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Abstract 7 

Data-gaps are ubiquitous in hydrometeorological time series and filling these values remains still 8 

a challenge. Since datasets without missing values may be a prerequisite in performing many 9 

analyses, a quick and efficient gap-filling methodology is required. In this study the problem of 10 

filling sporadic, single-value gaps using time-adjacent observations from the same location is 11 

investigated. The applicability of a local average (i.e., based on few neighboring in time 12 

observations) is examined and its advantages over the sample average (i.e., using the whole 13 

dataset) are illustrated. The analysis reveals that a quick and very efficient (i.e., minimum mean 14 

squared estimation error) gap-filling is achieved by combining a strictly local average (i.e., using 15 

one observation before and one after the missing value) with the sample mean. 16 
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1. Introduction 19 

Observing natural phenomena is of ultimate importance for understanding their complex 20 

characteristics. Understanding and simulating the earth-system processes requires a dense 21 

monitoring network of, not only long and reliable records, but also serially complete 22 

observations [e.g., Butler, 2014; Baldocchi et al., 2012; Silberstein, 2006]. Time series of 23 

different geophysical variables (e.g., precipitation) emerge therefore from the systematic 24 

monitoring of their temporal evolution. 25 

 26 

These instrumental time series are often plagued with a percentage of missing values (caused for 27 

example by malfunctioning of the equipment) creating sporadic and/or continuous gaps in their 28 

regular time-step. Many practical applications (e.g., extreme value analysis, continuous 29 

hydrological modeling) as well as statistical methodologies (e.g., spectral analysis, calibration 30 

(learning) algorithms, stochastic modeling and downscaling) have no tolerance to missing 31 

values. Preprocessing of raw datasets by infilling their missing values is thus a necessary 32 

procedure. Several interpolation techniques have been developed ranging from rather simple to 33 

extremely complex approaches. For example, Henn et al., [2013], Graham [2009], Horton and 34 

Kleinman [2007], Allison [2003], Roth [1994], Kemp et al. [1983] provide detailed reviews of 35 

several gap-filling approaches applied to various scientific disciplines. 36 

 37 

Several methods have been proposed for gap-filling environmental datasets e.g., linear or logistic 38 

regression, polynomial or spline interpolation, inverse distance weighting, ordinary kriging, and 39 

stochastic models that are fitted to the available records. More details on the aforementioned 40 

methodologies can be found in Koutsoyiannis and Langousis [2011] as well as in Maidment, 41 



[1993; ch. 19.4]. Additional statistical techniques that have been developed in the last decade, 42 

include artificial neutral networks and nearest neighbor techniques [Elshorbagy et al., 2000, 43 

2002], as well as approaches based on Kalman filter [Alavi et al., 2006] and nonlinear 44 

mathematical programming [Teegavarapu, 2012]. Hybrid methods (employing both process-45 

based and statistical tools) have been often also applied as part of weather generators [e.g., the 46 

MicroMet meteorological model; Liston and Elder, 2006]. Yet, the complexity and the 47 

computational demand of such methodologies often hamper their applicability to real world 48 

applications. While data-gaps are ubiquitous in hydrometeorological time series, how these gaps 49 

were filled is not often reported, or naïve approaches have been unjustifiably selected (e.g., such 50 

as filling the gaps with a fixed value, often corresponding to the sample average). 51 

 52 

In this study, we present a definitive argument against the use of the sample average for filling 53 

correlated hydrometeorological data. In addition, an innovative methodology, tailored for a quick 54 

filling of sporadic (i.e., single-value) gaps using information from time-adjacent values of the 55 

same location (i.e., within-station method), is presented and its advantages over other commonly 56 

used approaches are illustrated. The present study provides therefore a quick gap-filling with 57 

high efficacy and is geared towards practitioners and data analysts. 58 

2. Autocorrelation structure 59 

Filling missing data, irrespective of the implemented statistical technique, requires a good 60 

understanding of the underlying process and its peculiarities. Although many properties are 61 

necessary for a complete description of the observed variables, their autocorrelation structure is 62 

of great importance. Autocorrelation describes the linear dependences among different values of 63 

a time series providing therefore insights on how their persistence evolves in time. As such, it is 64 



a key component in distilling information on the missing data and thus a cornerstone for the 65 

presented methodology. 66 

 67 

Numerous studies illustrate different correlation patterns appropriate for describing several 68 

geophysical phenomena. Trying to cover the entire spectrum of autocorrelation structures widely 69 

detected and used in the hydrometeorological literature, we are focusing on: (i) processes with 70 

short-term persistence, characterized by exponential autocorrelation structure, and (ii) processes 71 

with long-term persistence, described by a power law autocorrelation function. These two 72 

structures have totally different characteristics in terms of time-dependence of the process and 73 

they are commonly present in different hydrometeorological variables (e.g., runoff, 74 

Koutsoyiannis [2013]; precipitation, Marani [2003]; sea level pressure and temperature, Percival 75 

et al. [2001], Stephenson et al. [2000]). Note that the suggested methodology is not limited to 76 

these two particular correlation structures. On the contrary, as it is demonstrated in the following 77 

sections, its applicability is more general, providing that the lag-1 autocorrelation can be 78 

estimated. Thus, the selection of known autocorrelation structures serves only for illustration of 79 

the theoretical framework underlying the methodology. In real-world applications, the estimation 80 

of empirical autocorrelations is enough for assuring the applicability and the efficacy of the 81 

proposed methodology. 82 

 83 

In the following sections, hydrometeorological variables are treated as random variables modeled 84 

as stationary (more specifically, weakly stationary, i.e., with constant expected value and 85 

autocorrelation that depends only on the time lag; Papoulis, 1965, p.302) stochastic processes in 86 

discrete time. Regarding the notation used, the so-called Dutch notational convention is applied: 87 



matrices and vectors are denoted by bold, random variables and stochastic processes are 88 

underlined, whereas their realizations (e.g. observed values) and the regular variables, are not. 89 

2.1 Exponential autocorrelation structure 90 

It has been very often claimed that hydrometeorological variables exhibit short-range 91 

dependence. For example, several studies have asserted that daily precipitation [Gilman, 1963], 92 

sea-surface temperature anomalies [Frankignoul and Hasselmann, 1977], Arctic sea ice 93 

[Blanchard-Wrigglesworth et al., 2011; but see Agarwal et al., 2012], climate variability 94 

[Hasselmann, 1976], as well as teleconnection patterns (such as North Atlantic Oscillation, 95 

Pacific-North American and West Pacific) [Feldstein, 2000; Wunsch, 1999; but see Percival et 96 

al., 2001; Stephenson et al., 2000] are characterized by Markovian dependence structure, i.e., the 97 

future appears to be independent of the past under the condition of known present [Papoulis, 98 

1965, p.535]. This dependence is theoretically justified in a few cases, but appears to be 99 

physically implausible [Koutsoyiannis and Montanari, 2007; Koutsoyiannis, 2011]. Thus, the 100 

wide use of the model can be attributed to its simplicity rather than to its sound physical basis. 101 

 102 

The Markovian property is reproduced by an autoregressive model of order one, AR(1), and the 103 

autocorrelation for different values of time lag j is given by: 104 
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where ρ is the lag-1 autocorrelation coefficient ( 1)   which quantifies the short-range 106 

dependence. This relationship implies that the time dependence decreases exponentially as the 107 

time step (lag) increases, leading to practically negligible values of autocorrelation even for 108 

small values of lag (Figure 1). 109 



2.2 Power law autocorrelation structure 110 

There is strong empirical evidence that many natural phenomena are better characterized by 111 

highly persistent serial correlations rather than exponentially decaying autocorrelation structures. 112 

This natural behavior is often referred as Hurst phenomenon, long-term persistence, long-range 113 

dependence, or Hurst-Kolmogorov (HK) behavior [Koutsoyiannis and Cohn, 2008]. Here, the 114 

latter term is adopted, acknowledging the pioneering contribution of both, H. E. Hurst who first 115 

detected empirically that Nile river-level data exhibit long-term persistence [Hurst, 1951], and A. 116 

N. Kolmogorov who developed a basic mathematical framework describing this behavior 117 

[Kolmogorov, 1940]. 118 

 119 

HK behavior is identified in many diverse geophysical quantities such as wind power [Bakker 120 

and van den Hurk, 2012; Haslett and Raftery, 1989]; precipitation [Fatichi et al., 2012; 121 

Koutsoyiannis and Langousis, 2011; Montanari et al., 1996; Savina et al., 2011, but see Bunde et 122 

al., 2013]; snow depth [Egli and Jonas, 2009]; temperature [Bloomfield, 1992; Gil-Alana, 2005; 123 

Scafetta and West, 2005]; river discharge [Nile, Africa, Koutsoyiannis, 2002; Warta, Poland, 124 

Radziejewski and Kundzewicz, 1997; Po, Italy, Montanari, 2012; Tiber, Italy Grimaldi, 2004; 125 

Boeotikos Kephisos, Greece, Koutsoyiannis, 2003]; indices of North Atlantic Oscillation 126 

[Stephenson et al., 2000]; solar activity [Ogurtsov, 2004; Scafetta and West, 2005; but see 127 

Rypdal and Rypdal, 2012]; extratropical atmospheric circulation anomalies [Tsonis et al., 1999]; 128 

paleoclimate records [Huybers and Curry, 2006; Markonis and Koutsoyiannis, 2012]. 129 

 130 

A power law representation of autocorrelation decay with lag appears to be more appropriate for 131 

describing the temporal dependences of these phenomena. While lag-1 autocorrelation measures 132 



short-term persistence, the Hurst exponent, H  0.5 1H   is used to characterize the strength 133 

of the HK behavior (i.e., long-term persistence). For the case of random noise 0.5H  , whereas 134 

for real-world time series, like the examples mentioned above, H is often much higher. The 135 

autocorrelation function for lag j, is given by: 136 
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which for large j is proportional to 2 2Hj  . This behavior implies that the autocorrelation 138 

decreases according to a power-type function of lag, which is much slower than the exponential 139 

decay described by the Markovian dependence. Indeed, while the time dependence of the AR(1) 140 

process practically (for ρ < 0.75) vanishes for lag≈10, the autocorrelations of HK process are fat-141 

tailed, maintaining significant values even for lags orders of magnitude higher (Figure 1). 142 

3. Filling methods 143 

Gap-filling techniques can be often presented as weighted averages of existing observations 144 

[Koutsoyiannis and Langousis, 2011] which can be summarized as follows: 145 

 Ty e w X  (3) 146 

where y  is the missing value under examination  0y x ,  2 1 1 2, , , , , , ,
T

N Nx x x x x x  X  147 

is a vector with the 2N random variables corresponding to the available observations (T denotes 148 

the transpose of the vector),  2 1 1 2, , , , , , ,
T

N Nw w w w w w  w  is a vector with the weights 149 

assigned to each of the available observed values X , and e is the estimation error. Different 150 

infilling techniques provide therefore means for estimating the weighting parameters w. In the 151 



following sections, the Mean Squared Error (defined as 
2 2 2MSE: E e ee     

 
) is used as a 152 

performance metric for assessing different gap-filling approaches. 153 

3.1 Optimal Local Average (OLA) 154 

We assume that all the records used for the gap-filling (
2 1 1 2, , , , , , ,n nx x x x x x  

) have equal 155 

weights (i.e. 2 1 1 2 1/ 2n nw w w w w w n          ; where 2n is the number of time-156 

adjacent values used for estimating the missing value under examination). The estimated missing 157 

value under examination can then be expressed as  1 1
ˆ / 2

n n

t t i t ii i
x x x n  
    (i.e., arithmetic 158 

mean approach). Within the framework of Optimal Local Average (OLA) approach we test 159 

which is the optimal number of neighboring records (n) that should be used in order to have the 160 

best estimation of the missing value (i.e., the one that minimizes MSE). The MSE is given by: 161 
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 (4) 162 

Assuming that the underlying stochastic process is (weakly) stationary, we can express the MSE 163 

as a function of the standard deviation σ of the process, the number of the neighboring values n 164 

used for the infilling, and the correlation coefficient i  for different values of lag i: 165 

    
2 2

2

1 1

1
MSE E 2 1 2 2 1

2

n n

i i

i i

e n n n i
n


 

 

                    
   (5) 166 

The necessary algebraic manipulations for the derivation of Eq. (5) are detailed in the auxiliary 167 

material (S1). The resulting MSE for the two examined autocorrelation structures and different 168 

values of lag-1 autocorrelation (based on Eq. (5)) is illustrated in Figure 2 (see also Figure S2). 169 



 170 

When processes with exponential autocorrelation structure are analyzed (Figure 2a and S2a), the 171 

strictly local average (i.e., n = 1) provides the minimum MSE for a wide range of lag-1 172 

autocorrelations. There is a critical value of lag-1 autocorrelation ( AR

cr 0.29  ) above which the 173 

strictly local average provides the best estimate (Table 1 and Figure 2a and S2a). This manifests 174 

the fundamental Markovian property underlying the AR(1) process, i.e., when ρ becomes non-175 

negligible ( 0.29  ) the information content of neighboring values should only be used, 176 

otherwise the MSE is larger (Figure 2a and S2a). For the case of power law autocorrelation 177 

structure, the time-adjacent values required for a minimum MSE decrease gradually as the lag-1 178 

autocorrelation increases (Figure 2b and S2b), as opposed to the sharp response of the AR(1) 179 

processes (Figure 2a and S2a). A critical value of ρ above which the strictly local average is 180 

preferable still exist but it is higher than the one of AR(1) processes ( HK

cr 0.52  ; Table 1 and 181 

Figure 2b and S2b). 182 

 183 

In summary, no matter which is the underlying autocorrelation structure (exponential or power-184 

type) when 0.52   the strictly local average (i.e., using one observation before and one after 185 

the missing value) provides the best estimate. Moreover, as Figure 2 and S2 illustrate, for a wide 186 

range of lag-1 autocorrelations, the sample average inflates the MSE, and therefore should be 187 

avoided when correlated data have to be infilled. 188 

3.2 Weighted Sum of local and total Average (WSA) 189 

Building upon the aforementioned findings (i.e., the time-adjacent values used for an efficient 190 

gap-filling can be determined by the lag-1 autocorrelation of the examined data), we provide a 191 

generalized framework distilling information from both, local and sample (global) average. The 192 



sum of the strictly local (i.e., one value before and one after the missing record) and sample 193 

average, weighted according to the lag-1 autocorrelation of the examined data, is used as an 194 

estimation of the missing value. The estimated missing value is then given by: 195 
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 (6) 196 

where λ is the weighting factor assigned to the sample average. In essence, parameter λ reflects 197 

the strength of the temporal correlation i.e., low (high) values of λ imply low (high) contribution 198 

of the sample average and thus high (low) temporal autocorrelation. Under the assumption of 199 

(weak) stationarity, the MSE is given by: 200 
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 (7) 201 

where 2N is the length of the available observations. After some algebraic manipulations, 202 

detailed in the auxiliary material (S3), the following expression is obtained: 203 
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 (8) 204 

The MSE is therefore expressed as a function of σ, i , N, and the weighting factor λ. For a given 205 

autocorrelation structure (i.e., known i ), we seek the value of λ that yields the minimum MSE 206 

(λopt; black dots in Figure 3; see also Figure S5 and S6a). For both Markovian and HK behavior, 207 



as lag-1 autocorrelation increases the contribution of the local average increases (i.e., λopt 208 

decreases, Figure 3; see also Figure S5 and S6a). 209 

 210 

An interesting property of the HK behavior is reflected in Figure 3b (see also Figure S6a): for 211 

high values of lag-1 autocorrelation there is a discontinuity in the values of λopt. More 212 

specifically, while it is expected that for high lag-1 autocorrelation the sample average does not 213 

contribute at all to the estimation of the missing value (i.e., λopt = 0), λ does not reach zero 214 

gradually and has non-zero values even for high values of lag-1 autocorrelation (Figure 3b and 215 

S6a). The rationale behind this behavior is that it takes time for a process with long-range 216 

dependence to reveal its characteristics. More specifically, when the available time series length 217 

is relatively small, the estimated sample average is in essence a local rather than a global average 218 

(see also detailed discussion in the auxiliary material (S4)). 219 

 220 

In order to assess the influence of sample size in the MSE estimation and thus in λopt, a 221 

sensitivity analysis was conducted checking sample sizes from 2×5 to 2×10
7
 (auxiliary material 222 

S4 and S5). For processes with exponential autocorrelation structure the relationship of λopt with 223 

ρ does not vary much with the time series length (Figure S4 and S5) and it is thus approximated 224 

by: 225 

  
2.26AR(1)

opt 1    (9) 226 

For processes with HK behavior λopt depends highly on the time series length (Figure S4 and S6). 227 

To mimic this type of dependence the λopt vs ρ relationship is approximated using two additional 228 

parameters (λ1, γ): 229 



   
1
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opt 11 1


      (10) 230 

where   
0.69

2

1 0.70 / 1 ln N    and    2 20.44 0.33 / 1 ln 1 0.03ln N     . 231 

 232 

In practice, for Markovian processes, once the lag-1 autocorrelation is estimated from the data, it 233 

can be plugged-in to Eq. (9) and estimate the value of λopt, then, Eq. (6) can be applied for gap-234 

filling the examined missing value. For data with HK behavior, one additional (but very simple) 235 

step is needed, i.e., the calculation of λ1 and γ given the length of the available records. 236 

4. Methods intercomparison and discussion 237 

The presented methods (OLA and WSA) are in essence generalizations of the widely applied 238 

concept of arithmetic mean, enhanced with information from the lag-1 autocorrelation of the 239 

examined time series. Their performance is tested against the sample average and the strictly 240 

local average (i.e., a linear interpolation between the values adjacent to the missing value) by 241 

comparing the resulting estimation error (Figure 4 and Figure 5).  242 

 243 

4.1 Monte-Carlo simulations 244 

Synthetic time series with 100000 values were generated from AR(1) and HK processes with 245 

zero mean and standard deviation equal to one and with lag-1 autocorrelation coefficients 246 

covering the entire range of possible values. The time series with HK dynamics were simulated 247 

using the function SimulateFGN from the R package FGN [Veenstra and McLeod, 2012]. Each 248 

value of the time series was then sequentially removed and the artificial data gap was then filled 249 

with the OLA and WSA approach, as well as we the sample and the strictly local average. 250 

 251 



For the entire range of lag-1 autocorrelation for both exponential and power-type autocorrelation 252 

structures, the WSA methodology provides the minimum MSE (Figure 4). When uncorrelated 253 

data are examined (i.e., lag-1 autocorrelation tends to zero) the WSA method converge to the 254 

sample average approach, while for highly correlated time series, it converges to the strictly local 255 

average approach. For relatively strongly correlated data (e.g., with lag-1 autocorrelation higher 256 

than 0.5) WSA and OLA methods have similar performance but the flexible character of WSA 257 

approach makes it appropriate for gap-filling sporadic gaps across the entire spectrum of 258 

temporal dependences (minimum MSE; Figure 4). Similarly to the inverse distance weighting 259 

(where information from neighboring in space station is used), in WSA approach the notion of 260 

similarity (in time) between data points is crucial.  The WSA methodology is therefore based on 261 

Tobler's first law in geography i.e., "everything is related to everything else, but near things are 262 

more related than distant things" [Tobler, 1970]. 263 

 264 

The sample average provides the worst results (highest MSE; Figure 4). Replacing a missing 265 

value with the sample average is a simple and easy approach for dealing with missing data, but 266 

as our analysis reveals much better results can be obtained by applying tools of similar 267 

complexity (i.e., WSA approach). It is also worth mentioning that a great advantage of the WSA 268 

methodology is that the probability distribution of the observations and the temporal 269 

relationships (i.e., autocorrelation) remain relatively undisturbed, avoiding induction of biases in 270 

the mean, variance or autocorrelation of the final time series. As already underlined elsewhere 271 

[e.g., Little and Rubin, 2002], replacing all missing values in a dataset with a single value (e.g., 272 

using the sample mean) apart from reducing the variance, can often artificially inflate the 273 

significance of any statistical test that is based on these statistics. The proposed method is not 274 



free of these problems, but if the autocorrelation is strong and the percentage of missing values 275 

low, the reduction of variance is not substantial. In addition, with the WSA methodology no 276 

assumption was made regarding the distribution underlying the examined dataset. Moreover, as 277 

demonstrated in Eq. (8),  there is no dependence of the MSE to the mean properties of the 278 

analyzed dataset, therefore there is no need for data preprocessing (e.g., normalization). Given 279 

that the underlying autocorrelation structure is identified, this simple method does not impose 280 

any requirement for calculation of other statistical quantities apart from the sample mean and the 281 

lag-1 autocorrelation for its application. 282 

4.2 Real-world applications 283 

An additional illustration of the aforementioned finding is summarized in Figure 5. Real-world 284 

time series from the Global Historical Climatology Network, (GHCN version 2.60; 285 

www.ncdc.noaa.gov/oa/climate/ghcn-daily) and from the Roda Nilometer, near Cairo (minimum 286 

water levels of Nile; [Toussoun, 1925]) are presented (Figure 5). 287 

 288 

Time series of annual precipitation (GHCN, station ID: CA003031093) behaving as Markovian 289 

process with lag-1 autocorrelation 0.29  , and temperature (GHCN, station ID: 290 

GM000003342) presenting HK dynamics with Hurst exponent 0.72H   (estimated using the 291 

slope of the climacogram, which is a double-logarithmic plot of the standard deviation of the 292 

sample at an aggregate timescale vs the timescale; Koutsoyiannis, 2003, 2010) are examined. 293 

Observed records spanning from 1893 to 2011, were infilled removing sequentially every single 294 

value and gap-filling with the presented methodologies (Figure 5). The original and the infilled 295 

time series, as well as the efficiency of each infilling approach (defined as 296 

1-nRMSE 1 MSE s   where nRMSE is the normalized Root Mean Squared Error and s is the 297 

www.ncdc.noaa.gov/oa/climate/ghcn-daily


standard deviation of the observed time series) are presented in Figure 5a,c and Figure 5b,d 298 

respectively.  299 

 300 

The longest instrumental record of the water levels of Nile is also examined (focusing on the 301 

period 622 AD to 1470 AD that the record is almost uninterrupted), illustrating the advantages of 302 

within-station gap-filling approaches. In this case, the use of within-station information is 303 

apparently the only solution since neighboring stations, covering the same time period, are not 304 

available. The annual minimum water levels of Nile are characterized by HK dynamics with 305 

Hurst exponent 0.87H  [Koutsoyiannis, 2013]. For clarity in the illustration, only 200 years are 306 

presented, covering the period 800 AD to 1000 AD (Figure 5e,f), but the processing was made, 307 

and the efficiency was calculated, for the entire series. The WSA approach yields the highest 308 

efficiency (Figure 5f). Since the data present strong autocorrelation, gap-filling with OLA and 309 

local average approach converges to the same results (Figure 5e,f; see also Table 1). As in the 310 

previous two real-world examples (i.e., annual precipitation and temperature time series), the 311 

sample average has no skill (i.e., efficiency tends to 0; Figure 5b,d,f) manifesting that its use in 312 

gap-filling hydrometeorological variables is not only unjustified, but also seriously flawed. 313 

 314 

In accordance with the presented theory (Section 3) and Monte-Carlo simulations (Figure 4), 315 

WSA approach provides the highest efficiency (1 nRMSE ; Figure 5b,d,f). It is worth underline 316 

that, when the examined time series do not present high autocorrelation, the other three 317 

approaches (i.e., sample and local average as well as OLA) lead to comparable results in terms of 318 

overall efficiency (Figure 5b,d), but the distribution of the infilled time series varies significantly 319 

(Figure 5a,c). When data with strong autocorrelation are examined (Figure 5f), the use of 320 



neighboring in time values improves significantly the performance of the gap-filling approach 321 

(Figure 5e,f). As expected, the use of sample average vanishes the variability presented in the 322 

original record, while the local average preserves many interesting features of the original 323 

records (Figure 5a,c,e). 324 

5. Limitations and further improvements 325 

While our analysis is focusing on sporadic, single-value data-gaps, generalizations of the 326 

presented approach for a wider gap-window are possible. Continuous missing values can be 327 

infilled by applying sequentially the presented framework (cascade process). More specifically, 328 

the available observations, at the gap-window boundaries, are used for the estimation of the 329 

missing value in the middle of the gap-window. This value is then used as a proxy, applying 330 

again the WSA approach for the new, restricted gap-window. A cascade-based procedure can be 331 

thus applied gap-filling sequentially continuous missing values. However, it is worth mentioning 332 

that the wider the data-gaps the more uncertain the estimated first- and higher-order statistics of 333 

the examined time series and thus the estimated missing values. A more elegant (but 334 

computationally more demanding) approach for dealing with multiple sequential data-gaps can 335 

emerge from Eq. (3). More specifically, instead of assigning equal weights to the available 336 

observations (as is the case for the presented methods; see Section 3), for each of the examined 337 

missing values, specific weighting factors ( w ) can be assigned to the available observations by 338 

solving explicitly Eq. (3); results of ongoing research on this issue are planned to be presented 339 

soon.  340 



6. Conclusions 341 

Conventional methods for handling missing data (such as sample average or linear interpolation 342 

of values adjacent to the missing record) are seriously flawed in the hydrometeorological time 343 

series, where the time series autocorrelation is non-negligible. Taking advantage of the 344 

information content of the lag-1 autocorrelation, a new flexible and equally simple framework 345 

for a quick gap filling of sporadic, single-value, gaps is proposed. The conclusions of our study 346 

are twofold: (i) a definitive argument against the use of the sample average for infilling 347 

correlated data is provided and demonstrated theoretically; and (ii) a new gap-filling 348 

methodology, equivalently simple but significantly more efficient, using a weighted sum of 349 

sample and strictly local average, is developed and its advantages are illustrated. The estimation 350 

of the sample mean and the lag-1 autocorrelation is the only necessity for assuring the 351 

applicability of WSA approach. The presented methodology is therefore a valuable tool for a 352 

quick filling of a small number of missing measurements tailored for hydrometeorological data 353 

as well as for a efficient gap-filling of missing paleoclimatic records, where neighboring station 354 

are not available. 355 

 356 
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Tables 508 

Table 1. Time-adjacent values needed for an optimal infilling (minimum Mean Squared Error) 509 

of missing observations according to the Optimal Local Average methodology, for different 510 

autocorrelation structures (short or long-term persistence) and the lag-1 autocorrelations. 511 

ρ ≤ 0.25 n =n max ρ < 0.3 n =n max

0.30 ≤ ρ ≤ 0.32 n =4

0.33 ≤ ρ ≤ 0.38 n =3

0.39 ≤ ρ ≤ 0.51 n =2

ρ ≥ 0.52 n =1
ρ : lag-one autocorrelation coefficient

n : time-adjacent values used for the infilling

n max : all the available observed values, i.e., sample average

ρ ≥ 0.29 n =1

Optimal Local Average

Short-term persistence Long-term persistence

0.26 ≤ ρ ≤ 0.28 n =2

 512 

513 



Figures 514 

 515 

Figure 1. Theoretical autocorrelation functions for: (i) Markovian processes, AR(1), with 516 

exponential decay of autocorrelation with lag (Eq. (1)) and (ii) processes with HK behavior, 517 

described by the Hurst exponent H, with a power law relationship of autocorrelation with lag 518 

(Eq. (2)). The lag-1 autocorrelation, ρ, characterizes the strength of short-term persistence while 519 

the Hurst exponent, H, quantifies long-term dependences. Note that Eq. (2) implies that H and ρ 520 

are related as  20.5 log 1 1H      . 521 



 522 

Figure 2. Illustration of the rationale underlying the Optimal Local Average (OLA) 523 

methodology based on Eq. (5) for processes with (a) exponential, and with (b) power-law 524 

autocorrelation structure. The Mean Squared Error of an estimated missing value, based on local 525 

averages with different range (i.e., different number of neighboring values), for hypothetical time 526 

series with different lag-1 autocorrelation and standard deviation equal to 1, is depicted (Eq. (5)). 527 

When the number of time-adjacent values used for the local average estimation equals 1, one 528 

value before and one after the missing observation are used for estimating the missing value, 529 

while when this number equals 30, the sample average is used (i.e., the average of all available 530 

observations, here for illustration assumed to be 30 before and 30 after the missing value). 531 



 532 

Figure 3. Surface plots of the Mean Squared Error (MSE) estimated according to the Weighted 533 

Sum of local and total Average (WSA) methodology (based on Eq. (8), and an hypothetical time 534 

series length of 2×30 and standard deviation equal to 1), for different values of parameter λ, for 535 

processes with (a) exponential, and (b) power-law autocorrelation structure. The optimal values 536 

of parameter λ, i.e., the ones that minimize the MSE are also highlighted (black dots). As the lag-537 

1 autocorrelation increases, the optimal values of parameter λ, which indicates the overall 538 

contribution of the global average, decreases. 539 

540 



 541 



Figure 4. Estimated Mean Squared Error (MSE) based on different infilling methodologies 542 

(sample average i.e., using all the available values (here for illustration purposes 2×30 values are 543 

used); strictly local average using one observation before and one after the missing record; 544 

Optimal Local Average methodology, OLA; Weighted Sum of local and total Average approach 545 

(WSA). Results correspond to processes with (a) exponential, and (b) power-law (b) 546 

autocorrelation structure for different values of lag-1 autocorrelation. The solid lines depict the 547 

theoretical values of MSE (see Eq. (5) and Eq. (8)) while the dashed lines and uncertainty 548 

bounds correspond to the ensemble of the Monte-Carlo simulations, filling artificial data gaps. 549 

For the entire range of lag-1 autocorrelations, the WSA approach significantly outperforms other 550 

infilling methods, providing the smallest MSE. 551 

552 



 553 



Figure 5. Real-world examples of time series with Markovian behavior (AR(1); annual 554 

precipitation, panel a) and with HK dynamics (annual temperature, panel c, annual minimum 555 

water depth, panel e). Original data are depicted in white circles, while the infilled time series are 556 

depicted in continuous colored lines. Each record was removed and infilled with the four 557 

examined approaches, calculating each time the new sample statistics. Bar-plots (panels b, d, f) 558 

illustrate the efficiency (defined as 1 nRMSE  where nRMSE is the normalized Root Mean 559 

Squared Error) of each gap-filling approach (i.e., sample average, local average, Optimal Local 560 

Average , OLA, and Weighted Sum of local and total Average, WSA). Since the sample average 561 

is re-calculated each time a value is removed, the efficiency of the sample average approach is 562 

not always equal to 0 (as expected theoretically, i.e., the nRMSE once the sample average should 563 

be 100 %). 564 


