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Human dice games are old 
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 All these dice are of the period 580-570 BC from  
Greek archaeological sites: 
 Left, Kerameikos Ancient Cemetery Museum, Athens, photo by author 

 Middle: Bronze die (1.6 cm), Greek National Archaeological Museum, 
www.namuseum.gr/object-month/2011/apr/7515.png 

 Right: Terracotta die (4 cm) from Sounion, Greek National Archaeological 
Museum, http://www.namuseum.gr/object-month/2011/dec/dies_b.png 

 Much older dice (up to 5000 years old) have been found in 
Asia (Iran, India). 
 



Modern Colombian dice  
(art objects by Obando de Pasto)  
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With special thanks to 
Prof. Efraín Antonio 
Dominguez Calle 



Some famous quotations about dice 

D. Koutsoyiannis, Glimpsing God playing dice 4 

Αἰών παῖς ἐστι παίζων πεσσεύων  
Time is a child playing, throwing dice 

(Heraclitus; ca. 540-480 BC; Fragment 52)  

Jedenfalls bin ich überzeugt, daß der nicht würfelt  
I, at any rate, am convinced that He [God] does not throw dice 

(Albert Einstein, in a letter to Max Born in 1926)  

Ἀνερρίφθω κύβος  Iacta alea est  
Let the die be cast The die has been cast 
[Plutarch’s version, in Greek] [Suetonius’s version, in Latin] 

(Julius Caesar, 49 BC, when crossing Rubicon River) 



Physical setting of die motion 
 The die motion is described by the laws of classical (Newtonian) 

mechanics and is determined by: 
 Die characteristics: 

 dimensions (incl. imperfections with respect to cubic shape), 
 density (incl. inhomogeneities). 

 Initial conditions which determine the die motion:  
 position,  
 velocity,  
 angular velocity. 

 External factors which influence the die motion: 
 acceleration due to gravity,  
 viscosity of the air,  
 friction factors of the table, 
 elasticity moduli of the dice and the table. 

 Knowing all these, in principle we should be able to predict the 
motion and outcome solving the deterministic equations of motion. 

 However the die has been the symbol of randomness (paradox?).  
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A die experiment: researchers and apparatus 
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Technical details 
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Color wheel of primary colours hue 
and saturation 
(www.highend.com/support/controllers/doc
uments/html/en/sect-colour_matching.htm) 

 Each side of the die is painted with a different  
colour: blue, magenta, red, yellow and green  
(basic primary colours) and black (highly  
traceable from the video as the box is white).  

 The visualization is done via a camera with  
frame frequency of 120 Hz. The video is  
analyzed to frames and numerical codes are  
assigned to coloured pixels (based on the  
HSL system) and position in the box  
(two Cartesian coordinates).  

 The area of each colour traced by the camera  
is estimated and then non-dimensionalized with the total traced area of 
the die. Pixels not assigned to any colour (due to low camera analysis 
and blurriness) are typically ~30% of the total traced die area. 

 In this way, the orientation of the die in each frame is known (with some 
observation error) through the colours seen looking from above.  

 The audio is transformed to a non-dimensional index from 0 to 1 (with 1 
indicating the highest noise produced in each video) and can be used to 
locate the times in which the die hits the bottom or the sides of the box.  



Experiments made 
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 In total, 123 die throws were performed, 52 with initial angular 
momentum and 71 without. 

 The height from which the die was thrown remained constant for all 
experiments (15 cm).  

 However, the initial orientation of the die varied . 

 The duration of each throw varied from 1 to 9 s. 

A selection of frames from die throws 48 (upper left) and 78 (lower left) and video for 78 (right). 



Representation of die orientation 
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 The evolution of die orientation is most important as it determines the 
outcome. 

 The orientation can be described by three variables representing 
proportions of each colour, as seen from above, each of which varies in 
[−1,1] (see table). 

Value → −1 +1 

Variable ↓ Colour Pips Colour Pips 

x yellow 1 black 6 

y magenta 3 blue 4 

z red 5 green 2 
Example: 
x = −0.25 (yellow) 
y = 0.4 (blue) 
z = −0.35 (red) 



Persistence and change in die orientation 
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 The typical evolution of die orientation 
is far from a random pattern fluctuating 
around the horizontal axis. 

 There is persistence of a particular 
orientation for relatively long times. 

 At times, the dominant orientation 
switches to a new one. 

 These are seem in the figures which 
refer to experiment 78. 



Alternative representation 
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The plot of all experimental points and 
the probability density function show 
that u and v are independent and fairly 
uniformly distributed except that 
states for which u±v = 0 
(corresponding to one of the final 
outcomes) are more probable. -1 -0
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 The variables x, y and z are not 
stochastically independent of each other 
because of the obvious relationship  
|x| + |y| + |z| = 1.  

 The following transformation produces a 
set of independent variables u, v, w, where 
u, v vary in [−1,1] and w is two-valued 
(−1,1): 

𝑢 = 𝑥 + 𝑦
𝑣 = 𝑥 − 𝑦

𝑤 = sign(𝑧)
↔

𝑥 = (𝑢 + 𝑣) ∕ 2
𝑦 = (𝑢 − 𝑣) ∕ 2

𝑧 = 𝑤(1 − max⁡( 𝑢 , 𝑣 )
 



A simple forecast model 

D. Koutsoyiannis, Glimpsing God playing dice 12 

 We use a deterministic model, purely data-driven, known as the analogue 
model (e.g. see Koutsoyiannis et al. 2008); it does not assume any 
mathematical expression between variables. 

 To predict s((t + 𝑙)Δ), 𝑙 = 1, 2, …, based on past states s((t−p)Δ), p = 0, 1, …, 
m, where s = (x, y, z):  

 We search the data base of all experiments to find similar states 
(neighbours or analogues) si((ti −p)Δ), so that 

 𝒔𝑖 𝑡𝑖 − 𝑝 𝛥 − 𝒔 𝑡 − 𝑝 𝛥
2
≤ 𝑐𝑚

𝑝=1 , where c is an error 

threshold. 

 Assuming that n such neighbours are found, for each one we find the 
state at time (ti + 𝑙)Δ, i.e. si((ti + 𝑙)Δ) and calculate an average state 

𝒔 ((t
 
+

 
𝑙)Δ) =

1

𝑛
 𝒔𝑖 𝑡𝑖 + 𝑙 𝛥𝑛

𝑖=1 . 

 We adjust 𝒔 ((t+l)Δ) to ensure consistency : 
𝑥((t+l)Δ) = 𝑥 ((t+l)Δ)/𝑠 , 𝑦((t+l)Δ) = 𝑦 ((t+l)Δ)/𝑠 , 𝑧((t+l)Δ) = 𝑧 ((t+l)Δ)/𝑠  
where 𝑠 ≔ |𝑥 ((t+l)Δ)|+|𝑦 ((t+l)Δ)|+|𝑧 ((t+l)Δ)|.  

 After preliminary investigation, it was found that a number of past values 
m = 10 and a threshold c = 0.5 work relatively well. 



Benchmark models 

 The forecast model is checked against two naïve benchmark models. 

 In Benchmark 1 the prediction is the average state, i.e. s((t + 𝑙)Δ) = 0. 
Although the zero state is not permissible per se, the Benchmark 1 is 
useful, as any model worse than that is totally useless. 

 In Benchmark 2 the prediction is the current state, i.e. s((t + 𝑙)Δ) = s(tΔ), 
regardless of how long the lead time 𝑙Δ is. Because of the persistence, it is 
expected that the Benchmark 2 will work well for relatively small lead 
times. 

 For the performance assessment of the forecast and benchmark models 
(as well as for the comparison thereof), the coefficient of efficiency is 
used, defined as CE = 1 – e2/σ2, where e2 is the mean squared error of 
prediction and σ2 is the variance of the true time series: 

 A value CE = 1 indicates perfect forecast (no error). 

 The value CE = 0 is the CE of Benchmark 1 (purely statistical). 

 A value CE < 0 indicates a useless model (worse that purely statistical). 
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Results 
 For lead times 𝑙Δ≲1/10 s, 

the forecast model, as 
well as Benchmark 2 
provide relatively good 
predictions (efficiency ≳ 
0.5) 

 Predictability is generally 
superior than pure 
statistical (Benchmark 1) 
for lead times 𝑙Δ ≲ 1 s. 

 For longer lead times the 
state is unpredictable. 

 The final outcome is 
unpredictable from just 
the initial state. 
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Experiment 78 

Experiment 48 
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What is randomness? 
 Given that the die outcome is random, is there an “agent of 

randomness”? Where and when did it act? 

 Are there two mutually exclusive types of events or processes—
deterministic and random (or stochastic)? 

 Can we distinguish the natural events into these two types—with 
random being those that we do not understand or explain? 

 Are natural process really composed of mixtures of these two parts or 
components—deterministic and random? 

 Can each part be further subdivided into subparts (e.g., deterministic 
part = periodic + aperiodic/trend)? 

 Does the deterministic part represent a cause-effect relationship, which 
is the subject physics and science (the “good”)? 

 Is the random part a noise that has little relationship with science and 
no relationship with understanding (the “evil”)? 

The replies to the above questions are commonly positive. 

However, positive replies imply a naïve and incorrect view of randomness 
and a manichean perception of Nature 
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Emergence of randomness from determinism:  
A toy model of a caricature hydrological system 

 The toy model is designed intentionally simple. 

 Only infiltration, transpiration and water storage are considered. 

 The rates of infiltration φ and potential transpiration τp are constant.  

 Discrete time: i (“years”). 
 Constants (per “year”) 

 Input: φ = 250 mm; 
 Potential output:  
τp = 1000 mm. 

 State variables (a 2D 
dynamical system): 
 Vegetation cover, vi  

(0 ≤ vi ≤ 1) ; 
 Soil water (no distinction 

from groundwater): xi  
(– ∞ ≤ xi ≤ α = 750 mm).  

 Actual output: τi = vi τp  
 Water balance 
 xi = min(xi – 1 + φ – vi – 1τp , α) 

Nothing in the model is set to be random. 

φ : 
Infiltration 

τ : 
Transpiration 

Datum 

x : 
Soil water 

v : 
Vegetation 

cover 
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The toy model at equilibrium 
 If at some time i – 1:  
  vi – 1 = φ /τp = 250/1000 = 0.25 
 then the water balance results in  
  xi = xi – 1 + φ – vi – 1τp = xi – 1  

 Continuity of system dynamics demands that for some xi – 1, vi = vi – 1. 
Without loss of generality we set this value xi – 1 = 0 (this defines a datum 
for soil water). 

φ = 250 mm: 
Infiltration 

τ = 250 mm: 
Transpiration 

Datum 

x = 0: 
Soil water 
at datum  

v = 0.25: 
Vegetation 

cover 

 Thus the system state: 
 vi = vi – 1 = 0.25  
 xi = xi – 1 = 0  
represents the 
equilibrium of the 
system. 

 If the system arrives at 
equilibrium it will stay 
there for ever. 

 This state can be called 
“the dead equilibrium”. 
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Non-equilibrium state – conceptual dynamics of 
vegetation 

The graph is described by the 
following equation (with β = 100 mm 
—a standardizing constant): 1
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Interesting trajectories produced by simple 
deterministic dynamics 
 These trajectories of x and v, for time i = 1 to 100 were produced assuming initial 

conditions x0 = 100 mm (≠ 0) and v0 = 0.30 (≠ 0.25) using a spreadsheet (it can be 
downloaded from itia. ntua.gr/923/). 
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 The system state 
does not converge 
to the equilibrium. 

 The trajectories 
seem periodic. 

 Iterative application 
of the simple 
dynamics allows 
prediction for 
arbitrarily long time 
horizons (e.g.,  
x100 = –244.55 mm; 
v100 = 0.7423). 
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Understanding of mechanisms and system 
dynamics 

 System understanding—causative relationships: 

 There is water balance (conservation of mass); 

 Excessive soil water causes increase of vegetation; 

 Deficient soil water causes decrease of vegetation; 

 Excessive vegetation causes decrease of soil water; 

 Deficient vegetation causes increase of soil water. 

 System dynamics are: 

 Fully consistent with this understanding; 

 Very simple, fully deterministic; 

 Nonlinear, chaotic. 
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Does deterministic dynamics allow a reliable 
prediction at an arbitrarily long time horizon? 
 Postulate: A continuous (real) variable that varies in time cannot be ever 

known with full precision (infinite decimal points). 

 It is reasonable then to assume that there is some small uncertainty in the 
initial conditions (initial values of state variables). 

 Sensitivity analysis allows to see that a tiny uncertainty in initial conditions 
may get amplified. 

Bold blue line 
corresponds to  
initial conditions  
x0 = 100 mm,  
v0 = 0.30. 

All other lines 
represent initial 
conditions slightly  
(< 1%) different. 

Short time horizons: good predictions. 

Long time horizons: extremely inaccurate 
and useless predictions. 



Error propagation and limits of predictability 

 We assume a small error in specifying the initial condition. 

 How does this error propagate in time? 

 Is it kept constant? 

 Does it decrease? 

 Is it magnified?  

 For the particular  
system it increases  
exponentially. 

 If we are satisfied  
with a prediction  
error, say, 3 orders  
of magnitude higher 
than the initial error,  
then the limit of 
deterministic  
predictability is  
~40 time steps.  
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The error in specifying the initial condition 
was assumed 10–12 . However, the graph 
remains unchanged for a wide range of 
values of the initial error.  
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From exact trajectories to “stream tube” 
representation 
 Instead of a single model run with exact initial conditions, we perform 

multiple runs with initial conditions contaminated by a small error. 

 We can then construct envelop curves of the trajectories. 

 This changes our  
vision of the system 
evolution: from  
trajectories to stream 
tubes. 

 The problem is that  
the stream tubes  
depend on the values  
of the initial errors and  
the number of model  
runs; they widen for  
more model runs until  
they cover all feasible 
space. 
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From determinism to stochastics  
 Probabilization of uncertainty: axiomatic reduction from the notion of an 

uncertain quantity to the notion of a random variable. 
 According to the system introduced by Andrey Kolmogorov (1933), 

probability is a normalized measure, i.e., a function that maps sets (areas 
where unknown quantities lie) to real numbers (in the interval [0, 1]). 

 Random variable: a mathematical object x representing all possible outcomes 
x (also known as realizations) and associating each of them with a probability 
or a probability density f(x). 

 Stochastics (modern meaning): probability + statistics + stochastic 
processes. 

 Stochastics (first use and definition) is the Science of Prediction, i.e., the 
science of measuring as exactly as possible the probabilities of events (Jakob 
Bernoulli, 1713—Ars Conjectandi, written 1684-1689). 

 Stochastic process: An infinite collection of random variables (the term was 
introduced by Andrey Kolmogorov and Aleksandr Khinchin in 1930s). 

 Stochastics (etymology): < Greek Stochasticos (Στοχαστικός) < Stochazesthai 
(Στοχάζεσθαι = (1) to aim, point, or shoot (an arrow) at a target; (2) to guess or 
conjecture (the target) (3) to imagine, think deeply, bethink, contemplate, 
cogitate, meditate) < Stochos (Στόχος= target). 

If one 'stochazetai' (thinks deeply), eventually he goes 'stochastic' (with the 
probability-theoretical meaning) and he will hit 'stochos' (the target). 



D. Koutsoyiannis, Glimpsing God playing dice 27 

The stochastic formulation of system evolution 
 We fully utilize the deterministic dynamics: xi = S (xi – 1), where  

xi := (xi , vi) is the vector of the system state and S is the vector function 
representing the known deterministic dynamics of the system. 

 We assume that f (x0 ) is known, e.g. a uniform distribution extending 1% 
around the value x0 = (100 mm , 0.30). 

 Given the probability density function at time i – 1, f (xi – 1), that of next time i, 

f(xi ), is given by the Frobenius-Perron operator FP, i.e. f (xi ) = FP f(xi – 1), 

uniquely defined by an integral equation (e.g. Lasota and Mackey, 1991), which 

in our case takes the following form: 

 

 

 

were A := {x ≤ (x, v)} and S–1(A) is the counterimage of A.  

 The equation is easily deduced by standard probability theory. 

 Iterative application of the equation can determine the density f (xi ) for any 
time i — but we may need to calculate a high-dimensional integral. 

uux
S

d)()(FP
)(1 




A
f

vx
f

2

Stochastics does not disregard the deterministic dynamics: it is included in the 
counterimage S–1(A). 
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Difficulties in applying the stochastic framework and 
their overcoming using stochastic tools 
 The stochastic representation has potentially an analytical solution that behaves 

like a deterministic solution, but refers to the evolution in time of admissible 
sets and densities, rather than to trajectories of points. 

 From xi = S (xi – 1)   to 

 In the iterative application of the stochastic description of system evolution we 
encounter two difficulties: 

 Despite being simple, the dynamics is not invertible and the counterimage  
S–1(A) needs to be evaluated numerically → numerical integration. 

 The stochastic formulation is more meaningful for long time horizons  
→ high dimensional numerical integration. 

 For a number of dimensions d > 4, a stochastic (Monte Carlo) integration 
method (evaluation points taken at random) is more accurate than classical 
numerical integration, based on a grid representation of the integration space 
(e.g., Metropolis and Ulam, 1949; Niederreiter, 1992). 

 In our case the Monte Carlo method bypasses the calculation of S–1(A). 
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Monte Carlo integration is very powerful, yet so easy that we may forget that what 
we are doing is numerical integration. 
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Results of Monte Carlo integration: Time 100 
 We assume f (x0) to be a uniform density extending 1% around the value x0 = 

(100 mm , 0.30). 

 From 1000 simulations we are able to numerically evaluate f (x100).  
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 The figure  
shows the 
density of the  
soil water, x. 

 Moving from 
time i = 0 to  
i = 100, the 
density changes:  

 from 
concentrated 
to broad; 

 from uniform 
to Gaussian. 

This analysis provides an approximate numerical solution; an exact asymptotic 
solution is derived by determining the stationary density, which satisfies FP f(x) = f(x). 
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Why is the distribution of soil water, after a 
long time, Gaussian?  
 There are a number of theoretical reasons resulting in Gaussian 

distribution; see Jaynes (2003).  

 Among them the most widely known is the Central Limit Theorem: 
multiple integrals of a number of density functions tend to the Gaussian 
density (this is more typical in sums of variables, not appearing here). 

 Another explanation is given by the Principle of Maximum Entropy: 
for fixed mean and variance the distribution that maximizes entropy is 
the normal distribution (or the truncated normal, if the domain of the 
variable is an interval in the real line). 

 Entropy [< Greek εντροπία < entrepesthai (εντρέπεσθαι) = to turn into] 
is a probabilistic concept, which for a continuous random variable x with 
density f(x) and for background measure l(x) (typically = 1) is defined as 

 

 

 Entropy is a typical measure of uncertainty, so its maximization 
indicates that the uncertainty spontaneously becomes as high as 
possible (this is the basis of the Second Law of thermodynamics). 
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Propagation of uncertainty in time 
 The propagation of uncertainty is completely determined using stochastics.  

 In summary, the stochastic representation: 

 incorporates the deterministic dynamics—yet describes uncertainty; 

 has a rigorous analytical expression (Frobenius-Perron); 

  is free of the 
defects of 
deterministic 
methods; 

 provides and 
utilizes a powerful 
numerical  
integration 
method  
(Monte Carlo); 

 is honest as it does 
not fool us with 
false certainties.  

The so-called ensemble forecasting in weather and flood prediction does not differ 
from this stochastic framework. 
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Do we really need the deterministic dynamics 
to make a long-term prediction? 
 Working hypothesis: A set of observations contains enough information, which 

for long horizons renders knowledge of dynamics unnecessary. 
 Here we use 100 “years” of “past observations”, for times i = –100 to –1.  
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 Initial conditions: 
x–100 = 73.99 mm and  
v–100 = 0.904. 

 At time i = 0, the resulting 
state is  
x0 = 99.5034 ≈ 100 mm;  
v0 = 0.3019 ≈ 0.30. 

 Interpreting 
“observations” as a 
statistical sample, we 
estimate (in mm):  
mean = –2.52;  
standard deviation = 
209.13.  

In further investigations, we will refer to the state x0 = 99.5034; v0 = 0.3019 as the 
exact (or true) initial state and x0 = 100; v0 = 0.30 as the rounded off initial state. 
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A naïve statistical prediction vs. deterministic 
prediction 
 We compare two different predictions: 

 That derived by immediate application of the system dynamics; 

 A naïve prediction: the future equals the average of past data.  

For long horizons use of deterministic dynamics gives misleading results. Unless a 
stochastic framework is used, neglecting deterministic dynamics is preferable. 

 For long prediction times 
the naïve prediction is 
more skilful.  

 Its error ei is smaller than 
that of deterministic pre-
diction by a factor of √2.  

 This result is obtained both 
by Monte Carlo simulation 
and by probability-
theoretic reasoning 
(assuming independence 
among different 
trajectories). 
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Past data and ergodicity 
 Ergodicity (< Greek εργοδικός < [έργον = work] + [οδός = path]) is an 

important concept in dynamical systems and stochastics. 

 By definition (e.g. Lasota and Mackey, 1994, p. 59), a transformation is ergodic 
if all its invariant sets are trivial (have zero probability [= measure]).  

 In other words, in an ergodic transformation starting from any point, a 
trajectory will visit all other points, without being trapped to a certain subset. 
(In contrast, in non-ergodic transformations there are invariant subsets, such 
that a trajectory starting from within a subset will never depart from it). 

 An important theorem by George David Birkhoff (1931) (also known as 
Birkhoff–Khinchin theorem) says that for an ergodic transformation S and for 
any integrable function g the following property holds true: 

 

 

 For instance, for g (x) = x, setting x0 the initial system state, observing that the 
sequence x0, x1 = S (x0), x2 = S 

2(x0), ..., n represents a trajectory of the system and 
taking the equality in the limit as in approximation with finite terms, we obtain 
that the time average equals the true (ensemble) average: 

Ergodicity allows estimation of the system properties using past data only. 
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What is an informative prediction? 
 Reduction of uncertainty for long time horizons: No way! 

 No margin for better knowledge of dynamics (full knowledge already). 

 Indifference of improved knowledge of initial conditions (e.g. reduction of 
initial uncertainty from 1% to 10-6 results in no reduction of final uncertainty 
at i = 100 (try it!). 
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Stochastic inference using (a) past data, (b) ergodicity, and (c) maximum entropy 
provides an informative prediction. 

Knowledge of dynamics does not improve this prediction. 

 Informative prediction = 
point prediction + 
quantified uncertainty. 

 Past data: temporal 
mean & variance at 
times i = –100 to 0.  

 Ergodicity: ensemble 
mean & variance at 
time i = 100. 

 Principle of maximum 
entropy: Gaussian 
distribution. 
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Stochastics for ever... 

The stochastic representation is good for both short and long horizons, and helps 
figure out when the deterministic dynamics should be considered or neglected. 
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Further exploration of the system properties: 
Is the system evolution periodic?  

 A longer simulation of the system (10 000 terms) using the rounded-off  
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The trajectories of the system state do not resemble a typical periodic deterministic 
system—nor a purely random process. 

 initial conditions 
shows that the 
period δ between 
consecutive 
peaks is not 
constant but 
varies between  
4 and 10 “years”. 

 The period with 
maximum 
frequency ν is 6 
“years”. 
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A stochastic tool to detect periodicity: Periodogram 

 The square absolute value of the Discrete Fourier Transform (a real function 
p(ω) where ω is frequency) of the time series (here 10 000 terms) is the 
periodogram of the time series. 

 p(ω) dω is the fraction of variance explained by ω and thus excessive values of 
p(ω) indicate strong  
cycles with period 1/ω. 

  Here we have large 
p(ω) at 1/ω between 
4 and 12 “years” 
without a clearly 
dominant frequency. 

 The shape indicates a 
combination of 
persistence (short 
periods) and 
antipersistence 
(long periods). 

Antipersistence is often confused with periodicity—however, the two are 
different. 
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A stochastic tool to detect periodicity and 
dependence: Autocorrelation function 

 The Finite Fourier Transform of the periodogram is the empirical 
autocorrelation function (autocorrelogram), which is a sequence of values ρj , 
where j is a lag. It is more easily determined as ρj = Cov[xi , x i – j ] / Var [xi ]. 

 The positive ρ1 
is expected 
because of 
physical 
consistency. 

 The existence of 
negative values 
is an indication 
of 
antipersistence. 

Models with all auto-
correlations negative 
are not physically 
consistent. 
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A handy stochastic tool: the climacogram 
 A discrete-time random variable xi refers to a specific time scale. 

 A multi-scale stochastic representation defines a process at any scale k ≥ 1 by: 
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 A key multi-scale characteristic is the 
standard deviation σ(k) of xi

(k). 

 σ(k) is a function of the scale k, termed 
the climacogram (< Greek 
Κλιμακόγραμμα < [climax (κλίμαξ) = 
scale] + [gramma (γράμμα) = 
written]) and typically depicted on a 
double logarithmic plot. 

 The climacogram is a transformation 
of the autocorrelation function: 

 

 














1

1

)( 121
k

j

j
k ρ

k

j

k

σ
σ

The asymptotic slope of the climacogram for large time scales characterizes the long-
term properties of the process. Steep slopes indicate antipersistence. 
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A different perspective of long-term predictability and 
the key consequence of antipersistence 
 Arguably, when we are interested for a prediction for a long time horizon, we do 

not demand to know the exact value at a specified time but an average 
behaviour around that time (the “climate” rather that the “weather”).  
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Antipersistence enhances climatic-type predictability (prediction of average). 

 The plot of the soil 
water for a long 
period (1000 
“years”) indicates:  

 High variability 
at a short 
(annual) scale—
with peculiar 
variation 
patterns;  

 A flat time 
average at a 30-
year scale 
(“climate”).  
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An index of variability 
 To study the peculiar variability of the soil water xi we introduce the random 

variable yi := |xi – xi – 6| where the lag 6 was chosen to be equal to the most 
frequent period appearing in the time series of xi .  

 We call yi the variability index. 

The frequent and long excursions of the local average from the global average 
indicate long-term persistence, or long-term change (not static conditions) 
Persistence/change are often confused with nonstationarity—but this is an error. 

 The plot of the time 
series of yi for a long 
period (1000 “years”) 
indicates:  

 High variability  
at a short (“annual”) 
scale;  

 Long excursions of 
the 30“year” average 
(“the climate”) from 
the global average  
(of 10000 values). 
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The autocorrelation of the variability index 

The consistently positive autocorrelations ρj for high lags j indicate long-term 
persistence. 
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Multi-scale stochastics and the Hurst-
Kolmogorov dynamics 
 The long term persistence and antipersistence are better visualized using the 

climacogram. 

 
 The visualization is based on the 

slope of the double logarithmic 
plot of the climacogram (σ (k) as a 
function of the scale k) for large 
time scales k.  

 The quantity H = 1 + slope in this 
plot is termed the Hurst 
coefficient.  

 H = 0.5 indicates pure 
randomness. 

 H between 0 and 0.5 indicates 
antipersistence. 

 H between 0.5 and 1 indicates 
persistence. 

A process with constant slope and H between 0.5 and 1 is a Hurst-Kolmogorov 
process (after Hurst, 1951, and Kolmogorov, 1940) with long term persistence. 



Slope - 0.96

Slope = -0.34

Slope -0.5

1

10

100

1000

1 10 100 1000k

σ  (k )

Soil water, x

Variability index, y

Random series

30 

↓ 
↓ 

D. Koutsoyiannis, Glimpsing God playing dice 45 

Multi-scale stochastics and predictability 
 For an one-step ahead prediction, a purely random process xi is the most 

unpredictable.  
 Dependence enhances one-step ahead predictability; e.g. in a Markovian process 

with ρ1 = 0.5 (comparable to that of our series xi and yi) the conditional standard 
deviation is √(1 – ρ1

2) times the  
unconditional, i.e. by 13% smaller. 

Contrary to what is believed, positive dependence/persistence substantially 
deteriorates predictability over long time scales—but antipersistent improves it. 

 However, in the climatic-type 
predictions, for which we are 
interested about the average 
behaviour rather than about exact 
values, the situation is different. 

 In the example shown, at the 30-
“year” climatic scale, 
predictability is deteriorated by a 
factor of 3 for the persistent 
process yi (thus annihilating the 
13% reduction due to 
conditioning on the past). 
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Demonstration of unpredictability of processes 
with persistence  
 The plot shows 

1000 “years” of 
the time series yi 
(variability 
index) at the 
annual and the 
climatic, 30-
“year” scale and 
for initial 
conditions 

 exact, and 

 rounded off. 

 The departures 
in the two cases 
are evident.  
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Even a fully deterministic system is fully unpredictable at a long (climatic) time 
scale when there is persistence. 
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Recovery of dynamics from time series 
 Stochastics—the concept of entropy in particular—provides a way to recover 

the dynamics of a system, if the dynamics is deterministic and unknown and if a 
long time series is available. 

 Forming time delayed vectors with trial dimensions m and calculating the 
multidimensional entropy of vector trajectories we are able to recover the 
unknown dynamics (employing Takens, 1981, theorem).  

 In the example we find that the dimensionality of our toy system is 2. 

Recovering of unknown deterministic dynamics does not enhance long-term 
predictability. 
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What is randomness? (Alternative reply) 
 Random means none other than unpredictable (in deterministic 

terms), uncertain or unknown; we may understand it, we may explain 
it, but we cannot predict it. 

 There is no “virus of randomness” that affects natural systems (including 
dice). 

 Randomness and determinism: 

 coexist in the same process; 

 are not separable or additive components; and  

 it is a matter of specifying the time horizon and time scale of 
prediction to decide which of the two dominates. 

 Dichotomies such as deterministic vs. random and aleatory vs. epistemic 
uncertainty are false dichotomies. 

 Almost all physical systems, including the motions of dice and planets, 
are predictable for short horizons and unpredictable for long horizons. 

 The difference of dice from other common physical systems is that they 
enable unpredictability very quickly, at times < 1 s.  

“Prediction is difficult, especially of the future ” (Niels Bohr). 
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From the toy model to the real world 
 In comparison to our simple toy model, a natural system (e.g., the atmosphere, 

a river basin, etc.): 

 is extremely more complex; 

 has time-varying inputs and outputs;  

 has spatial extent, variability and dependence (in addition to temporal);  

 has greater dimensionality (virtually infinite); 

 has dynamics that to a large extent is unknown and difficult or impossible to 
express deterministically; and 

 has parameters that are unknown. 

 Hence uncertainty and unpredictability are naturally even more prominent in a 
natural system.  

 The role of stochastics is even more crucial: 

 to infer dynamics (laws) from past data; 

 to formulate the system equations; 

 to estimate the involved parameters; 

 to test any hypothesis about the dynamics.  

 

Data offer the only solid grounds for all these tasks, and failure in founding on, and 
testing against, evidence from data renders the hypothesized dynamics worthless. 



 Autocorrelograms and 
climacograms (here those 
for experiment 78 are 
shown) indicate: 

 Strong dependence in 
time, which enables 
stochastic 
predictability for (very) 
short time; 

 Long-term, rather than 
short-term persistence. 
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Back to real world 
applications: 
Stochastic 
behaviour of dice 
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Glimpsing God’s dice in rivers: 
From mixing and turbulence to floods and droughts 

Flood in the Arachthos River, Epirus, Greece, under the medieval Bridge of Arta, in 
December 2005 
The bridge is famous from the legend of its building, transcribed in a magnificent poem (by an anonymous 
poet); see en.wikisource.org/wiki/Bridge_of_Arta; el.wikisource.org/wiki/Το_γιοφύρι_της_Άρτας 
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Turbulence: macroscopic 
motion at millisecond scale 
 Laboratory measurements of nearly isotropic 

turbulence in Corrsin Wind Tunnel (section 
length 10 m; cross-section 1.22 m by 0.91 m) at 
a high-Reynolds-number (Kang et al., 2003).  

 Measurements by X-wire probes; Sampling rate 
of 40 kHz, here aggregated at 0.833 kHz—each 
point is the average of 48 original values. 
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Data downloaded from www.me.jhu.edu/meneveau/datasets/Activegrid/M20/H1/m20h1-01.zip 

When I meet God, I 
am going to ask Him 
two questions: Why 
relativity? And why 
turbulence? I really 
believe He will have 
an answer for the 
first. 
(attributed to Werner 
Heisenberg or, in different 
versions, to Albert 
Einstein or to Horace 
Lamb) 
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Turbulence vs. 
pure 
randomness  
 Pure random 

processes (white 
noise), have been 
effective in modelling 
microscopic motion 
(e.g. in statistical 
thermodynamics). 

 Macroscopic random 
motion is more 
complex. 

 In pure randomness, 
change and 
uncertainty vanish 
at large scales. 

 In turbulence, 
change occurs at all 
scales. 
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The climacogram of 
the turbulent velocity 
time series 
 The simple-scaling HK 

process is appropriate for 
scales > 50 ms, but not for 
scales smaller than that. 

 For small scales, a smoothing 
effect reduces variability (in 
comparison to that of the HK 
process). 

 A Hurst-Kolmogorov process 
with Smoothing (HKS) is 
consistent with turbulence 
measurements at the entire 
range of scales;, in addition to 
the Hurst coefficient, it 
involves a smoothing 
parameter (α): 

 σ(k) = σ(α) (2/ (1+(k/α)2 – 2H))1/2 
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The fitted curve (H = 2/3) is suggestive of the 
Kolmogorov’s “5/3″ Law: for high frequencies 
it yields a power spectrum with slope –5/3; 
this turns to 1 – 2H = –1/3 for low frequencies  
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A river viewed at different time scales—from 
seconds to millions of years 
 Next second: the hydraulic characteristics (water level, velocity) 

will change due to turbulence. 
 Next day: the river discharge will change (even dramatically, in 

case of a flood). 
 Next year: The river bed will change (erosion-deposition of 

sediments). 
 Next century: The climate and the river basin characteristics (e.g. 

vegetation, land use) will change. 
 Next millennia: All could be very different (e.g. the area could be 

glacialized). 
 Next millions of years: The river may have disappeared. 
  None of these changes will be a surprise. 
 Rather, it would be a surprise if things remained static. 
 These changes are not predictable—change and uncertainty are tightly 

connected. 
 Most of these changes can be mathematically modelled in a stochastic 

framework admitting stationarity! 
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The Roda Nilometer and over-centennial change 

 The Roda Nilometer as it stands today; water entered and filled 
the Nilometer chamber up to river level through three tunnels.  

 In the centre of the chamber stands a marble octagonal column 
with a Corinthian crown; the column is graded and divided into 
19 “cubits” (1 cubit ~ 0.5 m) and could measure floods up to 
about 9.2 m. 

 A maximum level below the 16th mark could portend drought 
and famine; a level above the 19th mark meant catastrophic 
flood. 
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Nile River annual minimum 
water level (849 values) 

The Nilometer 
record vs. a pure 
random process 

A real-world process 

A “roulette” process 

Each value is the minimum of m = 36 roulette 
wheel outcomes (m was chosen so as to make the 
std the same as in the Nilometer series) 

Nilometer data: Toussoun (1925); 
see also Koutsoyiannis (2013) 
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The climacogram 
of the Nilometer 
time series 
 The Hurst-Kolmogorov process 

seems consistent with reality. 

 The Hurst coefficient is H = 0.87 
(Similar H values are estimated 
from the simultaneous record of 
maximum water levels and from 
the modern, 131-year, flow 
record of the Nile flows at 
Aswan). 

 Essentially, the Hurst-
Kolmogorov behaviour manifests 
that long-term changes are much 
more frequent and intense than 
commonly perceived and, 
simultaneously, that the future 
states are much more uncertain 
and unpredictable on long time 
horizons than implied by pure 
randomness. 

B
ia

s The bias of the classical statistical 
estimator of standard deviation was 
accounted for in fitting the HK process 
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Are reconstructions of past hydroclimatic behaviours 
consistent with the perception of enhanced change? 

 Lake Victoria is the 
largest tropical lake in 
the world (68 800 km2) 
and is the headwater of 
the White Nile. 

 The contemporary 
record of water level 
(covering a period of 
more than a century) 
indicates huge changes. 

 Reconstructions of water 
level for past millennia 
from sediment cores 
(Stager et al., 2011) 
suggest that the lake was 
even dried for several 
centuries. 

13 000 14 000 15 000 16 000 17 000 18 000 19 000 20 000 

high 

low 

dry 

Years before present 

 dry 

From Sutcliffe and Petersen (2007)  

Adapted from Stager et al. (2011)  
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From hydrology to climate 

 Even the very definition of climate relies on stochastics: 

 Climate in a narrow sense is usually defined as the average weather, or more 
rigorously, as the statistical description in terms of the mean and 
variability of relevant quantities over a period of time ranging from months 
to thousands or millions of years. The classical period for averaging these 
variables is 30 years, as defined by the World Meteorological Organization. 
The relevant quantities are most often surface variables such as temperature, 
precipitation and wind. Climate in a wider sense is the state, including a 
statistical description, of the climate system (IPCC, 2013).  

 Most questions related to climate are statistical questions.  

 However, statistical perception of climate is typically based on too simple 
uncertainties, like dice throws and roulette wheels. Also, analyses are based on 
classical statistics in which variables are independent. 

 Even the very definition of climate, particularly the phrase “The classical period 
for averaging these variables is 30 years” historically reflects a perception of a 
constant climate and a hope that 30 years would be enough for a climatic 
quantity to get stabilized to a constant value—as would indeed happen if events 
were independent. 

 Classical statistics is inappropriate for climate, which has never been static.  



Assessing climate 
uncertainty from 
data (instrumental 
and proxy) 
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Co-evolution of climate with tectonics and life 
on Earth over the last half billion years 
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Temperature change on Earth based on 
observations and proxies 
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A combined climacogram of all 10 temperature 
observation sets and proxies 

From Markonis and Koutsoyiannis (2013) 

This slope 
supports an 
HK behaviour 
with H > 0.92 

The HK 
behaviour 
extends over 
all scales 

The actual climatic 
variability at the scale of 
100 million years equals 
that of 28 months of a 
purely random climate! 

Enhanced change 

Common perception: 
Purely random change 

Orbital 
forcing, 
10-100 
kyears 
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Future climate: Long term predictions are trendy... 

From 2100 AD 
(Battisti and Naylor, 
Science, 2009)... 

...to 100 000 AD 
(Shaffer et al., 
PNAS, 2009) 

... to 3000 AD 
(Solomon et al., 
Nature Geoscience, 
2009) 
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Is there any indication that climate is 
predictable in deterministic terms? 
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Concluding remarks 
 The natural world obeys the laws of physics; there are no particular agents of 

randomness (at the visible, macroscopic world). 

 However, there are agents of change, acting on several scales; the world exists 
only in change. 

 Change and uncertainty are tightly connected; only dead systems are certain. 

 Uncertainty is quantified by entropy, whose tendency to become maximum 
drives change. 

 Physical laws support predictability—but only at short time scales; the distant 
future is unpredictable in terms of both exact state and average behaviour. 

 Humans are part of the changing Nature—but change is hardly controllable by 
humans (fortunately). 

 Stochastics is the tool to study complex natural systems.  

 Hurst-Kolmogorov stochastic dynamics is the key to perceive multi-scale 
change and model the implied uncertainty and risk. 

Both classical physics and quantum physics are indeterministic 
Karl Popper (in his book “Quantum Theory and the Schism in Physics”) 

The future is not contained in the present or the past 
W. W. Bartley III (in Editor’s Foreward to the same book) 
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