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Abstract 

Urban water management is currently understood as a socio-technical problem, including both 

technologies and engineering interventions as well as socio-economic dimensions and contexts 

vis a vis both end users and institutions. In this framework, perhaps the most important driver of 

urban water demand, at the intersection between engineering, social and economic domains, is 

urban growth. This paper examines aspects of the interplay between the dynamics of urban 

growth and the urban water cycle. Specifically, a cellular automata urban growth model is re-

engineered to provide growth patterns at the level of detail needed by an urban water cycle 

model. The resulting toolkit is able to simulate spatial changes in urban areas while 

simultaneously estimating their water demand impact under different water demand management 

scenarios, with an emphasis on distributed technologies whose applicability depends on urban 

form. The method and tools are tested in the case study of Mesogeia, Greece and conclusions are 

drawn, regarding both the performance of the urban growth model and the effectiveness of 

different urban water management practices.  
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Introduction 1 

The demand for long-term infrastructure adaptability in an ever-changing environment is 2 

gradually increasing the attention given by researchers and practitioners to more integrated 3 

studies that couple socioeconomic and environmental indices with long term infrastructure 4 

planning (Engelen et al., 1997; Pataki et al., 2011). This evolution is also reflected in water 5 

management, where modern practices tend to look into resiliency (Folke, 2006) and 6 

sustainability issues (Brown et al., 2009) while considering a broader range of available 7 

distributed technologies, complementing centralised solutions, for managing water within the 8 

cities  (Makropoulos and Butler, 2010). Technologies for managing stormwater locally, such as 9 

Sustainable Urban Drainage Systems (Woods-Ballard et al., 2007; Makropoulos et al., 1999) are 10 

now becoming much more common, distributed demand management technologies such as grey-11 

water recycling are emerging (Memon et al., 2007) and local rainwater harvesting, this 12 

millennia-old practice, is re-studied (Crouch, 1996) and re-introduced (Partzsch, 2009).  13 

 14 

The emphasis put on sustainability in urban water management raises new questions and 15 

challenges, linked to urban planning and points towards the need for an extended 16 

interdisciplinary collaboration. This is particularly evident in approaches that attempt to 17 

organically integrate elements of sustainable stormwater management into urban planning, such 18 

as Low Impact Development (van Roon, 2005) and Water Sensitive Urban Design (Brown and 19 

Clarke, 2007). Within this context, the perspective of sustainability in urban water management 20 

looks more carefully into the localization of the urban water cycle (van Roon, 2007) in addition 21 

or even as an alternative to traditional large-scale, central urban water infrastructure. The local 22 

scale (neighbourhood or even household) emerges as a key unit with regards to locally-based 23 
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sustainable urban water services (Makropoulos and Butler, 2010), and hence a scale of interest 24 

for (water sensitive) urban planning. It should be noted that while the transition towards Water 25 

Sensitive Cities (Bach et al., 2012; Brown et al., 2009; Wong, 2007) has begun in the context of 26 

drainage, a long way is still needed to reach the same level of awareness of the interplay between 27 

urban planning and water demand or wastewater management.  28 

 29 

The paper focuses on this interplay by redeveloping an urban growth model and linking it to an 30 

urban water cycle model. The hypothesis is that this coupling will allow us: (i) to investigate the 31 

impact of alternative Water Demand Management (WDM) practices, taking into account their 32 

suitability under specific characteristics of the urban areas and (ii) forecast the long term 33 

evolution of water demand under urban growth projections simulated using the urban growth 34 

model. The first outcome could help detect the most suitable intervention practice(s) for the 35 

specific areas within the studied region. The second could assist in the development of 36 

customised intervention  roadmaps. 37 

 38 

Outlining the integration potential between urban growth and 39 

urban water cycle modelling – Scale, detail and data issues 40 

There exist several practical challenges in the use of urban growth models in an integrated urban 41 

water management context. For example, the need for local scale modelling makes typical 42 

statistical population models unsuitable to examine links between urban growth and water 43 

demand projections within a (necessarily local) water-sensitive urban context. Furthermore, 44 

models that involve small-scale geographical components tend to be computationally and data 45 
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intensive (House-Peters and Chang, 2011) and such data often don’t exist, or is scattered 46 

between government agencies, water companies and other actors. … Therefore, there is a need 47 

for a parsimonious approach to modelling, applicable to data-scarce environments: While the 48 

fusion between urban growth and water cycle localization in modelling can in principle be 49 

addressed through combined, micro-scale simulation models (e.g. UrbanSim – Waddell et al., 50 

2003), such agent-based micro-simulations are particularly data-intensive and computationally 51 

heavy. This limits their suitability to data-ample environments (such as the U.S.A. or Western 52 

Europe), and can be of limited help to areas with great interest par excellence, such as third-53 

world countries with explosive urban growth patterns (Vlachos, P. E. and Braga, 2001). On the 54 

other hand, more parsimonious models, such as Cellular Automata (CA) only provide binary 55 

(urban and non-urban) or at best fuzzy (partially urban, with a membership value being assigned 56 

to each cell at each time step) classification (Liu, 2008). This is problematic as some localized 57 

urban water cycle technologies are only applicable to specific housing types (or urban densities). 58 

For instance, suburban houses have ample green space, thus enabling the installation of rainwater 59 

harvesting schemes and local sustainable stormwater interventions such as biofiltration trenches, 60 

while dense blocks of flats may be more suitable for grey-water recycling schemes at the 61 

building level. A clear need hence arises for parsimonious urban growth models (to address 62 

issues of data scarcity) that can however also provide (some) spatial characteristics at a 63 

neighbourhood or housing scale. 64 

 65 

To address this problem, we develop a Cellular Automata (CA) model capable of generating 66 

raster images of urban growth patterns with cell dimensions equal to the resolution of maps 67 

usually provided by EU Agencies (e.g. 100×100 m2 for CORINE maps).  It is argued that this 68 
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resolution is of particular interest to urban water management applications, since it is close to the 69 

spatial scale of the neighbourhood. Cellular Automata (CA) are a well-known technology for 70 

urban modelling  (see for example Couclelis, 1997; Batty, 2000; White and Engelen, 1993, 1997; 71 

Clarke et al., 1997), offering a range of unique characteristics that are particularly favourable for 72 

spatial applications (Liu, 2008), such as simplicity in their modelling structure, proximity to GIS 73 

and ability to include probabilistic, stochastic or fuzzy transition rules, thus enabling significant 74 

modelling flexibility and experimentation.  75 

 76 

In this work, the CA model is equipped with fuzzy inference, allowing it to incorporate a level of 77 

human reasoning, via the use of linguistic rules (Mantelas et al., 2010; Liu and Phinn, 2003; 78 

Dragicevic, 2004). The basis for our development is provided by a fuzzy constrained cellular 79 

automata model, originating from the work of Mantelas et al. (2010). This model is re-80 

engineered to be able to simulate multiple-state cells, instead of binary (e.g. Clarke and Gaydos, 81 

1998) or fuzzy (e.g. Liu and Phinn, 2003) cell states, thus being able to produce different urban 82 

densities and consequently housing units with different properties that can be used as input for 83 

localized urban water cycle simulation.  84 

 85 

This multiple-state nature of the developed CA model enables the meaningful coupling between 86 

urban growth and water cycle management models.  Multi-state CA models have been initially 87 

introduced more that fifteen years ago. For example, Engelen et al., (1997) applied a CA model 88 

to Cincinnati, USA, in order to investigate the capabilities of a multi-state CA modelling 89 

framework to realistically simulate observed growth and to generate spatial patterns and clusters 90 

of activity at the city scale, with promising results. Since then, multi state CAs have mostly been 91 
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used to model more complex urban phenomena, such as traffic flow patterns (Wang and Ruskin, 92 

2006) although interest in their use for modelling complex urban dynamics is reviving (Ding et 93 

al., 2013).  94 

The Urban Water Optioneering Tool (UWOT) (Makropoulos et al., 2008; Rozos et al., 2010; 95 

Rozos and Makropoulos, 2013) is then employed to model the complete urban water cycle  in a 96 

bottom-up logic, allowing for the assessment of the impact of distributed water-aware 97 

technologies, defined here as technologies that help to improve the performance of the urban 98 

water cycle. Such water-aware technologies include low flush toilets, rainwater harvesting and 99 

greywater reuse schemes (Makropoulos and Butler, 2010). UWOT is able to simulate both 100 

“standard” urban water flows (potable water, wastewater and runoff) as well as their integration 101 

through recycling at a household, neighbourhood or city scale (Rozos and Makropoulos, 2012). 102 

 103 

It is argued that this combination of a suitably modified CA model with UWOT provides a 104 

balanced approach between parsimony and output detail which drastically improves over the 105 

usual binary CAs by providing indications on the type of housing units, thus increasing insights 106 

on the potential for water technology applicability at local and regional scales.  107 

The bi-parametric multi-state CA model 108 

To study the dynamics of urban development and having integration with UWOT as a key 109 

requirement in mind, a fuzzy constrained cellular automata model was developed, based on a 110 

simpler, single-state model (Mantelas et al., 2012b, 2010). The adopted methodological approach 111 

combines Fuzzy Logic (Zadeh, 1965), to incorporate a level of “reasoning”, with Cellular 112 

Automata (CA), to simulate projections of future residential urban growth. The modelling 113 

framework is shown in Figure 1 and includes three main stages: 114 
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a) estimation of the suitability factor (desirability for urbanisation driven by various spatially 115 

related factors, e.g. proximity to transportation network, etc) of the area with the use of fuzzy 116 

logic. 117 

b) assessment of the initial CA model conditions (initial urban fabric image), with the aid of 118 

available GIS input such as land-cover/land-use data and satellite images.  119 

c) execution of the model and generation of future urban growth patterns (in the form of 120 

raster maps) for the studied period at an annual time step. 121 

 122 

Four independent, parallel, fuzzy inference systems (FIS), each focusing on one distinct set of 123 

urban growth factors, was developed and used to calculate the suitability of the studied area for 124 

urbanisation. The use of independent FIS leads to a highly configurable mapping, which allows 125 

for greater versatility in case more urban growth factors need to be taken into account. The FIS 126 

inputs that can be used depend on available data, with physical restrictions (slope, land-use, 127 

water bodies) and accessibility (transportation network) being of primary importance. In this 128 

study the following set of inputs to the FISs were used: 129 

 Accessibility to road networks (including primary and secondary road network, as well as 130 

motorway links): areas close to road networks received a high suitability score. 131 

 Proximity to green areas or the sea: areas close to green areas or the sea received a high 132 

suitability score. 133 

 Slope of the terrain: areas with mild terrain received a high suitability score. 134 

 Availability of mass transportation availability, expressed as a distance from main transport 135 

hubs: areas close to main transport hubs received a high suitability score. 136 

 137 
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The outcome of this process was the mapping of inputs to a set of fuzzy values that are then 138 

inter-connected through fuzzy rules in order to assess the overall suitability in each inference 139 

system. The fuzzy inference rule formation deploys logical operators to link different inputs in 140 

the case of multiple-input-single-output systems, e.g. in the case of road network accessibility the 141 

following combination of factors was used: 142 

IF ‘Primary Road Distance is Small’ AND ‘Motorway Link Distance is Small’, THEN ‘overall 143 

suitability is Very High’ 144 

 145 

After the implementation of the rules, the fuzzy output values are defuzzified with the use of the 146 

centre-of-gravity technique in order to provide the final, crisp values representing the Suitability 147 

Factor (SF), which is related to the desirability for urbanisation driven by the specific input 148 

variable(s). The SF values derived from each FIS are then merged (using, in the absence of any 149 

differentiating evidence, equal weighting) to obtain the overall SF, for each cell, with values 150 

ranging from 0 (completely unsuitable for settlement) to 1 (completely suitable). The final result 151 

is a raster map of overall suitability, which in turn is an input for the Cellular Automata urban 152 

growth model. More information about the implementation of fuzzy logic for the calculation of 153 

the Suitability Factor can be found in previous works (Rozos et al., 2011; Mantelas et al., 2012a). 154 

As discussed above, the urban growth model assumes multiple types of urban growth, which 155 

represent varying degrees of urban density. The mechanics behind multiple-state urban growth 156 

follow a pattern of cell state allocation and transformation, which comprises the following 157 

stages, one at each time step (Figure 2): 158 

• An Urban Growth Algorithm (UGA), similar to the one presented and successfully tested in 159 

earlier works (Rozos et al., 2011; Mantelas et al., 2010, 2012b) decides which non-urban 160 
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cells are to be urbanized in each time step. Two rules of urban expansion and one rule of 161 

“spontaneous” growth (in areas without neighbouring urban cores) are applied, as suggested 162 

by Mantelas et al., 2012. These rules relate to the binary urban raster map of each time step 163 

– in other words decide between urban and non-urban cell types only.  164 

• The State Allocation Algorithm (SAA) designates different cell states to all cells which 165 

were urbanized with the previous algorithm, based on neighbouring urban pressure and 166 

density. This rule applies only to cells that were turned from non-urban to urban at the 167 

specific time-step.  168 

• An Intensification Module (INM) assigns denser urban states to existing, urban cells. This 169 

allows cells that are already urban to transform into urban states with greater urban density. 170 

This feature is essential to represent a characteristic transformation of urban areas in 171 

Greece, where urban density is generally increased2 in a single-building basis as single-172 

floor houses with gardens transform into densely-built flats within the same, unchanged 173 

road network layout.  174 

 175 

All rules of transformation within the aforementioned three stages combine the SF with 176 

neighbourhood-driven pressure, based on the Moore Neighbourhood pattern (Weisstein, 2005), 177 

with different radii of the Moore-neighbourhood being employed by each rule. The rules are all 178 

of a probabilistic nature, thus allowing for a more realistic representation of urban growth 179 

processes. These rules apply to each cell at each step of the model, taking into account the total 180 

amount of urban cells in the neighbourhood, as well as the amount of neighbouring urban cells 181 

with specific urban states, with the latter being used in the State Allocation Algorithm. The 182 

                                                 
2 Through a legislative system known as ‘antiparochi’ – see Mantouvalou and Mavridou, 2007 
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Intensification Module also employs rules based on the urban pressure of the neighbourhood 183 

(e.g. urban cells with higher cell states lead to higher urban pressure for the specific cells). 184 

 185 

Besides the cell neighbourhood effects, a velocity factor VF in (0, 1] was implemented in every 186 

rule, denoting the intensity with which the rule is applied temporally as well as the different 187 

paces of different rules. For example, urban expansion is a relatively fast process compared to 188 

intensification, so intensification has a much smaller VF parameter in its rules (see Table 1). In 189 

order to define the speed at which each rule is applied, the population dynamics of the area need 190 

to be known (i.e. population statistics from census studies need to be known at regular time 191 

steps). The velocity factor is then calibrated based on the speed patterns of past population 192 

dynamics. The formulae and details for each rule of the case study can be seen in Table 1, where 193 

PROB is the probabilistic result of cell state change, SF is the Suitability Index of the particular 194 

cell, MooreRules are urbanisation ratios driven by neighbouring cells and VF is the velocity 195 

factor. All factors are probabilistic in nature and are defined within (0, 1]. 196 

 197 

The parametric drivers of the rules are the suitability factor SF and the velocity factor VF. In 198 

principle, both of them can vary spatially and temporally and are subject to calibration. In some 199 

studies, the role of SF is twofold, both representing suitability in an area as well as determining 200 

urban growth and densification speed (e.g. Mantelas et al., 2012a; Li and Yeh, 2000). However, 201 

we argue that these factors represent different mechanics of urban growth and have distinct roles. 202 

This is why in our case a bi-parametric approach was chosen instead, with separate roles between 203 

the two parameters; the SF denotes the “desirability to build in an area”, driven by human 204 

reasoning, while VF stands for “speed of building in an area”, thus addressing drivers related, for 205 
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example, to macro-economic variables and with them the temporal evolution of different 206 

urbanisation mechanisms, such as urban expansion and intensification. In other words, SF 207 

represents a number of socio-geographic factors that make an area desirable, while VF quantifies 208 

what drives desirability into action. 209 

 210 

Since the socio-geographic factors are unlikely to radically change during short time intervals, 211 

SF is expected to exhibit much higher spatial variability than temporal. The opposite stands for 212 

VF since speed is directly related to economic growth, population inflow, immigration rates, 213 

legislation restrictions and relocation politics, etc. Therefore, in a typical short-term projection 214 

case, SF can be a spatially variable, temporally constant matrix, while the opposite can be 215 

assumed to be true for the VF. In cases of scarce socioeconomic data, such as this case study, 216 

constant VF values can be used, in order to retain a character of simplicity and laconic 217 

parameterization, subject only to general population trends for the area of interest. 218 

 219 

Temporally variable SF may be used in cases of what-if scenarios (i.e. exploring the evolution of 220 

infrastructure and its impact in the urbanization of an area) or additional available spatial 221 

information over time, such as the detailed evolution of the road network of the area or a 222 

dynamic change in land use over specific areas (land reform projects, infrastructure, parks etc.). 223 

On the other hand, VF can be derived through a separate socioeconomic model as an 224 

exogenously applied dynamic constraint (if data are available). Obviously, these two factors 225 

permit the formation of a number of scenarios, such as new infrastructure and land use policies 226 

(with a change in SF) or population and economic growth projections (with a change in VF). 227 

 228 
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The bi-parametric rationale offers the capability of both spatial and temporal configuration, thus 229 

enhancing the operational flexibility of the model. Temporal configuration is, after all, equally 230 

important to a Cellular Automata model, but is not often addressed, with the majority of CA 231 

models allowing a configuration based on the best fitting between given spatial data sets, without 232 

any additional temporal calibration features (Liu, 2008).  233 

The Case study: Mesogeia, Athens 234 

The model was applied in the region of Mesogeia, at the eastern part of Athens, a mostly 235 

agricultural area until two decades ago. Then, rapid urban development occurred, resulting in the 236 

doubling of its urban cover. Mesogeia is a relatively autonomous region in terms of urban growth 237 

(Mantelas et al., 2012a) as it is geographically separated from the rest of metropolitan Athens by 238 

Mount Hymettus in the West. Furthermore, it constitutes an “ideal” case of event-driven, peri-239 

urban rapid development, triggered by large-scale infrastructure, due to the fact that it was the 240 

region of the 2004 Olympic Games (Couch et al., 2007).  241 

 242 

To prepare the suitability factor and the initial urban fabric raster image, a series of geospatial 243 

manipulations were performed based on available geographic datasets. The CORINE land-cover 244 

raster data for the years 1990 and 2000 (Figure 3) was obtained from the European Environment 245 

Agency (EEA, 2011) and was re-projected to the Greek coordinate system HGRS 1987. For the 246 

terrain of the studied area, the Digital Terrain Model (DTM) was obtained from the Hydroscope 247 

Project (2011). Finally, the transportation network of the area was obtained from OpenStreetMap 248 

(2011) and was converted to a raster map containing primary and secondary roads, railway 249 

stations and motorway links. Finally, census data were obtained from the Greek National 250 

Statistics Agency, ELSTAT (Table 2). 251 
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 252 

The basis on which key urban growth characteristics and dynamics are identified and outlined 253 

were the CORINE datasets. The red areas (darker areas in BW image) in Figure 3 carry the 254 

CORINE identification code for “discontinuous urban fabric”, comprising residential areas 255 

around the edge of urban district centres, and certain urban districts in rural areas. These units 256 

consist of blocks of flats, individual houses, gardens, streets and parks, each of these elements 257 

having a surface area less than 25 ha. This type of land-cover can be distinguished from 258 

continuous urban fabric by the presence of permeable surfaces: gardens, parks, planted areas and 259 

non-surfaced public areas (European Environmental Agency, 2012). Therefore, the red areas 260 

could be interpreted as a rough estimation of the borders of urban growth of the study area. The 261 

remaining areas are classified according to CORINE as: complex cultivations, vineyards, 262 

sclerophyllous vegetation and transitional woodland-shrub. 263 

 264 

An analysis of the map of population density provided by CORINE (Figure 5) suggests that a 265 

reasonable and parsimonious grouping could be based on three major density classes: up to 2000, 266 

from 2000 to 4000 and above 4000 inhabitants per square kilometre. Different urban densities 267 

correspond to different urban properties, such as occupancy, number of buildings per cell, 268 

pervious and impervious areas etc. To represent the spatial distribution of the urban densities 269 

within the multiple-state urban growth model, three different cell states were mapped onto three 270 

different density classes with: state ‘2’ being associated to detached, low-storey houses; state ‘4’ 271 

to blocks of flats; and state ‘3’  to mixed state. State ‘1’ was set to correspond to non-urban cells, 272 

while state ‘0’ to cells that cannot be occupied (due to, for example, physical boundaries such as 273 

the sea). 274 
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 275 

The characteristics of each state (average pervious/impervious areas ratio, number of households, 276 

and occupancy) were obtained by manually interpreting satellite images of the study area (Figure 277 

4). Their attributes are given in Table 4. After the state identification, the initial number of urban 278 

cells and their spatial distribution inside each residential area were derived by using both the 279 

population information from the 1991 census (ELSTAT, 2012) and the map of population 280 

density disaggregation provided by CORINE (Figure 5 left). 281 

Urban Growth Simulation 282 

Using the aforementioned procedure, the initial, multiple-state urban fabric image of 1990 as 283 

well as the observed urban fabric image of 2000 was generated. The CORINE 2000 image, as 284 

well as population time series for each municipality (in this case values for 2000 and 2010) are 285 

used to calibrate the model, in terms of both spatial accuracy of the generated urban patterns and 286 

population growth rate. The aim was to reproduce the general urban growth pattern, as well as 287 

the population influx for each municipality on the basis of historical population data. As 288 

explained before, the suitability factor is derived using FISs, while the use of the velocity factor 289 

is limited to the general population trends due to lack of more detailed data. 290 

The CA model performance is validated against a number of metrics, comprising:  291 

 Cross-tabulation between the modelled and the observed urban cover (based on the 292 

CORINE 2000 data) for each municipality. 293 

 Overall population trends in each municipality compared with available census data. 294 

Comparing the estimated and observed population influx is essential both for model 295 

validation and proper urban water cycle modelling, since the number of occupants is then 296 

given as an input to UWOT and is used to calculate residential water uses.  297 
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 298 

The overall spatial performance of the model can be viewed in Figure 6, which shows the 299 

CORINE2000 general urban boundaries (with a dark gray colour), along with the urbanized cells 300 

from the CA model (light gray pixels). White pixels represent cells generated from the CA model 301 

that exceed CORINE urban boundaries. It can be suggested that the model performs 302 

satisfactorily in all cases of residential zones. It is noted that a number of zones that appear to be 303 

without modelled urban cells are characterized by CORINE 2000 data as industrial, commercial 304 

or large-scale infrastructure construction zones so the lack of residential development in these 305 

cases does not lead to inaccuracies. 306 

 307 

Figure 7 shows the fitting indicators of the model (for each municipality and for the whole area 308 

of Mesogeia). The metrics used, viz. the Kappa and Lee-Sallee  indices (Carletta, 1996; Clarke et 309 

al., 1996) imply that the overall spatial reproduction of urban growth is satisfactory, even with a 310 

number of inaccuracies present in certain municipalities, notably Artemis and Marcopoulo. The 311 

overall kappa index is 71%, which is deemed adequate for an initial application. This is even 312 

more so, in view of two points: 313 

• detection of land use from CORINE does not provide spatial data with enough accuracy to be 314 

fully reliable for elaborate applications such as urban water management at a household 315 

level. While the CORINE provides a basis for model implementation, one should be aware of 316 

its limitations, especially when there is differentiation between different types of land use 317 

(Diaz-Pacheco and Gutiérrez, 2013).  318 
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• a significant part of observed urban growth can be attributed to uses other than residential 319 

construction (for instance, commercial or industrial uses) or mixed uses, which is quite 320 

common in Athens. 321 

 322 

In view of this, the model evaluation was also based on population trends per municipality. This 323 

evaluation metric was chosen as a validation measure supplementing spatial metrics, since it is 324 

directly linked to water demand and detailed census data was available. In fact, this step is 325 

considered essential in the evaluation of the model, as remote sensing cannot substitute but only 326 

complement traditional socioeconomic indices (Besussi et al., 2010). Thus, a coupling approach 327 

of remote sensing data with socioeconomic indices becomes important at finer scales. 328 

 329 

A comparison between observed and simulated population growth (Table 3) shows that the CA 330 

model adequately represents occupancy influx and growth rate in most municipalities. Even non-331 

linear population trends are represented satisfactorily, with the exception of Pallini, where the 332 

model fails to represent the explosive population growth pattern. This case, however, is very 333 

complicated since the municipality borders changed between 2000 and 2010 and hence 334 

population numbers are not directly comparable.  335 

Integrating the urban water cycle model 336 

The detailed urban growth projections with multiple states given by the CA model allow the 337 

simulation of the total urban water cycle through UWOT at a neighbourhood-level (cellular 338 

level) basis. The urban water cycle of each of the three urban states (2, 3 and 4) is modelled in 339 

UWOT with the help of what is defined here as the Urban Response Units (URU). We define an 340 
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URU as a neighbourhood unit with the same size as a single cell (100×100 m2), characterised by 341 

the following properties: 342 

i. The number of households: Each URU includes a fixed number of identical households. 343 

Every household is considered as a structurally independent residential unit with a single 344 

connection to the mains. 345 

ii. The occupancy of the household: This is the average number of people inhabiting a 346 

household, which may include a single family or many families in case of multi-storey 347 

buildings (URUs that correspond to states 3 and 4). 348 

iii. The private and public pervious area (areas occupied by gardens and parks), as well as the 349 

private and public impervious areas (road, pavements, rooftops).   350 

iv. The urban water network topology: This refers to the installed water appliances, the existence 351 

of any water recycling scheme, the type of sewers (combined/separate), etc.  352 

The first three properties, which relate to the urban density of an URU (i.e. are defined by the 353 

urban state), are obtained from satellite images (see Table 4). The fourth property comprises all 354 

local water-saving or recycling schemes applicable in the particular neighbourhood. In this study, 355 

five different network topologies were employed: 356 

 The first two topologies include the Business As Usual (BAU) solution as well as the 357 

installation of low-water consumption appliances (LOW). These two have identical 358 

connections between the water components. The specifications of the in-house water 359 

appliances and frequencies of use for both solutions are obtained from literature (EEA, 2001; 360 

Grant, 2002, 2006; Eartheasy, 2012; ENERGY STAR, 2012a, 2012b) The daily per capita 361 
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consumption of the conventional scenario is 184 L/p/d, while in the case of low-water 362 

consumption appliances it is reduced to 97 L/p/d. 363 

 The next two topologies attempt to achieve additional water saving by implementing a Rain 364 

Water Harvesting scheme (RWH), as well as its combination with low consumption 365 

appliances in the second case (RWHLOW). The tank capacities used in the RWH scheme are 366 

dependent on the building type and are assumed 2, 10 and 20 m3 for the states 2, 3 and 4 367 

respectively. The rainwater harvesting areas of the three states are 80, 160 and 190 m2 368 

(average roof area estimated from satellite images). The average annual rainfall depth, as 369 

estimated from daily rainfall timeseries (FreeMeteo, 2011) is 376 mm. 370 

 The fifth topology includes local Grey Water Recycling (GWR) (Figure 8) with a local 371 

treatment unit that treats water from the shower and the hand basin and supplies treated water 372 

to the toilet, the washing machine and for watering the garden. The RWH, RWHLOW and 373 

GWR topologies differ from BAU and LOW, since they include a tank, which receives 374 

harvested rainwater in the rainwater harvesting schemes or the treated grey water from a 375 

local treatment unit in the grey-water recycling solutions. A more detailed description of the 376 

simulation of RWH and GWH schemes can be found in Rozos et al. (2010). 377 

In order to assess the demand of the in-house water appliances a series of micro-components are 378 

employed (with each micro-component simulating a water appliance), which are then aggregated 379 

to calculate the potable water demand of the URU (see Rozos and Makropoulos (2013) for more 380 

information on how UWOT accomplishes this). Outputs of all appliances are aggregated and this 381 

flow is multiplied with the number of households per cell, which gives the wastewater charge 382 

(WW) of the URU. For outdoor uses a constant value given by Grant (2006) was used regardless 383 
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of the urban density. Finally, the rainfall on the roofs of the households generates runoff, which, 384 

after being multiplied with the number of households, is added to the runoff from the public 385 

impervious areas and the total pervious area of the cell, resulting in an estimation of total runoff.  386 

The combination of the five network configurations with the three urban states (Table 4) result in 387 

fifteen URUs, depicting the full range of feasible technologies at the neighbourhood level for 388 

every possible urban state.  The urban water cycle of these URUs is then simulated (Table 5), 389 

with the use of a daily time step (historical daily rainfall timeseries were obtained from 390 

FreeMeteo (2011)) with the simulation period extending from 1/1/1980 to 31/12/1999. The 391 

values displayed in this table include average potable water demand, wastewater (WW) and 392 

maximum runoff volume (generated from the rainfall on the simulated urban area) for the 393 

simulation period. 394 

To obtain the urban water cycle flows at the scale of a municipality for each one of the years 395 

1990, 2000, 2010 and 2020, and assuming no interdependencies between cells in terms of water 396 

flows, Table 5 was multiplied with the corresponding number of urban cells per state (see also 397 

Figure 1). 398 

Results and discussion 399 

The coupling of UWOT with an urban growth model (albeit a second level coupling according to 400 

Brandmeyer and Karimi (2000)) presented here, allows for an assessment of the impact of urban 401 

growth on the urban water cycle. It also quantifies the effects of various water-saving 402 

technologies at a regional level. For example, Figure 9 shows the evolution of the potable water 403 

demand and the indicative maximum runoff volume for each municipality of the study area for 404 

the BAU solution. The improvement of the urban water cycle performance by implementing 405 
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each one of the four WDM measures compared to the BAU solution is shown in Figure 10 for 406 

Koropi and Artemis (representative municipalities for high and low urban density respectively), 407 

regarding (a) potable water demand, (b) wastewater volume and (c) maximum runoff volume. 408 

The results of applying rainwater harvesting (RWH) are shown in Figure 11. The evolution of the 409 

overall potable water demand of the study area for all four WDM solutions is shown in Figure 12 410 

(contrasted with the BAU solution). This figure assumes a steady technology uptake rate in 411 

existing households of 10% per year. 412 

 413 

With that level of output detail, produced by a bottom-up modelling philosophy, key conclusions 414 

can be drawn regarding the effectiveness and, therefore, prioritisation of relevant water demand 415 

management (WDM) measures in the studied area, both for more detailed and regional scales: 416 

 Prioritisation of WDM measures in Mesogeia, Athens: The installation of low water 417 

consumption appliances is the WDM measure that achieved the highest reduction of 418 

potable water demand (see Figure 10), with grey water recycling achieving a moderate 419 

effect. Although this depends on the particular technology mix chosen for testing, all 420 

technologies examined are readily available “off the shelf”. Rainwater harvesting achieved 421 

a runoff volume reduction up to 40% in the dense urban areas whereas the reduction is 422 

limited to 10% at the low urban density areas. The results also underline the beneficial 423 

coupling effect of these WDM, as any simultaneous application of measures enables the 424 

synthesis of their individual benefits. The most characteristic example is the installation of 425 

the combination of low water consumption appliances with rainwater harvesting to reduce 426 

both potable water demand and runoff volume (53% and 33% respectively in dense urban 427 

areas). It should be noted however that outdoor water demand is largely related to urban 428 
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form and density (e.g. garden irrigation in low density urban areas). Having said this, the 429 

assumption of a constant outdoor demand employed here is not expected to have 430 

significant impact on this case study. If a more realistic estimation of outdoor demand was 431 

employed instead,  arguably, the performance of LOW, which ranked first, would have 432 

remained unaffected,  the performance of GWR would have decreased proportionally to 433 

the additional irrigation demand while the performance of RWH, which ranked last, would 434 

have decreased both because of the additional demand and because of the fact that the peak 435 

of this demand is during summer, i.e. when precipitation is at a minimum. Nevertheless, 436 

more detailed approaches with respect to calculations of outdoor water demand (such as 437 

the one described in Rozos et al., 2013) should be used in cases where RWH is expected to 438 

be more efficient (e.g. in wet climatic conditions). 439 

 Prioritisation and temporal analysis of demands: If the capacity of the existing regional 440 

centralised water system (either to supply water, treat wastewater or convey runoff) is 441 

expected to be exceeded by the BAU scenario of the projected urban growth then water can 442 

become a limiting factor to urban growth. In this case, measures need be taken well in 443 

advance using realistic technology uptake and penetration rates. In such a context, the 444 

proposed methodology can lead to the formation of charts of water demand evolution for 445 

alternative urban growth projections and WDM measures (such as Figure 12) that can be 446 

used to plan intervention strategies (roadmaps) and form adaptation policies as the urban 447 

area of study changes and evolves. For the preparation of such a roadmap, it should be 448 

clear that the accuracy of the forecasts provided by our method is limited by the uncertainty 449 

related to the velocity factor. In this study a constant velocity factor was used, which was 450 

calibrated based on past population dynamics. This approach presupposes that the 451 
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socioeconomic conditions during the forecast period remain similar to that of the 452 

calibration period. A more sophisticated approach could entail the employment of a 453 

socioeconomic model to estimate the velocity factor at each step of the simulation. This 454 

would represent, for example, the periods of increased construction activity and the periods 455 

of economic relapse when such activity is decreased. 456 

 457 

Conclusions 458 

The study demonstrated the coupling of urban growth modelling (a CA model) with urban water 459 

cycle simulation (UWOT) for the purposes of planning distributed water management 460 

interventions at the regional or city level. It is argued that this type of work could form a basis 461 

for deeper integration between urban design and water management, thus leading to more water 462 

sensitive urban planning policies and mitigation strategies. While the coupling methodology is 463 

straightforward and addresses only a cause-effect relationship between urban growth and water 464 

impact, more dynamic links are evident through the framework; for instance, the CA model can 465 

be calibrated to include spatiotemporal changes induced by water-aware urban planning (e.g. 466 

blue-green infrastructure, see Rozos et al., 2013) or policies that favour specific, low-impact land 467 

use. Such links have not been addressed here, but form the ambition of ongoing work. It is 468 

finally suggested that the integration of UWOT with urban growth models at a cell level allows 469 

for the investigation of even more sophisticated cases, where certain housing units decide to 470 

retrofit technologies or adopt new ones while the urban area is evolving, linked for example to 471 

changes in income growth and distribution, awareness raising campaigns,  rebate and other 472 

supporting policies or even population dynamics and characteristics and hence providing policy 473 



23 
 

makers at the city level with long term scenario planning tools for more sustainable water 474 

infrastructure. 475 
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 647 

Tables  648 

Table 1. The general rule formulation used in the CA model. 649 

General Rule Formula: PROB = SF × MooreRules × VF 
 

Rule Name Moore neighborhood 
radius in MooreRules VF 

Edge Expansion 1 1 0.75 
Edge Expansion 2 2 0.68 UGA 
Spontaneous Growth 3 0.50 

SAA Urban State Allocation (2,3 or 4) 3 ‐* 
Intensification, state 2 to 3 2 0.25 

INM 
Intensification, state 3 to 4 2 0.10 

* The urban state allocation step allocates states to urbanized cells based only on neighbouring 650 
cell states. Hence, a velocity factor is needless for this rule.   651 

 652 

Table 2. Census data for studied area. 653 

 1991 2001 2011 
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Pallini 10695 17232 543901 
Gerakas 8451 13990  
Anthousa 2889 2389  
Artemis 7077 14719 338002 
Spata 7708 10419  
Koropi 16239 24453 30340 
Marcopoulo 9356 13644 20070 
Paiania 9765 12997 266203 
Glyka Nera 5753 6770  
Rafina 7632 10701 199404 
Pikermi 1262 2924  
Notes: 1 Includes population of Gerakas and Anthousa, 2 includes population of Spata, 3 includes 654 
population of Glyka Nera, 4 includes population of Pikermi. 655 

 656 

Table 3. Observed and simulated population growth for each municipality. 657 

Year 1990 2000 2010 2020 
Census Data 7077 14719 33800*  Artemis Simulated 8640 14980 24963 35216 
Census Data 7708 10419   Spata Simulated 7171 13019 19653 26615 
Census Data 9765 12997 26620*  Peania Simulated 9309 15171 24208 27642 
Census Data 9356 13644 20070  Porto Rafti & 

Makropoulo Simulated 7770 12903 22137 38508 
Census Data 6370 7777 13165  Rafina Simulated 6493 9323 11472 15450 
Census Data 10695 17232 54390*  Pallini Simulated 9600 14125 21050 23122 
Census Data 16239 24453 30340  Koropi Simulated 15900 19047 25300 32212 

 658 

* This value reflects a growth in municipal borders after new legislation measures. 

Actual corresponding size (with the same borders as 2000) is expected to be 20%-25% smaller. 

 659 

Table 4. Urban density properties of the three states and their corresponding Urban Response 660 

Units (URU). 661 
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State 2 
(low-
storey 
houses) 

State 3 
(mixed 
state) 

State 4 
(blocks 
of flats) 

Occupancy  3.2 7.4 20 
Buildings/cell 10 17 15 
Urban density (people/cell) 32 125 300 
Public impervious (m2) 1000 4645 3925 
Total pervious (m2) 8200 2635 3225 
Building footprint (m2) 80 160 190 
 662 

 663 

Table 5. Results of simulations of the fifteen (3×5) URUs with UWOT. 664 

 
 

State 2 State 3 State 4 

BAU 5893 22778 53873 
LOW 3091 11760 27599 
RWH 5305 20574 51527 
RWH LOW 2567 9640 25259 

Average 
potable 

demand (L/d) 
GWR 4165 15985 37673 
BAU 5718 22481 53610 
LOW 2916 11463 27336 
RWH 5718 22480 53610 
RWH LOW 2916 11463 27336 

Average WW 
out (L/d) 

GWR 3990 15687 37410 
BAU 307806 866066 806880 
LOW 307806 866066 806880 
RWH 297030 724577 502743 
RWH LOW 300893 739763 538959 

Max runoff 
volume (L/d) 

GWR 307806 866066 806880 
 665 

 666 

 667 

Figures 668 

 669 
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 670 

Figure 1. The flow chart of the interaction of the water management model with the fuzzy 671 

constrained cellular automata model. Data are symbolized with rectangles, processes are 672 

symbolized with rhombi and intermediate results with ellipses. 673 
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Initial multiple‐state urban image.

Corresponding initial binary urban raster map.

UGA

Non‐urban cells are selected and 
are switched to urban.  

SAA

Different cell states are allocated to 
every newly urbanized (with the 
previous stage) cell. 

INM

Existing urban cells are allowed to 
change into denser cell states.  

Final multiple‐state urban image. 

 674 

Figure 2. The framework of cell state transformation and allocation that drives multiple-state 675 

urban growth. 676 
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 677 

Figure 3. Land uses and transportation network of the study area (resolution of the raster map is 678 

100×100 m2) according to CORINE 2000. Coordinates at the centre of the map for EPSG:3857 679 

are (37.9372, 23.941). 680 

 681 

Figure 4. Satellite images of urban areas (100×100 m2) of the states (from left to right) 2, 3 and 682 

4 respectively. 683 
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  684 

Figure 5. Left: map of population density distribution according to CORINE 2000 (resolution of 685 

raster map is 100×100 m2). Right: Frequency of population density values of the CORINE map. 686 

 687 

Figure 6. Overlay of the CORINE 2000 urban boundaries and the simulated residential patterns. 688 
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 689 

Figure 7. Fitting indicators for the model results, as compared to the CORINE2000 urban cover.  690 

 691 

Figure 8. Indicative network topology of the GWR solution, modelled in UWOT. 692 



36 
 

0.0

2000.0

4000.0

6000.0

8000.0

1990 2000 2010 2020

(m
3 /d

)

Artemis Prt. Rafti
Spata Peania
Markopoulo Rafina
Palini Koropi

 693 

0.0

150.0

300.0

1990 2000 2010 2020

(m
3 /d

 /h
a)

Artemis Prt. Rafti
Spata Peania
Markopoulo Rafina
Palini Koropi

 694 

Figure 9. Indicative potable water demand per day (upper) and maximum runoff volume per 695 

hectare (bottom) for each municipality of Mesogeia, BAU solution. 696 
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 699 

Figure 10. Potable water demand (a), wastewater volume (b) and runoff volume (c) for each 700 

WDM measure, presented as % of the BAU solution, for the municipalities of Koropi and 701 

Artemis. 702 
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Figure 11. Runoff volume per municipality for the RWH solution, presented as % of the BAU 704 

solution. 705 
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Figure 12. Comparison of the evolution of potable water demand over the whole study area for 707 

the different WDM measures. 708 


