 

processes with non-normal distributions and with autocorrelations departing from a Markov 

process. 

 This study aims to perform a comprehensive analysis of existing data with sufficient 

length of observation, concerning wind speed and sunshine duration, retrieved from 

measuring stations all over Europe, in order to investigate the properties of their marginal 

distributions and mainly to detect the possible presence of LTP by estimating and analyzing 

the Hurst coefficient values of both processes. 

At the same time, it also aims to construct a general stochastic simulation scheme, able 

to reproduce the statistical characteristics of the natural series including their long term 

variations. By this, the unpredictable fluctuations characterizing the natural resources (wind 

and solar radiation) can be taken into account effectively in the design and management of 

renewable energy systems that comprise both wind and solar systems, and possibly 

hydropower systems with pumped storage, which provide means for energy storage. The 

framework is particularly useful to study the reliability in fulfilling the energy demand or the 

energy production target. This is attempted by using the multivariate stochastic simulation 

system, Castalia, for the simultaneous generation of long synthetic time series, on the concept 

of the steady-state simulation, of both variables, being statistically equivalent to the historical 

ones at all time scales including the large scale, annual and over‐annual, in which the Hurst-

Kolmogorov behaviour dominates.  

2. Description of data 

Wind speed and sunshine duration records used in the analysis were retrieved from measuring 

stations whose data are available online. The criteria for station selection were: 



6 
 

a) A minimum acceptable record length of 70 years so as the Hurst coefficient to be 

estimated with some accuracy. 

b) The existence of metadata related to wind speed data and especially information about 

the measurement height above ground. 

c)  A maximum number of three homogeneous periods, in each of which the 

measurement height above ground is constant (stations with too frequent changes may 

not be reliable). 

However, records of this time length are rare worldwide. In particular, in some 

continents (Asia, Africa) there is lack of data series of this length. Even in Europe and North 

America most of the free access records refer to a period of 50 years or less. Furthermore, 

there is total lack of long solar radiation records. However, this variable can be indirectly 

estimated by sunshine duration [37]. 

After an extensive search, wind speed and sunshine duration records fulfilling these 

criteria were retrieved exclusively from European databases, the KNMI Climate Explorer, the 

European Climate Assessment & Data (ECA&D) and the Deutscher Wetterdienst databases. 

A total number of 20 wind speed records and 21 sunshine duration records were found. In 

addition, wind speed time series from Dublin Airport and Valentia stations were found from 

the website of the Irish Meteorological Service in chart form and were digitized using the 

Engauge software. The data retrieved consist of daily records except for the ones of the Irish 

stations whose records are annual averages. In Tables 1 and 2 stations details are shown. 

As known, wind speed at a certain site increases with height and thus, the analysis of 

wind speed time series requires a single measurement height above ground during the time 

period of operation. However, the collected daily time series do not refer to a single height 

above ground due to changes of the observation height at certain time periods in measuring 

stations. Based on the assumption of process stationarity, this problem was overcome by 
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modifying the data of all the time periods except for the last period of records for each station 

so as to refer to a unified altitude (data homogenization). Specifically the following procedure 

was applied: 

a) The daily time series were grouped to time periods where the measurement height 

above ground is constant.  

b) The average value of each homogeneous period was estimated.  

c)  The daily values of each period were multiplied with the ratio of the last period 

average value to each period average value.  

Thus, all records refer to the last measurement height above ground. Neglect of this 

modification would lead to incorrect analysis, especially Hurst coefficient overestimation, 

because, as exemplified in Figure 1, the annual raw time series at De Bilt station present a 

sudden shift owing to the change of measurement height above ground. It is noted though that 

the procedure followed may result in negative bias for the Hurst coefficient, because the 

assumption that time averages of different periods are equal, which lies behind step (c), is not 

true in general and may result in too stable time series.  

In addition to wind speed gauge data, the potential of using Reanalysis data for further 

investigation of LTP in other sites was also examined. Data were obtained from the 

NCEP/NCAR database in grid mode and their reliability was checked by comparing their 

records with the station-based ones. This was achieved by selecting the same longitude and 

latitude with this of measuring stations. As can be seen in Appendix A, Reanalysis data are 

unreliable as their annual average values are higher than the station-based ones even though 

they refer to the same or a lower altitude and consequently they are not used any further. 
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3. Analysis 

3.1. Properties of marginal distributions 

While wind speed is a non-negative variable not bounded from above, sunshine duration has a 

domain bounded from both below and above and its upper bound varies in different sites. 

Thus, the relative sunshine duration is used instead, which varies in the interval [0,1] as it is 

the ratio of the sunshine duration, n, to the astronomical day length, N. The latter depends on 

the latitude and time of the year.  

In this study, it was verified that both the Weibull and the Gamma distributions are 

suitable for wind speed data (as summarized in the Introduction), mainly using graphical 

depictions like that in Figure 2. Wind speed on daily scale is characterized by positive 

skewness as shown in Figure 2, representing the frequency histogram of the time series at the 

Eelde station. The probability density functions of the Gamma and the Weibull distributions 

are nearly indistinguishable from each other and fit satisfactorily the data. Thus, both 

distribution functions can be regarded as appropriate for the representation of wind speed. 

Considering the fact that the Gamma distribution is used in several software systems 

(including the software Castalia used in this study as described below) for generation of 

synthetic time series, it is useful to also associate the distribution of the relative sunshine 

duration with the Gamma distribution by performing a nonlinear transformation so that the 

transformed variable takes values in the interval [0,+∞). Specifically, denoting the relative 

sunshine duration variable as X, the logarithmic transformation Y= –ln(1 – X)  is defined, 

whose values belong indeed to [0,+∞), the value X = 0 corresponds to Y = 0 and X 

approaching to 1 corresponds to Y approaching to +∞. As shown in Figure 3, the Gamma 

distribution fits satisfactorily the empirical distribution of the transformed variable Y for the 

relative sunshine duration data of the Eelde station. 
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Thus, assuming that Y has Gamma distribution with shape parameter κ and scale 

parameter λ, it is proved (see Appendix B) that the probability density function of the variable 

X is: 

  ( )  (     )   
  

 ( )
[   (     )]    (1) 

The probability density functions of both the theoretical distribution (1) and the Beta 

distribution are fitted to the frequency histogram of the historical time series of the relative 

sunshine duration as shown in Figure 3. These two distributions are almost indistinguishable 

from each other and they fit very well the historical data. 

3.2. Long-term persistence 

3.2.1. The presence of the LTP in wind speed and sunshine duration 

The basic condition for the investigation of LTP is the elimination of seasonality so that the 

Hurst coefficient estimation be reliable and not affected by periodic fluctuations. As a result, 

it is preferable to analyze annual time series. Bakker and Bart [38] analyzed annual 

geostrophic wind speed, deriving from sea level pressure, in Northwestern Europe, and 

identified LTP using the maximum likelihood method for the simultaneous estimation of 

standard deviation and the Hurst coefficient, according to Tyralis and Koutsoyiannis [39]. 

However, in most relevant studies, time series of lower time scales were used, 

especially daily and hourly ones. Haslett and Raftery [40] proposed the existence of long term 

persistence in daily wind speed time series, which were firstly deseasonalized and then 

adjusted to an ARFIMA model. Bouette et al. [41], based on the former study, adjusted a 

GARMA model using the periodogram and Whittle methods and analyzing both seasonality 

and long term persistence. The results of the methods indicated that seasonality is the 

dominant phenomenon in these time series. 
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Furthermore, several researchers tried to investigate LTP using the so-called 

Detrended Fluctuation Analysis [42]. Feng et al. [43] and Kavasseri and Nagarajan [44] used 

Multi-Fractal Detrended Fluctuation Analysis to analyze daily and hourly wind speed time 

series in China and North Dakota respectively, having previously deseasonalized the data. 

Feng et al. concluded that no specific behaviour can be determined while Kavasseri and 

Nagarajan noted that wind speed time series are multi-fractal processes, as suggested by the 

range of their multi-fractal spectrum. Kocak [45] noted, after analyzing hourly wind speed 

time series in Turkey using Detrended Fluctuation Analysis, that the scaling region is divided 

into two parts. In the first one, time series fluctuate randomly while in the second one they are 

characterized by long term correlations.       

Additionally, Rehman and Siddiqi [46] estimated the Hurst coefficient in daily wind 

speed time series in Saudi Arabia using the wavelet method, but no exact result was extracted 

as these processes presented either persistence or anti-persistence. Finally Benth and Saltyre 

[47] claimed that daily wind speed data in Lithuania can be modelled using autoregression 

models of third and fourth order which indicates short term memory. 

As far as sunshine duration is concerned, Liu et al. [48] noted intense self-similar 

behaviour in annual time series in China using the original Hurst’s range analysis which led to 

remarkably high Hurst coefficient values. Tsekov [49] also used the Detrended Fluctuation 

Analysis in order to examine the existence of LTP in daily sunshine duration time series in 

Bulgaria and concluded that data do not indicate long term correlations. Finally, Harrouni and 

Guessoum [50] investigated LTP in both daily and annual global solar radiation time series in 

Panama and USA using the fractal dimension method and suggested that this process is 

characterized by anti-persistence. 
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3.2.2. Stochastic representation of LTP and estimation of the Hurst coefficient 

Let Xi denote a hydrometeorological process with i=1,2,…., denoting discrete time (years). 

Furthermore, let its mean be μ :=E[Xi], its autocovariance γj :=cov[Xi,Xi+j], its autocorrelation 

ρj :=corr[Χi.Χi+j] = γj/γ0 (j=0,±1, ±2,…) and its standard deviation σ := γ0
1/2

. Let k be a positive 

integer representing time scale of aggregation for the Xi process. The mean aggregated 

stochastic process on that time scale is: 

( )

( 1) 1

1
:   

ik
k

i i

l i k

X X
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   (2) 

Hydrometeorological processes characterized by LTP can be represented by a 

stochastic process known as simple scaling stochastic (SSS) process or a Hurst-Kolmogorov 

(HK) process [17,51]. By definition of the HK process, the variance of the mean aggregated 

stochastic process is a power law of k with exponent 2H –2, where H is the Hurst coefficient: 

( ) 2 2

0Var[ ] ,k H

iX k   (3) 

 

The value of H varies from 0 to 1. A value in the interval (0,0.5) indicates anti-

persistence, which denotes that an increase in the values of time series is followed by a 

subsequent decrease, a behaviour that is not normally observed in nature. A value 0.5 

corresponds to a purely random process known as white noise. A value in the interval (0.5,1) 

indicates persistence and implies positive autocorrelation. This behaviour is visualized as 

multiyear fluctuations and apparent trends, as can be seen in Figure 4, which depicts a 

sunshine duration time series characterized by a high value of Hurst coefficient (H=0.9) and 

for comparison, a time series of a white noise with the same mean and standard deviation. 

From equation (3) it is observed that if standard deviation (square root of variance) is 

plotted against time scale on a logarithmic graph, known as the climacogram, a straight line is 

formed with slope H – 1. Wind speed and sunshine duration data support this behaviour, as an 

approximation, as can be seen in the climacograms of Figure 5. Based on this scaling property 
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Koutsoyiannis [17] proposed a method for the simultaneous estimation of standard deviation 

σ and the Hurst coefficient H using the least square error of sample standard deviation 

estimates (LSSD). The method was later examined by Tyralis and Koutsoyiannis [39] and 

Sheng et al. [52] and was found to perform very satisfactorily. In general, the method can be 

perceived as a fitting of a straight line in a climacogram like that of Figure 5 using linear 

regression of the mean aggregated standard deviation σ
(k)

 on time scale k. The Hurst 

coefficient is estimated from the slope of the climacogram using sample standard deviation 

estimates on all time scales. The only difference in the LSDD method is that it explicitly 

considers the bias of the standard statistical estimator of standard deviation on all time scales. 

3.2.3. Results of the LSSD method 

The results derived from the LSSD method are summarized in Figure 6 in terms of frequency 

histograms of the Hurst coefficient values of the historical time series. Concerning both 

variables, markedly high Hurst coefficient values are estimated and it is remarkable that no 

value lies in the interval (0,0.5) i.e., no time series is characterized by anti-persistence. The 

majority of the values of both variables lie in the interval (0.6,0.9) and it is notable that nearly 

15% of the values lie in the interval (0.9,1) which indicates very strong self-similar behaviour. 

In general, the results of the method imply that both wind speed and sunshine duration time 

series are characterized by Hurst-Kolmogorov behaviour.  

3.2.4. Representative value of Hurst coefficient  

In order to assume a representative value of the Hurst coefficient for the historical time series 

of both variables, the same number of synthetic time series is generated, each one of the same 

mean value, standard deviation and record length with the respective historical one, but to 

define the autocorrelation function a unique value of the Hurst coefficient is used, the same 

for all time series. For this generation the multiple time-scale fluctuation approach [16] is 
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used. This method implies that a weighted sum of three exponential functions of time lag can 

approximate satisfactorily the autocorrelation function of a simple scaling process on the 

basic time scale. The generated process is the sum of three independent AR(1) processes. 

In the end of the generation process the sample value of the Hurst coefficient is 

estimated for all synthetic time series using the LSSD method. The frequency histogram of 

these H values is then compared to the histogram of the historical H values. By trying 

consecutive initial theoretical values of H until a convergence between the histogram of 

historical and synthetic timeseries is achieved, it is concluded that the value H = 0.84 can be 

regarded as representative for both variables as can be seen in Figure 6. 

4. Modelling  

4.1. The software system Castalia  

Castalia is a software system that was initially introduced for the simulation of 

hydrometeorological processes, like rainfall, runoff and evaporation. It performs multivariate 

stochastic simulation on annual, monthly and daily scale using the three-parameter Gamma 

distribution function in order to generate synthetic time series. The program preserves the 

essential marginal statistics, specifically mean value, standard deviation and skewness, as well 

as the joint second order statistics, namely auto- and cross-correlation, on these three time 

scales. To estimate these statistics, historical daily time series are used as input data and 

subsequently, historical monthly and annual time series are created by aggregating daily data 

inside the system. Furthermore, Castalia reproduces the LTP considering it as a special 

instance of a parametrically defined generalized autocovariance function [53]. 

The generation of the synthetic time series is performed in three time-aggregation 

levels. Initially, a theoretical autocovariance function is defined for each annual variable, 

which can include LTP. The dependence structure is reproduced through the Symmetric 

Moving Average (SMA) model, whose parameters are estimated using the annual marginal 
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and joint second order statistics and the autocovariance function [53]. The SMA model is 

used for the generation of the synthetic annual time series. Following this, auxiliary monthly 

time series are generated using the Periodic Autoregressive (PAR(1)) model, whose 

parameters are estimated using the monthly marginal and joint second order statistics. A 

disaggregation process (called a coupling transformation) modifies the auxiliary monthly time 

series in order to become consistent with the annual ones [54]. The arising deviations in the 

statistics that must be preserved, which may be caused by the disaggregation process, are 

overcome through a repetitive Monte-Carlo process that accompanies the disaggregation 

process. By this, a statistically independent sequence of monthly variables is found which 

approximates the annual value. The synthetic daily time series are then generated in a similar 

manner by disaggregation of monthly values into daily. 

4.2. Preservation of probability of zero values 

Sunshine duration can take on a zero value with nonzero probability and thus the preservation 

of the historical probability of zero values is important. This is similar to rainfall, which is an 

intermittent process and the Castalia program, which was originally developed to simulate 

rainfall, can handle the intermittent behaviour on the daily time scale [55]. This can be 

achieved by appropriate choice of the parameters that are used for this aim into the system 

after the generation of daily auxiliary time series. These include: 

a) The parameters λ1 and λ2 that are used to adjust the probabilities k1 and k2 of a Markov 

chain model. These probabilities are adjusted by the parameters λ1 and λ2, respectively, 

of the historical probability of zero values of each variable. Specifically, k1 expresses 

the probability of a zero value occurring in the current time step if there is also a zero 

value in the previous time step while k2 expresses the probability of a zero value 

occurring in the current time step if there is a non-zero value in the previous time step. 
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b) A parameter k3 which expresses the probability of the values of all variables in the 

current time step being zero if one of them is zero. 

c) The parameters of a round-off rule and specifically a threshold l0 and a percentage π0, 

where the rule implies that a percentage π0 of values below this threshold are 

converted into zero values. 

Note that all three procedures described above generate zero values and thus they all 

contribute to the final frequency of zero values. 

4.3. Results 

4.3.1. First application – Untransformed variables 

In the first application of the program 1000-year synthetic time series are generated in 8 

measuring stations having both wind speed and sunshine duration records (16 variables in 

total). The length of the simulation period (1000 years) was determined as explained in 

Appendix C. Although the domain of the sunshine duration is bounded from above and below 

and thus, the Gamma distribution is not appropriate to represent this variable, data are initially 

imported into the system without any transformation to test the program performance in a fast 

application without pre-processing of data. For this reason possible deviations concerning the 

skewness of the sunshine duration variable are expected. 

The model parameters are calculated automatically by the program except for those 

controlling the preservation of the probability of zero values, which are determined by a trial 

and error procedure. For the latter, the following values were finally adopted π0 = 0.9 for 

l0=0.4; λ1 = 0.3, λ2 = 0.1; k3= 0.  

Application results are presented in Figures 7-10 for one of the stations (Eelde). It is 

observed that the statistical characteristics, the Hurst coefficient as well as the cross-

correlation coefficient of both processes are preserved on annual and monthly scale. On daily 

scale wind speed statistics and cross-correlation coefficient are also satisfactorily preserved. 
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However, the skewness of the sunshine duration variable is overestimated. This divergence is 

caused, as expected, by the fact that the domain of the sunshine duration variable differs from 

the domain of the Gamma distribution, used for the generation of the time series. As a 

consequence, several synthetic sunshine duration values, being higher than the upper bound of 

the variable domain, are generated due to the fact that the domain of Gamma distribution is 

the [0,+∞). These values are obviously unrealistic and lead to skewness overestimation. 

4.3.2. Second application – transformed sunshine duration 

In order to overcome the overestimation of the skewness which was encountered in the first 

application, a second application is performed using the previous wind speed data and the 

proposed logarithmic transformation of sunshine duration data in each of the 8 stations. After 

the generation of the synthetic time series, the Y daily time series are manually subject to the 

reverse transformation so as the synthetic daily time series of the sunshine duration to arise. 

Then these time series are compared with the historical ones. 

The model parameters controlling the preservation of the probability of zero values are 

also determined by a trial and error procedure. For the latter, the following values were finally 

adopted π0 = 0.9 for l0 =0; λ1 = 0.3, λ2 = 0.1; k3 = 0.  

Both the Hurst coefficient and the marginal statistical characteristics of the wind speed 

process are preserved satisfactorily on all time scales as in the first application. Application 

results for the sunshine duration are presented in Figures 11-14 for the same station as before 

(Eelde). The Hurst coefficient and the statistical characteristics on annual and monthly scale 

are also generally preserved. The only deviations observed are related to monthly skewness, 

which is underestimated, and monthly autocorrelation, which is overestimated. However, 

these features are not of great importance as the design focuses on the daily scale. It is 

remarkable that the cross-correlation of the variables is preserved even though the logarithmic 

transformation is used in the simulation. On daily time scale, skewness is now satisfactorily 
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reproduced and the only existing deviation refers to autocorrelation which is slightly 

overestimated. The cross-correlation of the variables, which is high as the time scale of the 

design is daily, as well as the probability of zero values are also preserved. The deviations 

mentioned above on monthly and daily time scales are caused due to the fact that the iterative 

Monte Carlo process and the adjusting-disaggregation procedures are performed inside the 

program, so they are applied to the logarithmic transformation of the variable instead of the 

actual one. 

5. Conclusions 

Simulation of wind speed and sunshine duration gains interest because these processes are 

associated with renewable energy production. Knowing the marginal distribution as well as 

the stochastic structure of these processes, including LTP, is important as the solar and wind 

energy strongly depend on them.  

The results derived from the analysis using data from Europe indicate that the Gamma 

and the Weibull distributions are suitable for representing wind speed. For the relative 

sunshine duration a theoretical distribution function, which is a transformation of the Gamma 

distribution, is derived. This is practically indistinguishable from the Beta distribution and 

they both fit satisfactorily to relative sunshine duration data. 

Both processes are found to be characterized by strong self-similar behaviour with 

values of the Hurst coefficient, H, (estimated using the LSSD method) markedly higher than 

the value H = 0.5, corresponding to white noise, for the majority of the time series. After 

implementing a Monte Carlo approach, a unique value H = 0.84 is found to be representative 

for both variables. However, it should be noted that, due to the small amount of samples, 

further investigation is required. Also, as the observations have started in their majority, all 

over the world, after 1940, the record lengths are not quite sufficient to support a safe 

estimation of the Hurst coefficient. 
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The detailed empirical analysis of the stochastic properties allows stochastic 

simulation of the two processes which is particularly useful for the rational design of a 

renewable energy system comprising wind and solar energy. Specifically, synthetic time 

series of wind speed and sunshine duration data are simultaneously generated on annual, 

monthly and daily scale using the software system Castalia.  

Castalia performs this stochastic simulation satisfactorily as the marginal and joint 

second order statistics as well as the LTP of the historical data retrieved from measuring 

stations with common observations are well reproduced. An overestimation of the skewness 

of daily sunshine duration which arises when raw data are used is attributed to the bounded 

domain of the variable and it can be overcome by using the proposed logarithmic 

transformation. Some deviations which arise in the monthly skewness and autocorrelation 

when the transformed variable is used are not of great importance due to the fact that the time 

scale of the design is daily while the overestimation of the daily autocorrelation is slight. 

Thus, considering that Castalia was initially developed for the simulation of rainfall, runoff 

and evaporation, it is also confirmed that this program can conduct stochastic simulations of a 

wide spectrum of hydrometeorological variables on three important time scales, annual, 

monthly and daily. 
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Appendix A: Assessment of Reanalysis data 

Figure A.1 compares station-based and reanalysis data for the location of the De Bild station 

at an annual basis. It can be seen that the two series do not correlate well. In addition the 

reanalysis data series has annual average values higher than the station-based ones even 

though the former refer to lower altitude than the latter. 

 

Figure A.1: Mean annual wind speed time series from station-based (20m above ground) and 

Reanalysis data (10m above ground) at De Bilt station. 

Appendix B: Proof of equation (1) 

Let X, Y, where 0< X <1 be random variables so that: 

         ( )  (B.1) 

       (   )      ( ) (B.2) 

The event {Χ ≤ x} is identical to the event {Υ ≤  –1
(x)}. As a result, the distribution functions 

of Υ and Χ are linked through the equation: 

  ( )                        ( )      ( 
  ( )) 

(B.3) 

The variables are continuous, and the function g is differentiable with derivative equal to: 

  ( )   (     )       
(B.4) 

Τhe probability density function of the variable X is a function of the density of the variable Y  

[56]:  
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As the variable Y for the continuous part of the distribution (Y > 0) is represented by the 

Gamma distribution function with shape parameter κ > 0 and scale parameter λ > 0, the 

probability density function of the variable X is: 

   ( )   
 

   

  

 ( )
[   (   )]       [   (   )] 

(B.6) 

or 

   ( )= 
 

   

  

 ( )
[   (   )]   (   )  (B.7) 

and finally 

   ( ) =(   )     

 ( )
[   (   )]    (B.8) 

Appendix C: Determination of the length of simulation period 

In the estimation, through stochastic simulation, of a probability p, from a sample with 

relatively large size N of independent identically distributed random variables, it is known 

that the length of the confidence interval of the estimate is [31,57]:  

2 z(1+γ)/2 [p (1– p) /  N]
0.5

 = 2 c p (1) 

where γ is the confidence coefficient, za is the a-quantile of the standard normal distribution, 

and c is the acceptable relative error. Solving for N, the minimum sample size Nmin that is 

required for estimating the probability p is:  

Nmin= (z
2

(1 + γ) / 2 / c
2
) (1/p – 1) (2) 

For a daily step of design, a confidence coefficient γ = 0.95, an acceptable relative error c = 

10% and probability of failure p = 1‰, the required sample size (number of days of 

simulation) needed to obtain an accurate estimate of p on a daily basis is Nmin ≈ 384000 

(days), which is rounded off to a simulation period of 1000 years. It is noted though that, as 

the hydrometeorological processes are not independent in time, the required period should be 

greater than 1000 years.   
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Tables 

Station Country Longitude(ο) Latitude (ο) 

Measurement height 

above ground (m) 

Altitude 

(m) Source 

Period of 

record 

Vlissingen Netherlands 3.60 E 51.45N 15 8 ΚΝΜΙ 1909-2011 

Regenburg Germany 12.10 E 49.00 N 15 377 ECA&D 1946-2011 

Potsdam Germany 13.10 E 52.40 N 37.7 81 ECA&D 1911-2011 

Maastricht Netherlands 5.78 E 50.92 N 10 114 ΚΝΜΙ 1906-2011 

Karlsruhe Germany 8.40 E 49.00 N 47.4 113 ECA&D 1945-2011 

Hohenpeissenberg Germany 11.01 E 47.48 N 15 980 ECA&D 1939-2011 

Hof Germany 11.90 E 50.30 N 12 624 ECA&D 1946-2011 

Giessen 
Wettenberg Germany 8.38 E 50.36 N 10 203 ECA&D 1939-2011 

Eelde Netherlands 6.58 E 53.13 N 10 3.5 ΚΝΜΙ 1904-2011 

Dresden Germany 13.80 E 51.10 N 10 220 ΚΝΜΙ 1941-2011 

De Kooy Netherlands 4.78 E 52.92 N 10 0.5 ΚΝΜΙ 1908-2011 

De Bilt Netherlands 5.18 E 52.10 N 20 1.9 ΚΝΜΙ 1904-2011 

Tarifa Spain 5.35 W 36.00 N 10 32 ECA&D 1945-2012 

Bjoernoeya Norway 19.0 E 74.50 N 10 16 ECA&D 1920-2011 

San Sebastian Spain 2.54 W 43.18 N 10 251 ECA&D 1933-2011 

Dublin Airport Ireland 6.30 W 53.42 N - 85 
MET 
EIREANN 1944-2010 

Valentia Ireland 10.24 W 51.94 N - 9 

MET 

EIREANN 1940-2010 

Fokstua Norway 9.17 E 62.07 N 10 975 ECA&D 1923-2011 

Karasjok Norway 25.52 E 69.47 N 10 133 ECA&D 1939-2011 

Sula Norway 8.45 E 63.85 N 10 6 ECA&D 1938-2011 

Table 1: Stations with wind speed measurements 
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Station Country Longitude(ο) Latitude (ο) Altitude (m) Source Period of record 

Alicante Spain 0.60 W 38.30 N 82 ECA&D 1939-2011 

Vlissingen Netherlands 3.60 E 51.45N 8 KNMI 1907-2011 

Lindenberg Germany 14.10 E 52.20 N 112 ECA&D 1907-2011 

Potsdam Germany 13.10 E 52.40 N 81 ECA&D 1901-2011 

Maastricht Netherlands 5.78 E 50.92 N 114 KNMI 1906-2011 

Karlsruhe Germany 8.40 E 49.00 N 113 ECA&D 1936-2011 

Hohenpeissenberg Germany 11.01 E 47.48 N 980 ECA&D 1937-2011 

Zugspitze Germany 10.98 E 47.42 N 2960 ECA&D 1901-2011 

Zuerichfluntern Switzerland 8.57 E 47.38 N 556 ECA&D 1901-2011 

Eelde Netherlands 6.58 E 53.13 N 3.5 KNMI 1906-2011 

Geneve Switzerland 6.10 E 46.20 N 238 ECA&D 1901-2011 

De Kooy Netherlands 4.78 E 52.92 N 0.5 KNMI 1909-2011 

De Bilt Netherlands 5.18 E 52.10 N 1.9 KNMI 1901-2011 

Granada Spain 3.59 W 37.17 N 680 ECA&D 1942-2010 

Aachen Germany 6.10 E 50.80 N 264  ECA&D 1935-2010 

Basel Switzerland 7.61 E 47.56 N 265 ECA&D 1901-2011 

Lugano Switzerland 8.97 E 46.00 N 276 ECA&D 1901-2011 

Madrid Spain 3.65 W 40.40 N 687 ECA&D 1920-2011 

Saentis Switzerland 9.40 E 47.20 N 2500 ECA&D 1901-2011 

Valencia Spain 0.38 W 39.48 N 35 ECA&D 1938-2011 

Zagreb Croatia 16.03 E 45.82 N 123 ECA&D 1900-2011 

Table 2: Stations with sunshine duration measurements 
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Figures 

 

Figure 1: Annual averages of wind speed time series at De Bilt station before and after 

modification; three different periods were identified: 1904-1960 (37 m above ground), 1961-

1992 (10 m above ground), 1993-2011 (20 m above ground). 

 

 

 

Figure 2: Frequency histograms and probability density functions of historical daily wind 

speed time series at Eelde station in June. 
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Figure 3: Frequency histograms and probability density functions of the logarithmic 

transformation of historical daily sunshine duration time series (above) and the relative 

sunshine duration time series (below) at Eelde station in June.  
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Figure 4: Annual and 10-year averages of sunshine duration time series at Vlissingen station 

(above) and a series of white noise with the same mean and standard deviation (below). 

 
Figure 5: Climacograms of wind speed (Valentia, G.Wettenberg) and sunshine duration 

(Vlissingen, De Bilt) time series. 
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Figure 6: Comparison of Hurst coefficient frequency histograms of historical and synthetic, 

with a theoretical H = 0.84, time series for wind speed (above) and sunshine duration (below). 

 

Figure 7: Comparison of Hurst coefficient of historical and synthetic time series at the Eelde 

station; first application. 
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Figure 8: Comparison of annual, monthly and daily standard deviations and skewness 

coefficients of historical and synthetic wind speed and sunshine duration time series at the 

Eelde station; first application. 
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Figure 9: Comparison of annual, monthly and daily auto- and cross-correlation coefficient of 

historical and synthetic wind speed time series at the Eelde station; first application. 

 

 Figure 10: Comparison of the probability of zero sunshine duration of the historical and 

synthetic time series at the Eelde station; first application. 
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Figure 11: Comparison of Hurst coefficient of historical and synthetic time series at the Eelde 

station; second application. 

 

 

Figure 12: Comparison of annual, monthly and daily standard deviations and skewness 

coefficients of historical and synthetic sunshine duration time series at the Eelde station; 

second application. 
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Figure 13: Comparison of annual, monthly and daily auto- and cross-correlation coefficient of 

historical and synthetic sunshine duration time series at the Eelde station; second application. 

 

 
Figure 14: Comparison of the probability of zero sunshine duration of the historical and 

synthetic time series at the Eelde station; second application. 
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