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Motivation: The water-energy nexus 

 Water as energy producer 

 Hydropower (large and small-scale plants); 

 Irrigation of biofuels; 

 Cooling of thermal power plants; 

 Water as energy consumer 

 Pumping along water conveyance and distribution networks; 

 Groundwater abstractions from wells and boreholes; 

 Water treatment (e.g., desalination); 

 Water as energy buffer (pumped-storage) 

 Pumping water to an upstream reservoir, taking advantage of the excess of 
energy (e.g., during night hours), and then retrieving this water to generate 
hydropower, is the only means for energy storage at large scale;  

 Water as energy regulator 

 Large hydroelectric reservoirs are irreplaceable means for the stability and 
economic efficiency of the electric systems at the national level; 

 The role of pumped storage has gained further importance after the expansion 
of renewables, given that the variability of renewable energy production cannot 
follow the corresponding demand. 



CRESSENDO project: Modelling of the Acheloos-
Peneios water-energy system 
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From conventional water resources management 
to integrated water-energy management 

 The typical water management problem: 

 Seeks an optimal allocation of water 
resources (closed water balance, i.e. 
system inflows = system outflows); 

 Hydropower production is considered 
as objective to maximize; 

 Energy consumption in pumps and 
boreholes is handled in terms of 
minimization of operation costs. 
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Energy 
control  The water-energy management problem: 

 Seeks the optimal allocation of both 
water and energy resources (closed 
water balance, closed energy balance); 

 Energy demand is considered as 
constraint (similarly to water uses); 

 Additional energy sources (e.g., 
renewables) may also be accounted for 
in the overall energy balance. 
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Conjunctive modelling of water-energy systems 
 The modelling challenge: 

 The representation of two simultaneous fluxes (water & energy) and their 
interactions increases the number of decisions and the number of constraints; 

 Since energy production from renewables (hydropower, solar, wind) is driven by 
randomly varying meteorological processes, stochastic approaches are essential 
considering synthetic input data of large length and fine temporal resolution; 

 Major computational issues to answer: 

 time step of simulation; 

 parameterization of system control; 

 objectives and performance criteria; 

 implementation of simulation and optimization procedures; 

 Simplifications on energy management: 

 Energy fluxes are not subject to topology or conveyance capacity restrictions, 
since the overall accounting is implemented in a dummy “energy control” node 
that joins all energy producers and consumers; 

 Energy demand for domestic, commercial and industrial uses is known; 

 Energy demand associated with water uses (e.g., agricultural), which depends 
on the current water management policy, is estimated to be equal with the 
energy consumption of the previous time step. 
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The time scale issue: hydro vs. solar/wind energy 
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 The time scale of simulation of each energy source 
depends on the variability of the associated input and 
output processes, i.e. meteorological and energy fluxes. 

 Large scale hydrosystems comprise natural and 
artificial regulating mechanisms that allow employing 
coarse simulation steps, e.g. monthly. 

 Solar and wind energy follow the variability of solar 
radiation and wind velocity,  respectively, thus 
requiring much finer temporal resolutions, e.g. hourly. 
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Coupling time scales via split of energy components 
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Energy 
control 
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 Step 1: Hourly simulation of energy generated by solar panels and wind turbines. 

 Step 2: Estimation of hourly energy excess or deficit, accounting for hourly demand 
for electricity (domestic, commercial and industrial). 

 Step 3: Daily simulation of water resource system (including turbines, reverse 

Daily energy deficit: to 
be fulfilled by activating 
hydroelectric stations 

Daily energy excess: 
primarily available to 
fulfill water uses through 
pumping, the remaining 
amount is available for 
pumped-storage during 
excess period (hours/day) 

turbines and pumps), accounting for daily deficit 
and excess of energy . 
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Parameterization of hydrosystem operation 
 Model requirements on the parameterization of the operation policy of the system: 

 simplicity, to aid decision-making and implementation by practitioners;  

 parsimony, to minimize the number of control variables thus substantially 
facilitating the optimization procedure. 

 Main controls are expressed in terms of dimensionless energy targets for power 
production and consumption, which are assigned to the associated components. 

 At the beginning of each step (day), the actual energy targets are updated on the 
basis of the corresponding dimensionless targets, which are used to distribute the 
total energy deficit/excess to all energy components.  

 In the case of pumped storage machines, the conveyance capacity of penstocks at 
each direction is updated, accounting for hours of deficit (forward operation of 
turbines) and excess (reverse operation, i.e. pumping). 

 Energy targets are transformed to equivalent minimum flow constraints, in order 
to force the model releasing the required amount of water to produce (or consume) 
the desirable amount of energy. 

 Additional controls may be assigned to selected components of the hydrosystem: 

 Allocation rules for reservoir storages;  

 Water level constraints (min, max); 

 Flow constraints (min, max); 
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Linear network programming approach for step-
by-step simulation of water-energy fluxes  

 Formulation of a graph model, in which links 
represent individual water or energy fluxes of 
the conceptual system. 

 Graph properties are nodal inflows and link 
capacities and unit costs (real or artificial), 
that are automatically updated at each step. 

 The optimal allocation of fluxes is expressed 
in terms of a network linear programming 
(NLP) problem, ensuring: 

 Strict fulfilment of all physical constraints ; 

 Hierarchical fulfilment of user-defined 
targets and constraints; 

 Minimization of real-world operational 
costs (e.g., due to pumping); 

 The mathematical formulation of NLP (e.g., 
sparse matrices) allows using very fast and 
accurate solvers (specific versions of simplex).  

 For n time steps are solved n NLP problems. 
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Probabilistic evaluation of system performance  

 Water-energy systems are subject to multiple and usually conflicting objectives: 

 Maximization of economic benefits, from water and energy production; 

 Minimization of operational costs (pumping); 

 Minimization of water and energy deficits (may also be expressed in terms of 
equivalent resource costs). 

 The economic evaluation is not straightforward: 

 Energy prices are not constant, since they strongly depend on the temporal 
distribution of energy production; 

 Given that the system inputs are uncertain, its outputs, including the 
aforementioned economic quantities, are also uncertain. 

 Problem handling: 

 Assessment of firm and secondary energy, to account for high and low prices 
of energy industry; 

 Probabilistic evaluation of system performance, based on reliability criteria 
(both the frequency and magnitude of deficits are important); 

 Use of synthetic inputs of large length generated by advanced stochastic 
models to ensure accurate probabilistic estimations; 

 Multiobjective analysis to identify compromise operation policies. 
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Effective and efficient optimization through the 
Surrogate-Enhanced EAS algorithm 

 Recently developed version of the evolutionary annealing-simplex (EAS) algorithm, 
suitable for global optimization problems on a budget (i.e., problems requiring 
time expensive simulations to evaluate the objective function). 

 All visited points within search are used to progressively improve the approximation 
of the actual geometry of the response surface via a surrogate model (e.g., RBF). 

 SEEAS takes advantage of the information gained by the surrogate model to assist 
the generation procedure (mainly employed by means of simplex transitions). 
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Tsoukalas I., P. Kossieris, A. Efstratiadis, and C. Makropoulos, Surrogate-enhanced evolutionary 
annealing simplex algorithm for effective and efficient optimization of water resources problems 
on a budget, submitted to Environmental Modelling & Software, 2015. 



Ongoing implementation:  Hydronomeas 5.0 
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We kindly invite you to attend poster presentation 
“Integrated water and renewable energy management: 

the Acheloos-Peneios region case study” by A. 
Koukouvinos et al. (Red Posters, R231) 



Concluding remarks 

 In the new energy scene renewables play dominant role in energy planning and 
management at the national and peripheral scale, also reveling the key importance 
of water as producer, consumer and regulator of energy. 

 System-based approaches that have been successfully implemented in typical water 
resources management problems should be revisited and improved, to provide 
integrated solutions for conjunctive water and energy modelling.  

 Ongoing research seek a generalized methodological framework, employing the 
parameterization-stochastic simulation-optimization scheme to water-energy 
systems of any topology and spatial extent. 

 Effective and efficient solutions are provided to address a number of computational 
shortcomings, which are apparent within several stages of the methodology. 

 Currently, the methodology and the associated software (Hydronomeas) are tested 
in the largest and more complex water-energy system of Greece in the context of a 
research project titled “Combined Renewable Systems for Sustainable Energy 
Development” (CRESSENDO) . 
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