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Extended abstract 

Introduction 

Wind is a fundamental atmospheric variable, which affects weather forecasting, aircraft and 

marine transportations - operations, construction projects, growth and metabolism rate of 

many plant species and countless other implications. It is commonly measured with 

anemometers (m/s), but also can be classified using the older Beaufort scale, which is based 

on people’s observations of specifically defined wind affects. It is governed by chaotic 

behavior and is therefore difficult to predict. This fact implies that any infinitesimal changes 

to the initial conditions, will cause completely different behavior to the phenomenon. 

However, wind behavior, can predicted with some degree of credibility or with a confidence 

interval. Of great importance is the predictability of wind speed, for areas that extremes 

occurred, such as hurricanes and typhoons.  

Numerous factors and situations affect wind speed on varying time scales, such as pressure 

gradient, Rossby waves, jet streams and local weather conditions. This fact implies the 

chaotic behavior of the wind, as it is affected by other meteorological variables, at spatial and 

temporal variability. Moreover, notably links have been found between wind speed and wind 

direction, corresponding to the pressure gradient of the atmosphere. 

Pressure gradient is a term to describe the difference in air pressure between two points in the 

atmosphere or on the Earth’s surface. It is vital to wind speed, because the greater the 

difference in pressure, the faster the wind flows to balance out the variation. The pressure 

gradient, when combined with the Coriolis Effect and friction, also influences wind direction. 

Rossby waves are strong winds in the upper troposphere. These operate on a global scale and 

move from West to East, known as Westerlies. The Rossby waves are themselves a different 

wind speed from what the experience reveals as in the lower troposphere. 

Local weather conditions play a key role in influencing wind speed, as the formation of 

hurricanes, monsoons and cyclones, as freak weather conditions, can drastically affect the 

velocity of the wind. (C.Michael Hogan, 2010. Abiotic factor. Encyclopedia of Earth. eds Emily 

Monosson and C. Cleveland. National Council for Science and the Environment. Washington DC) 

Statistical – stochastic data analysis 

In this thesis, it is realized the statistical - stochastic treatment of the wind speed, on monthly 

and daily time scale. Data analyses were extracted from site: http://www.ncdc.noaa.gov/cdo-

web/, which is a global database of climatologically variables. Wind speed data at Greece, 

with subsequent data sets, direction and gust, were extracted. The selected analysis stations 

(Fig. 1, 3), were all the available from the site (83), five of which had no data, thus remain 78. 

Then the processing of six of the remaining stations had many shortcomings and limited data, 

thus may not be suitable for processing and reliable conclusions (Fig. 2, 4). For statistical - 

stochastic process of wind speed, it was initially necessary, processing data in an appropriate 

format, in order to extract time series.   

Data consisted on time series of irregular time step, with shortages of measurements and so it 

was necessary to formulate time series for further treatment. Statistical features which were 

http://www.eoearth.org/article/Abiotic_factor?topic=49461
http://www.eoearth.org/article/Abiotic_factor?topic=49461
http://www.ncdc.noaa.gov/cdo-web/
http://www.ncdc.noaa.gov/cdo-web/
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calculated to reveal the behavior of wind speed at Greece were the basic statistical 

characteristics of a variable, as well as, the calculation of specific estimators and it became 

obvious the variability of wind speed, at different time scales. Furthermore, it became 

obvious, the intermittent behavior of wind speed, at all time scales. The shorter the time scale 

was examined, the less intermittent behavior of the variable revealed. Finally, at monthly time 

scale, it became clear the cyclostationary behavior of the wind.  

 

Figure 1: Data stations at Greece, which were analyzed, at daily time scale.  

 

Figure 2: Ratio of missing values at daily time scale. 

 

 

Figure 3: Data stations at Greece, which were analyzed at monthly time scale. 

 

 
Figure 4: Ratio of missing values at monthly time scale. 
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Wind speed 

Wind speed time series were elaborated, in order to determine monthly averages from each 

station and also reckon their spatial and temporal variance at the area of interest. To this end, 

wind speed (m/s) monthly maps were designed (Fig. 5), in order to reveal the monthly wind 

speed behavior, at Greece. 

 

 

 

 

Figure 5: Spatial and temporal disperse of monthly average wind speed from January (top left) to 

December (bottom right, following right direction when reading). 

Wind direction 

Wind direction was calculated for all the 36 stations with the available data, by estimating the 

monthly average wind direction from each station. Direction data, depicted from where wind 

blows at degrees (
o
), so that for instance, wind directions of 360

o
 were concerned northern 

ones. But, as direction is fragment to the space of [0
o
, 360

o
] and furthermore, as direction is a 

vector variable, average should be carefully estimated. The average of two directions that 

blows from e.g. 360
o
 and 5

o
, will be about 180

o
, the opposite direction from the real one. So 

that, special gauges took place, keeping in mind the above mentioned task and furthermore as 
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direction data were given from where the wind blows, in order to reveal the truly direction of 

wind, additions and deductions should be done from 180
o
 if variable is grater or smaller than 

180
o
. The results revealed (Fig. 6) that most of the percentage of wind’s directions in Greece 

(about 44%) is northern ones and the season that this behavior occurred is winter and 

specifically corresponded at February (58%). 

 

 

 

Figure 6: Direction of wind speed at degrees (
o
), from 36 stations of Greece. 

Distribution fitting 

Statistical characteristics of wind speed examined at the area of interest, were: mean, standard 

deviation (variance), coefficient of autocorrelation and autocovariance of time series, at daily 

and monthly time scale. Furthermore climacograms and power spectras were extracted, for 

each station, at the same time scale, as the above mentioned. All the important features, that 
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were necessary for the stochastic processes of wind speed, were derived, by considering all 

the above statistical treatment, which led to draw conclusions, about the general behavior of 

this variable. 

Hydrognomon software was used for the statistical analysis of the variables, under which the 

distribution that best fits to the empirical wind speed data (Fig. 7) was assumed to be Weibull, 

as well as Gamma distribution, which fitted very well to the historical sample, with 

prevalence of Weibull distribution (Fig. 8) to describe wind speed at both daily and monthly 

time scale. 

 

Figure 7: Histogram of the empirical data from Alexandroupoli station, fitted with the Weibull 

distribution (Hydrognomon). 

 

 

Figure 8: Empirical data and fitting of the Weibull distribution, for Alexandroupoli station 

(Hydrognomon). 
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Wind Gust 

Empirical data of wind gust were treated (Fig. 9) and specific distributions were fitted to the 

observed ones and it was concluded that, the distributions which best fits to the wind gust, 

were GEV max and Gumbel max, with prevalence of GEV max (Fig. 10). Also, from these 

calculations, were considered the maximum of the maximum values (maxima of maxima) in 

groups of 200, 100, 50 and 10 values respectively (right tail of distribution) and in all of the 

above cases it was concluded that these extreme values were adjusted to the exponential 

distribution. The above conclusion was resulted from the initial configuration of the sample in 

ascending order, as displayed the values on a diagram and fitting a trend line to the data. The 

suitability of the adjustment was tested by the RMSE criterion and in all cases it was showed 

that the value was approximately 0.85 which appeared very good adaptation to the voltage of 

the sample. 

 

Figure 9: Histogram of the empirical data from Alexandroupoli station, fitted to GEV max distribution 

(Hydrognomon). 

 

 
Figure 10: Empirical data and fitting to GEV max distribution, from Alexandroupoli station 

(Hydrognomon). 
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As far as, gust data concerned, for a specific number of stations and for a specific observed 

period, it was held the treatment of the variable, for further comparison with wind speed, at 

daily time scale, in order to find a relationship between these two variables. Estimations were 

held at daily time scale and at the same day, so the conjunctions between winds speed and 

gust, to be directly estimated. Mean (Fig. 11) and standard deviation (Fig. 12), of the 

differences and the ratio, were calculated, between the two variables, in order to reveal, if they 

were characterized by a common statistical - stochastic pattern (Fig. 13).  

 

Fig. 11: Mean (μx) and standard deviation (σx) of the differences, between gust and wind speed at the 

same day, at m/s.  

 

 

Fig. 12: Mean (μx) and standard deviation (σx) of the ratio, between gust and wind speed at the same 

day.  
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Figure 13: Mean and standard deviation of ratio (upper raw) and differences (lower raw), between gust 

and wind speed, at the same day. 

Reanalysis data 

Furthermore, treatment of reanalysis data were occurred, for specific stations, due to the 

measurement period and results were compared with the ones of 30 stations of observed data, 

to deduce about the reliability on actual measurements (reanalysis). For this purpose, it was 

performed the calculation of cross correlation of the stations, between the observed and 

reanalysis data, so the comparison of cross correlation of the stations was occurred, 

separately, for each station and between stations (Fig. 14), for each data cross correlation, 

block. This calculation was occurred to quantify the reliability of reanalysis data and finding 

the use of such data to draw firm conclusions. Cross correlation analysis between 

observations and reanalysis data revealed good correspondence (values until 0.85) especially 

to the areas that extreme had occurred and the main result, from the above mentioned 

analysis, was the fact that values of reanalysis data were spatially dispersed such as 

observations. Reanalysis data showed the same areas of extreme wind speed as observations, 

so they are very helpful in cases of observation’s lack, when studying a specific area.   
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Figure 14: Cross correlations between observed data and reanalysis one (on the left) and cross 

correlations of the cross correlations between observed data and reanalysis one (on the right). 

Catastrophic events at Greece due to extreme winds 

Specific maps were exported, for the most catastrophic events at Greece for every month (Fig 

15), related to the extreme wind speed events, in order to show the spatial and temporal 

dispersion of these phenomena at Greece and find areas where such phenomena occur 

frequently. Of major importance, for the above process, was the period of time that these 

phenomena occurred, which results to some conclusions about wind speed trend analysis. 

Monthly time scale maps were developed, which emphasize to the spatial and temporal 

distribution of the most catastrophic events, due to the extreme wind speed. 
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Figure 15: The most catastrophic events, due to extreme wind speed per month, at Greece, from 

January (top left) to December (bottom right, following right direction when reading). 

Wind speed trends at period (1970-2013) 

Specific stations were used, at common measurement period, for wind trend analysis, in order 

to find the past conduct of wind for the observed period and to draw conclusions about wind 

speed trends for that period at specific areas. Trend analysis was extracted by linear regression 

to the empirical data, for every month. For a better realization of results, maps were designed, 

in order to depict the positive and negative trends for specific areas, all over Greece terrain 

(Fig 16). 

 

Figure 16: Trends of wind speed at Greece, at the period (1970-2013). Positive trends (red) and 

negative trends (yellow). 

Furthermore, the examined period was split into two smaller ones, in order to extract, 

differences, at divided examine periods. So the period (1970-2013) was separated into the 

periods (1970-1990) and (1991-2013) and maps were designed (Fig. 17), in order to reveal 

any differences with the first examined period. The trends of the examined variable then 

showed a different view at the period (1970-1990) and almost the same disperse at the period 

(1992-2013). 

 

Figure 17: Trend analysis of wind speed variable, at m/s/month, at the periods (1970-1990) (on the 

right) and (1992-2013) (on the left). 

Theoretical wind energy potential at Greece 



13 

 

Theoretical wind energy potential per month (Fig. 18) was carried out, in plants of (W/m
2
), 

from monthly and daily aggregated data sets, and it was performed comparison between them, 

showed whether they assume same or different results. For a more comprehensive analysis, of 

the areas due to the quantification of the (theoretical) potential energy and reliability in areas 

with large (theoretical) potential energy, calculations were carried out, in order to find the 

percentages of maximum winds, at each region (percentages 1-5-10-20 -30%) at both daily 

and monthly time scale and vice versa (the percentages of prevailing winds, with specific 

speed limits at daily and monthly time scale), in order to present a more obvious conclude, 

about the areas that really have large percentages of high wind speed. 

 

 

 

 

Figure 18: Theoretical wind energy potential for every month (W/m
2
), from monthly aggregated time 

series, from January (top left) to December (bottom right, following right direction when reading). 

Weibull shape (k) and scale (c) parameters.  

Adjusting the Weibull distribution to the observed data, it were estimated the shape (Fig. 19) 

and scale (Fig. 20) parameters of the distribution (k, c) at monthly and daily time scale and 

also it was revealed their dispersion in the entire country, as well as examined, if these 
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parameters, follow any spatial or seasonal form. Also, from the observed data of wind 

direction, it was calculated the spatial and temporal behavior of this variable at Greece, to 

draw conclusions about the rate of the steering winds at a monthly time scale, as well as, for 

seasonal and annual one. 

 

 

 

 

Figure 19: Disperse of the Weibull shape parameter (k), from monthly aggregated time series, at 

Greece, from January (top left) to December (bottom right, following right direction when reading). 
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Figure 20: Disperse of the Weibull scale parameter (c, (m/s)), from monthly aggregated time series, at 

Greece, from January (top left) to December (bottom right, following right direction when reading). 

Weibull parameter estimation (k, c) 

Parameters of Weibull distribution shape (k) and scale (c (m/s)) ones were estimated through 

four different approaches, in order to deal with the best fit to the empirical sample. The 

selected stations were the same as the ones were used for the model fitting and the parameters 

estimated methods which were used were: (a) M.L.E. (Maximum Likelihood Estimator) (b) L 

– moments (c) Logarithmic transformed moments (L.T.M.) and (d) Graphical estimation. 

Results from the above mentioned methods were depicted to a diagram (fig. 21-23), as well as 

the empirical distribution of the data, from a specific station (Alexandroupoli). The diagram 

discloses which method best fits to the empirical data, by the shape of Weibull distribution, 

with parameters estimated from different approaches. The diagram manifested that all the 

above mentioned estimated methods gave very good approaches. As it is depicted at (Fig. 24-

26), MLE and L-moments estimators were not affected by extreme values, so they appeared 

to be more accurate when estimating distribution’s parameters.  

Conclusionally, as MLE is a method based on optimization of the logarithmic likelihood 

function and also as L-moments are not affected by extremes, these two methods seemed to 

be the more accurate from the others. Finally, parameters estimated by MLE and L-moments 

methods were fitted better to the tail of empirical distribution, which is important especially 

for human structures and early warning measures due to extreme wind speed.         
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Figure 21: Estimation of Weibull parameters with for different approaches: (a) L – moments, (b) 

M.L.E. (c) Logarithmic Transformed Moments (L.T.M.) and (d) Graphical. 

 

Figure 22: Comparison of Weibull shape (k), parameter estimation, from 9 stations and different 

estimated methods. 

 

Figure 23: Comparison of Weibull scale (c (m/s)), parameter estimation, from 9 stations and different 

estimated methods. 

 



17 

 

 

Figure 24: Square difference of fitted distribution and empirical one, of the 9 model estimated stations, 

with the four mentioned methods. 

 

 

Figure 25: Square difference of fitted distribution and empirical one, of the 9 model estimated stations, 

with the four mentioned methods, for wind speed greater than 5 m/s. 

 

 

Figure 26: Square difference of fitted distribution and empirical one, of the 9 model estimated stations, 

with the four mentioned methods, for wind speed greater than 10 m/s. 

From the 9 above estimated stations, it was concluded that the least square differences 

between fitted distribution (with the four mentioned methods) and empirical one, took the 
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minimum value for graphical method, for all data set. On the contrary, when the sample is 

clustered for wind speed over 5 and 10 m/s MLE and L-moments had the minimum square 

difference. Furthermore, due to the fact that in most cases we are interested in extreme wind 

speed events (energy, weather, early warnings), MLE (Fig. 25) and L-moments (Fig. 26) were 

found to be the best estimators for Weibull parameters.   

Finding Hurst exponent for wind speed in Greece. 

For all performed stations at daily time scale, climacograms were extracted (Fig. 27), from the 

standardized sample, in order to draw conclusions about the indirect finding of the persistence 

parameter of the wind speed and the direct calculation of the Hurst coefficient. It was found 

that climacograms of the examined stations have a relatively same slope, even at large time 

scale, which led to came up with a specific value of the Hurst coefficient for the entire region 

of Greece, H = 0.75.  

 

Figure 27: Climacogram, for 10 stations which were took place at wind speed modeling, at the 

standardized sample. 

The above conclusion, led to the selection of 10 specific stations of the entire country, at daily 

time scale, based on the observed period, missing values and spatial variance of stations at the 

region of interest, thus conclusions, drawn from the exported model, to be generalized for the 

entire country. Specific maps were designed, in order to reveal the dispersion of the estimated 

model parameters (Fig. 28). 

 

 

Figure 28: Dispersion of the (a) a = γ0 parameter, (b) b = 2H-2, parameter, (c) Hurst exponent and (d) 

model fitting. 
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The estimation of the standard deviation (variance), was calculated by the unbiased estimator 

of the variance (Eq. 1, 2) and was adjusted to the selected 10 stations of the standardized data 

sample (Fig. 29, 30), which, as demonstrated in thesis (Koutsoyiannis, 2003), proved to be the 

most reliable estimator, contrary to autocorrelation function and spectra (pseudo-spectrum). 

                        (1) 

 

  

        
           

     
 

   
 

 
           

     
   (2) 

Where, 

          unbiased estimator of the variance 

          unbiased coefficient 

γ(Δ):        theoretical variance of the sample to the correspondence time scale (Δ) 

γ(Τ):        theoretical variance of the sample to the correspondence time scale (Τ) 

Δ:            relevant scale calculation 

T:            entire scale calculation for all data sample  

Γ(Τ):       autocovariance function for the discrete time process at time scale (T) 

Γ(Δ):       autocovariance function for the discrete time process at time scale (Δ) 

 

Figure 29: Climacogram of the theoretical, estimated and unbiased estimated variance (m/s)
 2
, of 

Alexandroupoli station. 

 

 
 

Figure 30: Fitted the unbiased estimator of variance        , to the empirical one γ (Δ), of 

Alexandroupoli station. 



20 

 

Furthermore, Hurst coefficient was estimated from climacograms directly from the empirical 

data from 10 stations and the results were compared to the unbiased estimated ones. The 

results seemed to be approximately equal (Fig. 31). 

 

Figure 31: Compared Hurst exponent with empirical climacogram data standard deviation [log 

(st.dev.) – log (k)], (blue) and with unbiased variance estimator        , (red). 

Synthetic time series generation 

Synthetic time series, were generated from a particular station (Alexandroupoli), through the 

process of simple scaling model (Koutsoyiannis, 2002), which presented, the three ways, in 

which it became possible to produce a synthetic time series from Markov models, adapted to 

FGN ones, as well as maintain the desired statistical characteristics and persistence (Hurst 

coefficient) of selected time series. A description of the three methods was held and 

furthermore, was performed the process of random variations at multiple time scales, wherein, 

three AR (1) models were summed for the generation of a synthetic time series. Time series, 

which were extracted from these models, were fitted to normal distribution (production of AR 

(1) with adaptation to FGN), which does not correspond to the actual behavior of the wind 

(Fig. 30), which on a daily time scale, Weibull distribution is best adjusted. For that reason, 

suitable normal transformations were used, which adjusts any distribution to the normal one, 

tested with  means of mean square error (RMSE), resulting from the adjustment of the inverse 

cumulative distribution function (CDF)
-1

 on a diagram (Q - Q). The procedure mentioned 

above, was performed for finding the parameters of the used transformation Z (g(x)) and then, 

by performing the inverse transformation Z (g(x)) 
-1

, the synthetic time series (which follows 

normal distribution) were denormalized and so a synthetic time series was generated (Fig. 32-

36). Five transformations were applied and results of the generated - denormalized time series 

appeared at (Fig. 37-40). 

Five normalized transformations were fitted to the empirical data in order to estimate their 

parameters through the gauge of least square error at Quantile-Quantile plot. After the 

parameter’s estimation, the inverse process was held of de-normalized synthetic time series, 

in order to readjust to the distribution that empirical data follows. The five transformations 

which used were: 

                        
 

 
                    (3) 

(Papalexiou et al., 2007), with five parameters (α, β, γ, δ, δ) 

                
 

 
        

 

 
        

 

 
 
 

   (4) 

(Koutsoyiannis et al., 2011), with four parameters (θ, κ, λ, ν) 
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 Z= g(X) – g (0); g(x) = c + sgn(x – c) λ    
 

 
        

   

 
 
 

   (5) 

(Koutsoyiannis et al., 2008), with three parameters (κ, λ, c) and when c=0: 

         –                    λ    
 

 
        

 

 
 
 

   (6) 

   
   

  
              

            
    (7)                                 

(Box – Cox, 1964), with λ parameter 

 

Figure 32: Generated synthetic normalized, time series, from Alexandroupoli station, from the 

multivariate time scale method. (Koutsoyiannis, 2002).  

 

Figure 33: Generated synthetic de - normalized, time series, from Alexandroupoli station, from the 

normalized transformation proposed by (Papalexiou et al., 2007). 

 

 
Figure 34: Generated synthetic de - normalized, time series, from Alexandroupoli station, from the 

normalized transformation proposed by (Koutsoyiannis et al., 2011). 
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Figure 35: Generated synthetic de - normalized, time series, from Alexandroupoli station, from the 

normalized transformation proposed by (Koutsoyiannis et al., 2008). 

 

 

Figure 36: Generated synthetic de - normalized, time series, from Alexandroupoli station, from the 

normalized transformation proposed by (Koutsoyiannis et al., 2008). 

 

 

Figure 37: Generated synthetic de - normalized, time series, from Alexandroupoli station, from the 

normalized transformation proposed by (Box - Cox, 1964). 

Specific transformations Z (g(x)) where used in order to normalize the empirical data of the 

selected station (Alexandroupoli), thus fitting data into Gauss distribution, which is a linear 

form at Quantile - Quantile plot. Quantile is an expression for the inverse cumulative 
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distribution and with minimizing the RMSE of empirical data with the (CDF)
-1

 observed data 

were fitted to the normal inverse cumulative distribution. At the end of the above procedure, 

parameters of the transformations were estimated, which tend to be useful at the next inverse 

procedure, de - normalization of data, using the inverse transformation Z (g(x))
-1

, which 

appeared at (Fig. 36-40).   

 

Figure 38: Empirical data (blue), which are fitted (red) to the inverse normal cumulative distribution 

(oil green) according to the transformation Ζ (g(x)) proposed by (Papalexiou et al., 2007). 

 

 

Figure 39: Empirical data (blue), which are fitted (red) to the inverse normal cumulative distribution 

(oil green) according to the transformation Ζ (g(x)) proposed by (Koutsoyiannis et al., 2011). 

 

Figure 40: Empirical data (purple), which are fitted (red) to the inverse normal cumulative distribution 

(oil green) according to the transformation Ζ (g(x)) proposed by (Koutsoyiannis et al., 2008). 
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Figure 41: Empirical data (light blue), which are fitted (red) to the inverse normal cumulative 

distribution (oil green), according to the transformation Ζ (g(x)) proposed by (Koutsoyiannis et al., 

2008). 

 

 

Figure 42: Empirical data (brown), which are fitted (red) to the inverse normal cumulative distribution 

(oil green), according to the transformation Ζ (g(x)) proposed by (Box – Cox, 1964). 

In order to find which of the transformations, generates a synthetic time series which best 

fitted to the empirical data, by maintaining specific statistical characteristics as average, 

standard deviation and autocorrelation at lag = 1, a plot with the statistical characteristics for 

all of the five synthetic time series from each procedure mentioned above, was designed (Fig. 

41), showing if empirical statistical characteristics from the observed data are maintained. 

 

Figure 43: Statistical characteristics from empirical data, normal synthetic time series and five de – 

normalized synthetic ones, generated from different transformations.  
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Conclusions 

From the statistical - stochastic analysis, some useful conclusions were extracted about the 

wind speed behavior in Greece. 

 Southern and south - east areas of Greece are the windiest and especially the islands of 

the central Aegean (Naxos - Milos - Mikonos). Moreover, Rhodes Island and Methoni 

shows extreme wind episodes annually. 

 Standard deviation seemed to keep pace with the same extreme areas mentioned 

above, as the differences of the maximum and minimum wind speed, makes these 

variable to be more dispersed. 

 Southern and south - east areas seemed to have the higher theoretical wind energy, 

especially the islands of the central Aegean and also areas such as Methoni and Kithira 

seemed to have satisfactory wind energy. 

 Reanalysis data seemed to be well cross correlated to the observed values, as well as, 

they imply the same regions of maxima and minima of the wind speed as the 

observed.   

 Weibull distribution best fits the wind speed data, as well as GEV max distribution 

best fits to the gust. 

 The estimation of Weibull’s parameters, shape (k) and scale (c(m/s)) factor seemed to 

have a specific pattern, which reveals dependence to the area (islands – seashore – 

continental) and to seasonality (Winter – Autumn – Spring – Summer). 

 The best estimator for Weibull’s parameters seemed to be MLE and L-moments 

estimators, which are not affected by extreme values (outliers) of the observed data. 

 Wind seemed to blow from northern direction at approximately 45% percentage while 

60% of the mentioned percentage corresponds to February. 

 Trends of wind speed showed from the period 1970-2013 that wind speed is reduced 

through years in central Greece with rate 0.05 m/s/month and increased to the rest of 

the area with rate 0.03m/s/month. Trends for periods 1970-1990 and 1991-2013 

showed a reduction at rate 0.07 m/s/month and increment at rate 0.1 to 0.06 m/s/month 

respectively, for the same regions as the above mentioned. 

 Catastrophic events seemed to follow, spatial and temporal wind speed trends. These 

extreme events appeared at almost the same regions with positive wind speed trends 

and also most of them are observed the last two or three decades. 

 Hurst exponent was calculated from climacograms for all Greece and the value of 

H=0.75 seemed to fit observed data, well enough. 

Appendices        

Additionally, at the end of this assignment, there are three appendices in which are gathered 

the results of the above treatment. The appendix A (in Greek) pooled tables with data 

processing and the results of the calculations. The appendix B (in Greek), where maps are 

exported, for a better overview of the spatial distributed results, for monthly - annual and 

seasonal time scale and finally at the appendix C (in Greek), there are charts, bar charts, 

histograms and rose charts, to confirm the results and conclusions, drawn from this thesis. 


