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Introductory note on the lower part of the title page 

 
Conditions of current operation of NTUA’s School of Civil Engineering  
 Rank #28 in the world and #7 in Europe among Civil Engineering Schools 

according to QS World University Rankings *; but other statistics are not good: 
 1850 students—may see an obscure future: youth unemployment rate = 58%.†   
 25% fewer professors (no appointments of young professors after retirements); 

may climb to 50% in the next 5-6 years. 
 50% dismissal of administrative and technical personnel. 
 40% reduction in salaries. 
 90% reduction in School’s budget. 
 50% increase of students’ admissions (as a result of government’s social policy).  
 A “reform” imposed by the government (opposite to the former democratic/ 

participatory organization of the university) contributed to chaos in our operation. 

                                  
* www.topuniversities.com/university-rankings/university-subject-rankings/2014/engineering-civil-structural 
† epp.eurostat.ec.europa.eu/statistics_explained/index.php/Unemployment_statistics 
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 Introductory note on the subtitle 

 
 

 
 

From Lorenz 
(2007)—A letter 
for the opening 
of the conference 
“20 Years of 
Nonlinear 
Dynamics in  
Geosciences” 
(Rhodes, Greece, 
2006): 
“Why 20 years, 
rather than 
something closer 
to 200? ” 
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Introductory note on the title 
 
 

 Random musings on stochastics 
 

 Τυχαίοι στοχασμοί στη στοχαστική 

 Stochastic stochastics   on stochastics 

 

 

Almost synonymous 
 

 

Same etymology,  
similar colloquial meaning 
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The meaning of randomness and stochastics 
 
Deterministic world view Indeterministic world view 
Sharp exactness Uncertainty 
 Random = unpredictable, uncertain  
Regular variable x: it 
represents a number 

Random variable, x: an abstract mathematical 
entity whose realizations x belong to a set of 
possible numerical values. x is associated with a 
probability density (or mass) function f(x). 
A random variable x becomes identical to a regular 
variable x only if f(x) = δ(x) (Dirac function). 

Trajectory x(t): the 
sequence of a system’s 
states x as time t changes 

Stochastic process x(t): A collection of (usually 
infinitely many) random variables x indexed by t 
(typically representing time). It represents the 
evolution of some uncertain system over time. 
A realization (sample) x(t) of x(t) is a trajectory; if 
it is known at certain points ti it is a time series. 

 Stochastics: The mathematics of random variables 
and stochastic processes. 
Stochastics = probability theory + statistics + 
stochastic processes 
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Part 1: The meaning of nonlinearity: 

Stochastic vs. deterministic perspective  
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Vit Klemes checking his data for nonlinearities 
“The first thing to 
do was to check the 
data for 
nonlinearities and 
get rid of them by a 
proper 
transformation. 
Contemplating 
which might be the 
most appropriate 
one in this case, the 
scene of my last 
inspiration came to 
mind. I saw myself 
sitting in what 
could be justly regarded as ‘log space’ — and that led me to use the log-
transformation, so popular in hydrology and beyond.”  
 From Klemes (2007): “An unorthodox physically-based stochastic treatment of tree rings” 
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Linearity as perturbation damper  
 
Linear dynamics (g: input, 
x: output) 

𝑎𝑛
d𝑛𝑥

d𝑡𝑛 + ⋯ + 𝑎1
𝑑𝑥

d𝑡
+ 𝑎0𝑥 = 𝑔  

General solution (convolution, with 
impulse response function h(t) ) 

𝑥(𝑡) =  𝑔(𝑡) ∗ ℎ(𝑡) = ∫ 𝑔(𝑡 − 𝜏)ℎ(𝜏)d𝜏
∞

−∞
  

For a causal system  
(h(t) = 0 for t < 0) 

𝑥(𝑡) = ∫ 𝑔(𝑡 − 𝜏)ℎ(𝜏)d𝜏
∞

0
  

= ∫ 𝑔(𝜏)ℎ(𝑡 − 𝜏)d𝜏
𝑡

−∞
  

Perturbation in output, ex(t) = x΄(t) 
– x(t) where x΄(t) is the output for 
perturbed input g΄(t) = g(t) + eg(t) 

𝑒𝑥(𝑡) =  𝑒𝑔(𝑡) ∗ ℎ(𝑡)  

= ∫ 𝑒𝑔(𝑡)ℎ(𝑡 − 𝜏)d𝜏
∞

−∞
   

Young’s inequality 
‖𝑥(𝑡)‖2 ≤  ‖ℎ(𝑡)‖1 ‖𝑔(𝑡)‖2,   
‖𝑒𝑥(𝑡)‖2 ≤  ‖ℎ(𝑡)‖1 ‖𝑒𝑔(𝑡)‖

2
   

For a mass preserving 
transformation, ‖ℎ(𝑡)‖1 = 1 

‖𝑥(𝑡)‖2 ≤ ‖𝑔(𝑡)‖2  
‖𝑒𝑥(𝑡)‖2 ≤ ‖𝑒𝑔(𝑡)‖

2
  

  

A linear system reduces the variability and uncertainty when transforming 
input to output. 
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An example with linear dynamics 
 
Dynamics 8 𝑥′′(𝑡)  +  6 𝑥′(𝑡)  +  𝑥(𝑡)  = 𝑔(𝑡)  

Impulse response function (U(t) is 
the Heaviside step function) 

ℎ(𝑡) =
1

2
(𝑒−𝑡/4 – 𝑒−𝑡/2) 𝑈(𝑡), ‖ℎ(𝑡)‖1 = 1  

Constant input g(t) = 1 → h(t) = 1 

Perturbation in inflow 𝑒𝑔(𝑡) = δ(𝑡), ‖𝑒𝑔(𝑡)‖
1

= 1, ‖𝑒𝑔(𝑡)‖
2

= ∞ 

Resulting perturbation in outflow 𝑒𝑥(𝑡) =
1

2
(𝑒−𝑡/4 – 𝑒−𝑡/2), ‖𝑒𝑥(𝑡)‖2 =

1

√12
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The stochastic version of the example 
Dynamics: 8 𝑥′′(𝑡)  +  6 𝑥′(𝑡)  + 𝑥(𝑡)  = 𝑔(𝑡) 

Solution: 𝑥(𝑡) = 𝑎1𝑥(𝑡 − 1) − 𝑎2𝑥(𝑡 − 2) + 𝑤(𝑡) 

𝑎1 ≔ e−1/2 + e−1/4, 𝑎2 ≔ −e−3/4,  
𝑤(𝑡) ≔ 𝑢(𝑡) − e−1/2𝑢(𝑡 − 1) − 𝑣(𝑡) + e−1/4𝑣(𝑡 − 1) 

𝑢(𝑡) ≔
1

2
∫ e−(𝑡−𝜏)/4𝑡

𝑡−1
𝑔(𝜏)𝑑𝜏, 𝑣(𝑡) ≔

1

2
∫ e−(𝑡−𝜏)/2𝑡

𝑡−1
𝑔(𝜏)𝑑𝜏 
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Linearity: Difference in deterministic and stochastic 
systems  
 
 Deterministic model + linear dynamics → No change (unless there is change 

in input)— Reduced uncertainty 
 Deterministic model + nonlinear dynamics → Change —Uncertainty 
 
 
 
 
 Stochastic model + linear or nonlinear dynamics → Change —Uncertainty 

(where stochastic model means either stochastic input or stochastic 
dynamics or both stochastic input and stochastic dynamics ) 

…two states differing by imperceptible amounts may eventually evolve 
into two considerably different states (Lorenz, 1963). 

Even if the dynamics is linear and even if the two initial states (assumed 
to be realizations of random variables) are identical, the later states will 
be always considerably different. 
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Linearity: different meaning of x + y = z and 𝒙  + 𝒚  =  𝒛  

If each of two addends is 
most probably 1,  
then the sum is most 
probably 3. 

This is a precise result: 
“most probably” suggests 
taking the mode of the 
distribution. 

Note: 𝑥 and 𝑦 are 

independent and 
identically distributed with 
gamma distribution and 
shape parameter 
κ = 2. If they were 
dependent, then 𝑥 + 𝑦 

would have mode between 
2 and ~3.5.  
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Emergence of linear randomness from nonlinear determinism 

 We use a toy model for a 
caricature hydrological system, 
designed intentionally simple 
(Koutsoyiannis, 2010, “A 
random walk on water”). 

 Only infiltration, transpiration 
and soil water storage are 
considered. 

 Discrete time: i (t = iΔ where Δ is 
an arbitrary time unit, Δ = 1 TU). 

 The rates of infiltration φ and 
potential transpiration τp are 
constant.  
o Input: φ = 250 mm/TU; 
o Potential output: τp = 1000 mm/TU. 

 State variables (a 2D semidynamical system): 
o Vegetation cover, vi (0 ≤ vi ≤ 1) ; 
o Soil water (no distinction from groundwater): xi (– ∞ ≤ xi ≤ α = 750 mm).  

 Actual output: τi = vi τp Δ 
 Water balance: xi = min(xi – 1 + Δ(φ – vi – 1τp), α) 

Nothing in the model is set to be random. 
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Toy model: system dynamics 

 
Water balance Vegetation cover dynamics 

xi = min(xi – 1 + Δ(φ – vi – 1τp), α) 𝑣𝑖 =
max(1 + (𝑥𝑖−1/𝛽)3, 1)𝑣𝑖−1

max(1 − (𝑥𝑖−1/𝛽)3, 1) + (𝑥𝑖−1/𝛽)3𝑣𝑖−1 
 

 
 
 

Assumed constants: φ = 250 mm/TU, τp = 1000 mm/TU, α = 750 mm, β = 100 mm. 

Easy to program in a hand calculator or a spreadsheet: www.itia.ntua.gr/923/. 
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Detailed system dynamics: deterministic and stochastic  

 In a deterministic description, xi := (xi , vi) is the vector of the system state 
and S( ) is the vector function representing the known deterministic 
dynamics of the system.  

 Even though the deterministic description is complete, a couple of runs with 
slightly differing initial conditions will show that the deterministic dynamics 
does not allow reliable prediction except for a small time horizon. 

 Therefore, we turn into a stochastic description and consider xi as a random 
variable with a probability density function fi(x). 

 The stochastic representation behaves like a deterministic solution, but 
refers to the evolution in time of admissible sets and probability density 
functions, rather than to trajectories of points: 

Deterministic description Stochastic description 
xi = S (xi – 1) 
where S is a vector 
transformation defining the 
system dynamics 

𝑓𝑖(𝒙) =
𝜕2

𝜕𝑥𝜕𝑣
∫ 𝑓𝑖−1(𝒖)d𝒖

 

𝑺−1(𝐴)

 

where A := {x ≤ (x, v)} and S–1(A) is the 
counterimage of A 
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Interesting trajectories produced by simple deterministic 
dynamics 
The plot of the soil 
water for a long 
period (1000  
TU) indicates:  
 High variability  

at a short 
(annual) scale. 

 A flat time 
average at a 30-
TU (30-year) 
scale (“climate”). 

 Peculiar variation patterns. 
 

The behaviour quickly flattening the time average is known as 
antipersistence (often confused with periodicity/oscillation, which is an 
error). 
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Quantification of variability 
 To study the peculiar variability of the soil water xi, we introduce the random 

variable ei := ((xi – xi – 1)/Δ)2, where Δ = 1 TU; ei is an analogue of the “kinetic 
energy” in the variation of the soil water.  

 Furthermore we introduce a macroscopic variable θ, an analogue of 
“temperature”, which is the average of 10 consecutive ei; high or low θ 
indicates high or low rates of variation of soil water. 

 The plot of the time series of θ for a long period (10000 TU) indicates long 
and persistent 
excursions of the 
local average 
(“the climate”) 
from the global 
average (of 10000 
values). 

 These remarkable 
changes are 
produced by the 
internal dynamics 
(no perturbation, 
no forcing).  
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Is a fully deterministic nonlinear system predictable?  
[Reply: No, it is fully unpredictable in deterministic terms] 

 
 The plot shows 100 terms of “temperature” time series produced with exact, 

as well as rounded off (by 10 –2), initial conditions. 
 The departures in the two cases are striking. 
 The detailed nonlinear deterministic (or stochastic) dynamics is good only 

for the short-term predictions (e.g. 1-5 time steps). 
 For long-term predictions it is better to use macroscopic stochastic dynamics 

(possibly linear). 

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

"T
em

p
er

at
u

re
" 

(m
/T

U
)2

Time (tens of TU)

exact initial conditions rounded off initial conditions average for 10000 TU



   D. Koutsoyiannis, Random musings on stochastics   18 

From detailed nonlinearity to macroscopic linearity 

  
 The time lag plot of the detailed process (xi + 2 vs. xi) clearly reflects the 

nonlinear deterministic dynamics. 
 The time lag plot of the macroscopic process “temperature” (θi + 40 vs. θi) 

reflects a linear statistical relationship. 
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Why macroscopization (coarse graining) is accompanied 
by a tendency to normality and linearity? 

 Normality is a consequence of the central limit theorem. 
 Both normality and linearity are consequences of the principle of maximum 

entropy for simple constraints, related to preservation of mean, variance 
and one or more autocovariance terms. 

 The principle of maximum entropy makes macroscopic descriptions as 
simple and parsimonious as possible.   
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Part 2: Entropy and uncertainty 
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Definition and importance of entropy 
 Historically entropy was introduced in thermodynamics but later it was 

given a rigorous definition within probability theory (owing to Boltzmann, 
Gibbs and Shannon). 

 Thermodynamic and probabilistic entropy are essentially the same thing 
(Koutsoyiannis, 2013a, 2014; but others have different opinion). 

 Entropy is a dimensionless measure of uncertainty defined as follows: 

Discrete random variable z Continuous random variable z 

Φ[z] := E[–ln P(z)] = – ∑ P
j
ln P

j

w
j = 1  

where Pj ≔ P{z = zj} 

Φ[z] := E [– ln
f(z)

h(z)
]  = – ∫ ln

f(z)

h(z)
f(z)dz

∞

-∞
 

where f(z) denotes probability density 
while h(z) is the density of a background 
measure (usually h(z) = 1[z–1])    

 Entropy acquires its importance from the principle of maximum entropy 
(Jaynes, 1957), which postulates that the entropy of a random variable 
should be at maximum, under some conditions, formulated as constraints, 
which incorporate the information that is given about this variable. 

 Its physical counterpart, the tendency of entropy to become maximal (2nd 
Law of thermodynamics) is the driving force of natural change. 
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Entropy maximization: only in a stochastic macroscopic world  

 A dynamical law St maps a system’s state y at time t = 0 into new states St(y) 
as time t changes. 

 A dynamical system is, by definition, time invertible (reversible): 
St(St΄(y)) = St + t΄(y) for t, t΄ ∈ R (positive or negative), so that St(S–t(y)) = y.   

 A semidynamical system is, by definition, noninvertible (irreversible) in 
time: the relationship St(St΄(y)) = St + t΄(y) holds only for t, t΄ ∈ R+ (only 
positive), so that St(S–t(y)) ≠ y.   

 In a dynamical system (time invertible) system the entropy is constant 
(Mackey, 2003, p. 31). 

 In a semidynamical system (noninvertible in time) the entropy is 
nondecreasing reaching a limit (maximum) as t → ∞ (Mackey, 2003, p. 30). 

 God theorem (name given by Mackey, 2003, p. 111): Every continuous 
trajectory x(t) in a space X is the trace (projection) of a single dynamical 
system St(y) operating in a higher dimensional phase space Y. 

 
 
 

As elementary physical laws are time invertible, the entropy increase is 
inherent with macroscopization:  
 in a detailed (high-dimensional) system description (Y), the entropy should 

be constant, but  
 in a macroscopic (lower-dimensional) description (X) it may increase in time.  
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Toward entropy metrics for stochastic processes: 
The time scale in the description of a stochastic process 

 

X(t) ≔

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

=

= X(iΔ)/Δ – Χ((i– 1)Δ)/Δ

(averaged at time scale Δ)
t0 Δ 2Δ … (i – 1)Δ iΔ
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Second-order properties of a stochastic process 
 
Instantaneous process 𝑥(𝜉) [stationary with variance γ0] 

Cumulative process X(t) ≔ ∫ 𝑥(𝜉)d𝜉
𝑡

0
 [nonstationary] 

Autocovariance c(τ) ≔ Cov[x(t), x(t + τ)] 
Power spectrum 𝑠(𝑤) ≔ 4 ∫ 𝑐(𝜏) 𝑐𝑜𝑠(2𝜋𝑤𝜏) 𝑑𝜏

∞

0
  

Structure function (aka 
semivariogram or variogram) 

ℎ(𝜏) ≔
1

2
Var[𝑥(𝑡) − 𝑥(𝑡 + 𝜏)] = 𝛾0 − 𝑐(𝜏) 

Cumulative climacogram Γ(t) ≔ Var[X(t)] 
Climacogram γ(Δ) ≔ Var[X(Δ)/Δ] = Γ(Δ)/Δ2 
 
Every second-order property of the process can be obtained from any other, e.g.  

𝑐(𝜏) = ∫ 𝑠(𝑤) cos(2π𝑤𝜏) d𝑤
∞

0
  

𝑐(𝜏) =
1

2
 
d2𝛤(𝜏)

d𝜏2 =
1

2
 
d2(𝜏2𝛾(𝜏))

d𝜏2   

𝛾(𝛥) =
𝛤(𝛥)

𝛥2 =
2

𝛥2 ∫ (𝛥 − 𝜏)𝑐(𝜏)d𝜏
𝛥

0
= 2 ∫ (1 − 𝜉)𝑐(𝜉𝛥)d𝜉

1

0
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Entropy production in stochastic processes 
 In a stochastic process the change of uncertainty in time can be quantified by 

the entropy production, i.e. the time derivative (Koutsoyiannis, 2011): 

Φ΄[X(t)] := dΦ[X(t)]/dt 

 A more convenient (and dimensionless) measure is the entropy production 
(i.e. the derivative) in logarithmic time (EPLT): 

φ(t) ≡ φ[X(t)] := Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) 

 For a Gaussian process, the entropy depends on its variance Γ(t) only and is 
given as (Papoulis, 1991): 

Φ[X(t)] = (1/2) ln(2πe Γ(t)) 

 The EPLT of a Gaussian process is thus easily shown to be: 

φ(t) = Γ΄(t) t / 2Γ(t) 

 When the past and the present are observed, instead of the unconditional 
variance Γ(t) we should use a variance ΓC(t) conditional on the known past 
and present. This turns out to be:  

ΓC(t) ≈ 2Γ(t) – Γ(2t)/2 
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Three processes extremizing entropy production 
 
Process Definition (through is autocovariance c(t) or its 

climacogram γ(Δ) 
Markov 𝑐(𝜏) = 𝜆e−𝜏/𝛼 → 𝛾(𝛥) =

2𝜆

𝛥 𝛼⁄
(1 −

1−e−𝛥 𝛼⁄

𝛥 𝛼⁄
) 

Hurst-Kolmogorov (HK) 𝛾(𝛥) = 𝜆(𝛼/𝛥)2−2𝛨 
Hybrid Hurst-
Kolmogorov (HHK) 

𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)
𝐻−1

𝜅  

Parameters:  
λ: state-scale parameter, [x]2 
α: time-scale parameter, [t] 
H: scaling parameter (0 < H < 1; Hurst parameter) 
κ: scaling parameter (0 < κ < 1; fractal parameter; fractal dimension = 2 – κ) 

Note: In general, the fractal and Hurst parameters are two different things 
(Gneiting and Schlather, 2004): 
 The fractal parameter determines the local properties of the process 

(as t → 0) 
 The Hurst parameter determines the global properties of the process  

(as t → ∞) 

See details in Koutsoyiannis (2011, 2015). 
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Entropy production in the three processes 

  

 The Markov process maximizes local entropy production (as t →0) and 
minimizes global entropy production (as t → ∞). 

 The HK process minimizes local entropy production (as t →0) and maximizes 
global entropy production (as t → ∞). 

 The HHK process maximizes both local (as t →0) and global (as t → ∞) 
entropy production. 
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(1)

 = 0.5; for 
the HHK process, κ 
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(Koutsoyiannis, 
2011, 2015) 
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Part 3: Scaling and power laws 
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How to identify TWO power laws in (almost) ANY function  
Lemma: Every nonzero continuous function g(x) defined in (0, ∞), whose limits 
at 0 and ∞ exist, is associated with two asymptotic power laws. 
Asymptotic behaviour as x → ∞ 
1. Assuming that lim𝑥 → ∞ 𝑔(𝑥) = 𝛽, we define a function f(x) as follows: 

𝑓(𝑥) ≔ {
𝑔(𝑥) − 𝛽,    𝛽 ≠ ±∞

1/𝑔(𝑥), 𝛽 = ±∞
 

Clearly, lim𝑥 → ∞ 𝑓(𝑥) = 0. 
2. If lim𝑐→ ∞(lim𝑥→∞ 𝑥𝑐𝑓(𝑥)) = 0, then we replace f(x) with –1/ln|f(x)| (which 

preserves the property lim𝑥 → ∞ 𝑓(𝑥) = 0); if necessary, we make iterations 
so that eventually lim𝑥 → ∞ 𝑓(𝑥) = 0 and lim𝑐→ ∞(lim𝑥→∞ 𝑥𝑐𝑓(𝑥)) = ∞. 

3. Given the properties in 2, there exists a unique b, 0 ≤ b < ∞, satisfying 

lim
𝑥→∞

𝑥𝑏𝑓(𝑥) < ∞ 

so that for any  b΄≠ b, 

lim
𝑥→∞

𝑥𝑏 ′𝑓(𝑥) = {
0, ∀𝑏  ′ < 𝑏
∞, ∀𝑏 ′ > 𝑏

 

The constant b defines an asymptotic power law with exponent –b  
(cf. Hausdorff dimension; the case b = 0 signifies an improper scaling). 
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How to identify TWO power laws in ANY function (contd.)  
Asymptotic behaviour as x → 0 
We define �̃�(𝑥) ≔ 𝑔(1/𝑥) and we proceed in the same manner to construct a 
function 𝑓(𝑥) ≡ 𝑓(1/𝑥) and determine the unique a for which relationships 

similar those of the previous slide apply (i.e. lim𝑥→∞ 𝑥−𝑎𝑓(𝑥) < ∞). This 
determines an asymptotic power law with exponent –a for f(x) as x → 0.  

Remarks 
 The two power laws refer to the same function g(x) but may correspond to 

different functions f(x), say, fa(x) and fb(x) for the asymptotic behaviours as 
x → 0 (local or fractal behaviour) and x → ∞ (global behaviour), respectively.  

 However, it is easy to construct a single function that combines both, e.g. 
fa(x)fb(x)—but many of them can actually be constructed. 

 As well as any object has a dimension, any continuous function entails 
asymptotic power laws; generally not one but two, which could in special 
cases be identical.  

 There is no magic in power laws (sorry about that!), except that they are, 
logically and mathematically, a necessity. 

 No assumption of criticality, self-organization, fractal or multi-fractal 
generating mechanisms, is necessary to justify their emergence.  
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The log-log derivative  
A power law is visualized in a graph of f(x) plotted in logarithmic axis vs. the 
logarithm of x. Formally, this slope is expressed by the log-log derivative: 

𝑓#(𝑥) ≔
d(ln 𝑓(𝑥))

d (ln 𝑥) 
=

𝑥𝑓 ′(𝑥)

𝑓(𝑥)
 

Of particular interest are the asymptotic values for 𝑥 → 0 and ∞, symbolically 
f #(0) and f #(∞). These are:  

𝑓#(∞)  = – 𝑏,  𝑓#(0)  = – 𝑎 

 
Proof for the former case (the latter can be handled in the same manner): 

lim𝑥→∞ 𝑥𝑏𝑓(𝑥) = lim𝑥→∞
𝑓(𝑥)

𝑥−𝑏 = lim𝑥→∞
𝑓 ′(𝑥)

−𝑏 𝑥−𝑏−1 = lim𝑥→∞
𝑓 ′(𝑥)

−𝑏 𝑥−𝑏 = lim𝑥→∞
𝑥𝑓′(𝑥)

−𝑏 𝑓(𝑥)
 
𝑓(𝑥)

𝑥−𝑏 =

 lim𝑥→∞
−𝑓#(𝑥)

𝑏

𝑓(𝑥)

𝑥−𝑏    

This implies that lim𝑥→∞ −𝑓#(𝑥)/𝑏 = 1 or 𝑓#(∞)  = – 𝑏. 
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Metrics of asymptotic behaviour of stochastic processes 
 
Metric Definition Comments 
For the global asymptotic 
behaviour (Δ → ∞): 
Climacogram 

γ(Δ) ≔ Var[X(Δ)/Δ] = Γ(Δ)/Δ2 
where X(Δ) is the cumulative 
process in the interval [0, Δ] 

For an ergodic 
process for Δ → ∞ 
γ(Δ) → 0 necessarily  

For the local asymptotic 
behaviour (Δ → 0):  
Climacogram-based 
structure function (CBSF) 

g(Δ) ≔ γ0 – γ(Δ) 
where γ0 = γ(0) is the 
variance of the instantaneous 
process x(t) 

The definition 
presupposes that 
the variance γ0 is 
finite 

For both the global and 
local asymptotic 
behaviour: Climacogram-
based spectrum (CBS) 

𝜓(𝑤) ≔
2 

𝑤𝛾0
𝛾(1 𝑤⁄ )𝑔(1 𝑤⁄ )  

=
2 𝛾(1 𝑤⁄ )

𝑤
(1 −

𝛾(1 𝑤⁄ )

𝛾0
)   

where w ≡ 1/Δ is frequency 
(as in the power spectrum) 

It combines the 
climacogram and 
the CBSF; it is valid 
for both finite and 
infinite variance  

Note: The CBSF is related to the structure function h(τ) by the same way as the 
climacogram is related to the autocovariance function c(τ): 

𝑐(𝜏) =
1

2
 
d2(𝜏2𝛾(𝜏))

d𝜏2 , ℎ(𝜏) =
1

2
 
d2(𝜏2𝑔(𝜏))

d𝜏2  
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Relationship of the climacogram and the climacogram-
based metrics with more standard metrics 

 The asymptotic behaviour of the climacogram is the same with that of the 
autocovariance function (under some general conditions and with the 
exception where γ#(∞) = 1 or 2; see proof below). 

 The asymptotic behaviour of the CBSF is the same with that of the structure 
function (under similar conditions and with the exception where g#(0) = 1 or 
2; the proof is similar to that below, given the last equation of the previous 
slide). 

 The asymptotic behaviour of the CBS is the same with that of the power 
spectrum (under some general conditions and with some exceptions not fully 
investigated yet; cf. Stein, 1999). 

Proof for the first claim: We assume that γ(Δ) has first and second derivative which → 0 as Δ 
→ ∞. We use l’Hopital’s rule to find:  

lim𝜏→∞ 𝜏𝑏𝑐(𝜏) = lim𝜏→∞
𝑐(𝜏)

𝜏−𝑏 = lim𝜏→∞
1

2
 
d2(𝜏2𝛾(𝜏))/d𝜏2

𝜏−𝑏 = lim𝜏→∞ (
𝛾(𝜏)

𝜏−𝑏 + 2
𝛾′(𝜏)

𝜏−𝑏−1 +
1

2

𝛾′′(𝜏)

𝜏−𝑏−2) =
1

2
(𝑏 − 1)(𝑏 − 2) lim

𝜏→∞
(

𝛾(𝜏)

𝜏−𝑏 ) =
1

2
(𝑏 − 1)(𝑏 − 2) lim

𝜏→∞
𝜏𝑏𝛾(𝜏)  

Unless b = 1 or b = 2, the limit lim𝜏→∞ 𝜏𝑏𝑐(𝜏) is 0, finite or ∞, if and only if lim𝜏→∞ 𝜏𝑏𝛾(𝜏) is 0, 
finite or ∞, respectively. Note that a Markov process belongs to the exceptions because b = 1.  
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Why prefer the climacogram and the climacogram-based 
metrics over more standard ones? 

 In stochastic processes, almost all classical statistical estimators are biased 
and uncertain; in processes with LTP bias and uncertainty are very high. 

 In the climacogram (variance), bias and uncertainty are easy to control as 
they can be calculated analytically (and a priori known).  

 The autocovariance function is the second derivative of the climacogram.  
o Estimation of the second derivative from data is too uncertain and makes 

a very rough graph.  
o Estimation of autocovariance is too biased in processes with LTP. 

 The power spectrum is the Fourier transform of the autocovariance and 
entails an even rougher shape and more uncertain estimation than in the 
autocovariance (see also Dimitriadis and Koutsoyiannis, 2015). 

 An additional advantage of the climacogram is its close relationship with 
EPLT. Specifically, combining the equations of slides 24, 25 and 31 we 
conclude that for Gaussian processes the EPLT is 

φ(t) = 1 + ½ γ#(t) 

 This entails that the Hurst coefficient H equals the global EPLT, φ(∞). 
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Asymptotic properties of the EPLT extremizing processes 
 

 Markov 
Hurst-Kolmogorov 
(HK) 

Hybrid Hurst-
Kolmogorov (HHK) 

Climaco-
gram 

𝛾(𝛥) =
2𝜆

𝛥 𝛼⁄
(1 −

1−e−𝛥 𝛼⁄

𝛥 𝛼⁄
)  𝛾(𝛥) = 𝜆(𝛼/𝛥)2−2𝛨  𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)

𝐻−1

𝜅   

Global 
behaviour 

γ#(∞) = –1 (c#(∞) = –∞) 
ψ#(0) = s#(0) = 0 

γ#(∞) = c#(∞) = 2H – 2 
ψ#(0) = s#(0) = 1–2H 

γ#(∞) = c#(∞) = 2H – 2 
ψ#(0) = s#(0) = 1–2H 

Hurst 
coefficient = 
EPLT φ(∞) 

0.5 H H 

Local 
behaviour 

g#(0) = h#(0) =1 
ψ#(∞) = s#(∞) = –2 

γ#(0) = c#(0) = 2H – 2 
ψ#(∞) = s#(∞) = 1–2H 

g#(0) = h#(0) = 2κ 
ψ#(∞) = s#(∞) = –2κ – 1 

Fractal 
dimension 

1.5 (?) 2 – H 2 – κ 

EPLT φ(0) 1 H 1 
Conditional 
EPLT φC(0) 

1.5 H 1 + κ 

Parameters: 
λ > 0 [x]2 (state-scale parameter); α > 0 [t] (time-scale parameter); 
0 < H < 1 [–] (Hurst parameter); 0 < κ < 1 [–] (fractal parameter) 



   D. Koutsoyiannis, Random musings on stochastics   36 

Data analysis and compliance with theory 

 Measurements of turbulent velocity offer the best way to sound out how 
nature works because they enable views on a wide range of scales, including 
very short ones.   

 The graph shows laboratory measurements (by X-wire probes) of nearly 
isotropic turbulence in Corrsin Wind Tunnel at a high-Reynolds-number 
(Kang et al., 2003); the sampling rate was 40 kHz (one per 25 ns; here 
aggregated at the three scales shown). 
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Turbulence is not a Markov process 

 
 Here the climacogram, the climacogram-based structure function (CBSF) and 

the climacogram-based spectrum (CBS) are used to compare the properties 
estimated from measurements with the theoretical ones of a Markov process. 

 The Markov process is good for the small time scales but not for the large 
ones. 
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Turbulence is not a standard Hurst-Kolmogorov process 

 
 The standard Hurst-Kolmogorov process is good for the large time scales but 

not for the small ones. 
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The Hybrid Hurst-Kolmogorov process for turbulence 

 
 The Hybrid Hurst-Kolmogorov process is good for the entire range of time 

scales. 
 It behaves like a Markov process for small scales and as a HK process for 

large ones. 
 It indicates high entropy production both at small and large time scales, thus 

making the theory consistent with observation. 
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Antipersistence and persistence emerging from simple 
deterministic dynamics (toy model) 

 The climacograms on the right 
refer to states x (soil water) and e 
or θ (“temperature”) obtained 
from the toy model; they are 
compared to that of a purely 
random process (white noise). 

 For an one-step ahead prediction, 
a purely random process xi is the 
most unpredictable.  

 Dependence and conditioning on 
observations enhances one-step 
ahead predictability. 

 However, in the climatic-type 
predictions, which concern the local average rather than the exact value, the 
situation is different. 

 For such prediction, most important is the variance at an aggregate scale, 
γ(Δ), while reduction due to conditioning on the past is usually annihilated. 
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Antipersistence and persistence emerging from simple 
dynamics (contd.)  

 From the climacogram of the 
process xi it becomes clear that 
antipersistence reduces the long-
term variance and thus enhances 
climatic-type predictability. 

 Conversely, persistence (as in the 
processes ei and θi) increases the 
long-term variance and thus 
enhances climatic-type 
unpredictability. 

 Persistence is associated with 
positive dependence in time, while 
in antipersistent processes the dependence is negative; note though that for 
small scales/lags the autocorrelations should be positive even in 
antipersistent processes (see leftmost points on the climacogram). 

Contrary to the common perception, positive dependence/persistence substantially 
deteriorates predictability over long time scales—but antipersistent improves it. 
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Persistence is not memory — it is change 
 The “memory” 

interpretation of 
persistence, while being 
the most common, may be 
a reflection of linear 
deterministic thinking. 

 An antipersistent process 
(upper graph) is 
characterized by (anti-) 
dependence in time, but 
primarily by resistance 
to long-term change. 

 A persistent process 
(lower graph) is also 
characterized by 
dependence in time, but 
primarily by occurrence of 
long-term change. 

 There is no long-term 
memory mechanism in 
the toy model. 
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Change and persistence are the rule (antipersistence is an exception) 
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Part 4: Some practical suggestions 
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Tip 1: Data analysis should be consistent with theory 

 

 In the example, 1024 data points have been generated from the HHK process 
with κ = 0.5 and H = 0.8 (and α = λ = 1). 

 The standard power spectrum (left graph) is too rough to make inference (to 
recover the underlying model and its parameters). 

 Smoothing the power spectrum (by averaging from 8 segments; right graph) 
makes things even worse in terms of high bias and estimated slope.  
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Data analysis should be consistent with theory (contd.) 
 Error 1: Model misspecification: a unique power law instead of a law with 

varying slope with different asymptotic slopes.   
 Error 2: Parameter misrepresentation: the power law slope –1.5 does not 

represent anything. 
 Error 3: Total theoretical failure: the slope on the left tail of the power 

spectrum (here the unique one) cannot be steeper than –1. 
o In making inference from data, the assumption of ergodicity is tacitly made. 
o A stochastic process with slope steeper than –1 on the left tail of the power 

spectrum is nonergodic (see proof 
in Koutsoyiannis, 2013b,c) 

o Thus the slope –1.5 estimated from 
the data is absurd.  

 Remedy:  
(a) awareness of theory; 
(b) use of algorithms consistent with 

theory; 
(c) use of proper stochastic tools (in 

this case CBS rather than power 
spectrum). 
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Tip 2: Proper stochastic tools should be used in model 
identification and fitting 

 
 The autocorrelogram and the climacogram were constructed from a time 

series of 100 terms generated from the HHK model with H = 0.79. 
 The empirical autocorrelation does not give any hint that the time series 

stems from a process with long-term persistence. 
 The climacogram unveils the underlying LTP process. 
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Tip 3: Most quantities calculated from data are statistical 
quantities 
 Many studies have identified low-dimensional deterministic chaos in hydrological 

and other geophysical processes.  
 Typically, they have used the so-called “correlation sum” or “correlation integral” 

C2(ε, m) (and its log-log slope). 
 In spite its name, the correlation sum is just the probability that the distance of any 

two points sampled in an m-dimensional space is smaller than ε.  
 Estimation of probability from data is a statistical task; because this probability for 

small ε turns out to be very small, the 
reliability of estimates is too low.  

 Inattentive interpretation of the graph 
referring to rainfall data 
(Koutsoyiannis, 2006) would conclude 
that rainfall is a deterministic process 
with dimension <4. 

 However, only the shaded area 
corresponds to statistically reliable 
estimations, and the only reliable 
conclusion is trivial: that the 
dimensionality is > 1 (e.g. ∞). 
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Tip 4: Inference from data requires awareness of the 
properties of statistical quantities  
 High-order statistical 

moments have been very 
popular in multifractal 
studies. 

 However, the example 
illustrates that high-
order moments have no 
information content. 

 The graph presents 
results of Monte Carlo 
simulation for the fifth 
moment of a Pareto 
distribution with shape 
parameter 0.15 for sample size n = 100 (Papalexiou et al. 2010).  

 Here the theory guaranties that there is no estimation bias; however the 
distribution function is enormously skewed. 

 The mode is nearly two orders of magnitude less than the mean and the 
probability that a calculation, based on data, will reach the mean is two 
orders of magnitude lower than the probability of obtaining the mode. 
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Tip 5: Attentive use of concepts and notation is extremely 
important 
 Random variables should be distinguished from regular variables both 

conceptually and notation-wise: 
o Example 1: What is the probability of a certain ordering of two like 

quantities? Reply: We need to specify the nature of the two quantities.  
Illustration: Assume that 𝑥 and 𝑦 are independent random variables uniformly distributed 

in [0, 1]. Then P{𝑥 ≤ 𝑦} = 0.5 but P{𝑥 ≤ 𝑦} = y (assuming that y is a realization of 𝑦).  

o Example 2: Does conditioning on available information decrease 
uncertainty (i.e., entropy)? Reply: YES but only if we are aware of the 
concepts; namely: Φ[𝑥|𝑦] ≤ Φ[𝑥] (but Φ[𝑥|𝑦] ≰ Φ[𝑥]). 
Illustration: Assume that  𝑥 and 𝑦 denote the dry (x, y = 0) or wet (x, y = 1) state of today (𝑥) 

and yesterday (𝑦) and that P{𝑥 = 1} = 0.2, P{𝑥 = 1|𝑦 = 1} = 0.3, P{𝑥 = 1|𝑦 = 0} = 0.1. Then 

the entropy is: 
 unconditionally: Φ[𝑥] = –0.8 ln 0.8 –0.2 ln 0.2 = 0.5; 
 conditionally on yesterday being wet Φ[𝑥|1] = Φ[𝑥|𝑦 = 1] =  –0.7 ln 0.7 –0.3 ln 0.3 = 0.61; 

so Φ[𝑥|𝑦] > Φ[𝑥] (likewise, Φ[𝑥|0]=0.33); 
 conditionally on information about yesterday Φ[𝑥|𝑦]=0.8 × 0.33 + 0.2 × 0.61 = 0.38 

(Papoulis, 1991, pp. 172, 564); thus Φ[𝑥|𝑦] ≤ Φ[𝑥]. 

 Concepts defined within stochastics should be interpreted within stochastics 
(failure to follow this rule may lead to statements like “stationarity is dead”).  
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Epilogue 

 Thanks to Ludwig Boltzmann, statistics has become a vital part of physics. 
 Thanks to Niels Bohr, Werner Heisenberg, and others giants of quantum 

mechanics, we know that uncertainty is an intrinsic property of the world. 
 Thanks to Henri Poincaré, we know that uncertainty dominates also in the 

macroscopic world. 
 Thanks to Edward Lorenz, we know that this is particularly the case in 

geophysics (1963). 
 Thanks to Kurt Gödel we know that solving all problems by deduction is 

infeasible, and thus we have to theorize inductive reasoning. 
 Thanks to Andrey Kolmogorov, we have a well-founded mathematical theory 

of stochastics. 

 

Data analysis Inductive inference  

Prediction with 
quantified uncertainty 

Logical world view  

Stochastics 
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Thanks… 
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