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ABSTRACT
Temporal disaggregation models of rainfall aim at generating finer scale time series of rainfall that are fully consistent with any given coarse-scale totals. In this work, we present a

disaggregation method that initially retains the formalism, the parameter set, and the generation routine of the downscaling model described by Lombardo et al (2012), which generates

time series with Hurst-Kolmogorov (HK) dependence structure. Then it uses an adjusting procedure to achieve the full consistency of lower-level and higher-level variables without

affecting the stochastic structure implied by the original downscaling model. Furthermore, we investigate how our simple and parsimonious model may account for rainfall intermittency,

because the capability of disaggregation models to reproduce rainfall intermittency is a fundamental requirement in simulation. Intermittency is quantified by the probability that a time

interval is dry. Here we focus on a modelling approach of a mixed type, with a discrete description of intermittency and a continuous description of rainfall. In other words, we model the

intermittent rainfall process as the product of the following two stochastic processes: (i) The rainfall occurrence process, which is described by a binary valued stochastic process, with

the values 0 and 1 representing dry and wet conditions, respectively; (ii) The non-zero rainfall process, which is given by our disaggregation model. We study the rainfall process as

intermittent with both independent (Bernoullian) and dependent (Markovian) occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry.

In either case, we provide the analytical formulations of the main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations.

HK downscaling model (Lombardo et al., 2012)
Let z1

(Δ) be a rainfall amount at a time interval Δ, which is to be downscaled to a certain

time scale of interest. We assume that z1
(Δ) is a RV log-normally distributed with mean μ0

and variance σ0
2 of a stationary stochastic process. Let us now introduce an auxiliary

Gaussian random variable of the HK process (i.e. fractional Gaussian noise, fGn) at the time

scale Δ: ln 𝑧1
∆
=  𝑧1

∆
=  𝑧1,0 with mean  𝜇0 = E  𝑧1,0 and variance  𝜎0

2 = Var  𝑧1,0 . We

disaggregate  𝑧1,0 by a dyadic additive cascade, i.e.  𝑧1,0 is partitioned into two Gaussian

random variables at the time scale Δ/2 (first cascade level, k = 1):

 𝑧1,0 =  𝑧1,1 +  𝑧2,1 (1)

This procedure is applied progressively until we obtain lower-level variables at the time scale

of interest. At the generic k-level, corresponding to the scale of aggregation Δ/2k, we have:

 𝑧𝑗,𝑘−1 =  𝑧2𝑗−1,𝑘 +  𝑧2𝑗,𝑘 (2)

Thus, in general it suffices to generate the variable of the first subinterval and that of the

second is then the remainder (eq. 2). We consider the following linear generation scheme:

 𝑧2𝑗−1,𝑘 = 𝜽T𝒀 + 𝜈 (3)

where 𝒀 =  𝑧2𝑗−5,𝑘,  𝑧2𝑗−4,𝑘 ,  𝑧2𝑗−3,𝑘 ,  𝑧2𝑗−2,𝑘,  𝑧𝑗,𝑘−1,  𝑧𝑗+1,𝑘−1,  𝑧𝑗+2,𝑘−1
T

, θ is a vector of

parameters, and 𝜈 is a Gaussian white noise that represents an innovation term. All the

parameters in θ and the variance of 𝜈 are estimated just in terms of the Hurst coefficient H.

Eq. (3) allows the generated lower-level variable to preserve autocorrelations with four

earlier lower-level variables (level k) and two later higher-level variable (level k – 1).

It can be shown that the above stepwise disaggregation approach effectively generates fGn.

Then, we apply a specific exponential transformation to obtain the actual log-normal process

with scaling properties similar to those of fGn.

Summary statistics at the generic k-level can be expressed as:

𝜇𝑘 = E 𝑧𝑗,𝑘 =  𝜇0 2𝑘 (4)

𝜎𝑘
2 = Var 𝑧𝑗,𝑘 =  𝜎0

2 22𝐻𝑘 (5)

𝜌𝑘 𝑖 = Corr 𝑧𝑗,𝑘 , 𝑧𝑗+𝑖,𝑘 =
exp  𝜎𝑘

2 𝜌 𝑖 −1

exp  𝜎𝑘
2 −1

(6)

where  𝜌 𝑖 =  𝑖 + 1 2𝐻 2 +  𝑖 − 1 2𝐻 2 − 𝑖 2𝐻 is the autocorrelation function of the fGn.

Adjusting procedure
When we apply our specific exponentiation to the HK process (auxiliary process) to make it

log-normal (actual process), we introduce an error in the additive property. To overcome this

problem, we use the power adjusting procedure introduced by Koutsoyiannis and Manetas

(1996) in order to restore consistency without affecting the stochastic structure implied by

our model. It allocates the error in the additive property among the lower-level variables zj,k.

Numerical simulations
We generate 30000 time series with sample size n = 210 = 1024, unit mean and variance

(i.e. E[zj,k] = Var[zj,k] = 1), H = 0.85, p0,k = 0.7, ρy,k = 0.7 for Markovian occurrences.

Random occurrences
In the first case, rainfall occurrences yj,k are modelled as a Bernoulli process in discrete

time, which is characterized by only one parameter (i.e., probability dry p0,k). It can be

shown that:

Cov 𝑥𝑗,𝑘 , 𝑥𝑗+𝑖,𝑘 = 1 − 𝑝0,𝑘
2
Cov 𝑧𝑗,𝑘 , 𝑧𝑗+𝑖,𝑘 (10)

If we put it in terms of the autocorrelation function, then we have:

Corr 𝑥𝑗,𝑘 , 𝑥𝑗+𝑖,𝑘 = 1 − 𝑝0,𝑘 𝜌𝑘 𝑖
Var 𝑧𝑗,𝑘

Var 𝑧𝑗,𝑘 +𝑝0,𝑘 E 𝑧𝑗,𝑘
2 (11)

Markovian occurrences
As a second example, we assume the simplest possible occurrence process yj,k with some

correlation, i.e. dependence of the current value on previous one. In other words, we

assume that the state (dry or wet) in a time interval depends on the state in the previous

interval. This is a process with Markovian dependence, which is completely determined

by lag-one autocorrelation coefficient ρy,k = Corr[yj,k , yj–1,k]. Therefore, we assume ρy,k

as an additional parameter, which can be expressed as a function of the probability dry

p0,k as follows (see eq. (13) by Koutsoyiannis, 2006):

𝜌𝑦,𝑘 =
𝑝00,𝑘−𝑝0,𝑘

2

𝑝0,𝑘−𝑝0,𝑘
2 (12)

where 𝑝00,𝑘 = Pr 𝑦𝑗,𝑘 = 0, 𝑦𝑗−1,𝑘 = 0 . Under these assumptions, Corr 𝑦𝑗,𝑘, 𝑦𝑗+𝑖,𝑘 = 𝜌𝑦,𝑘
𝑖

holds true for any time lag i. Then, the autocorrelation function of the intermittent rainfall

process xj,k is given by:

Corr 𝑥𝑗,𝑘 , 𝑥𝑗+𝑖,𝑘 =
1−𝑝0,𝑘+𝜌𝑦

𝑖
𝑝0,𝑘 𝜌𝑘 𝑖 Var 𝑧𝑗,𝑘 +𝜌𝑦

𝑖
𝑝0,𝑘 E 𝑧𝑗,𝑘

2

Var 𝑧𝑗,𝑘 +𝑝0,𝑘 E 𝑧𝑗,𝑘
2 (13)

Intermittency
The concepts expressed above are enriched by accounting for rainfall intermittency in the

modelling framework. Indeed, the rainfall process features an intermittent character at fine

timescales, and thus the probability that a time interval is dry is generally greater than zero.

Therefore, we aim to obtain downscaled time series of rainfall with a given probability dry

p0,k (a new model parameter). We assume the intermittent rainfall at the cascade level k and

discrete time j (= 1, …, 2k) xj,k as:

𝑥𝑗,𝑘 = 𝑧𝑗,𝑘 ∙ 𝑦𝑗,𝑘 (7)

where zj,k denotes the continuous random variable generated by our downscaling model,

which represents the non-zero rainfall process. While the rainfall occurrence process is

represented by yj,k that is a binary-valued random variable taking values 0 (dry condition)

and 1 (wet condition), respectively with probability p0,k and 1 – p0,k.

From the above considerations, it can be easily shown that:

E 𝑥𝑗,𝑘 = 1 − 𝑝0,𝑘 E 𝑧𝑗,𝑘 (8)

Var 𝑥𝑗,𝑘 = 1 − 𝑝0,𝑘 Var 𝑧𝑗,𝑘 + 𝑝0,𝑘 E 𝑧𝑗,𝑘
2

(9)

We need to investigate now the dependence structure of this particular stochastic process,

i.e. the pairwise dependence of xj,k and xj+i,k, where i is the time lag. Hence, we should

derive the formulation of the autocovariance function Cov[xj,k, xj+i,k]. To this aim, we assume

the following two dependence structures of the rainfall occurrence process:

1. Purely random model

2. Markov chain model
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